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Abstract 
 
For standard statistical problems, we provide new evidence documenting i) multi-modality and ii) 
instability in probability estimates, including from irrelevant changes in problem description. The 
evidence motivates a model in which, when solving a problem, people represent each hypothesis by 
attending to its salient features while neglecting other, potentially more relevant, ones. Only the 
statistics associated with salient features are used. The model unifies biases in judgments about i.i.d. 
draws, such as the Gambler’s Fallacy and insensitivity to sample size, with biases in inference such 
as under- and overreaction and insensitivity to the weight of evidence. The model makes predictions 
for how changes in the salience of specific features jointly shapes known biases and measured 
attention to features, but also create entirely new biases. We test and confirm these predictions 
experimentally. Salience-driven attention to features emerges as a unifying framework for biases 
conventionally explained using a variety of stable heuristics or distortions of the Bayes rule. 
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1. Introduction 

Some of the most glaring judgment biases arise in statistical problems. When assessing flips 

of a fair coin, people tend to estimate a balanced sequence such as ℎ𝑡ℎ𝑡𝑡ℎ to be more likely than 

ℎℎℎℎℎℎ. This striking phenomenon, called the Gambler’s Fallacy (GF), arises even though people 

know that each toss lands heads or tails with 50% probability, which implies that the two sequences 

are equally likely. People also make errors when updating beliefs based on a noisy signal. They 

underreact to the signal in some problems (Edwards 1968) but overreact in others (Kahneman and 

Tversky 1972). This is also striking: in these problems people are told numerical priors and 

likelihoods and could compute the correct answer using the Bayes’ rule. 

Why do people make these systematic mistakes? And why are these mistakes unstable, 

changing from one problem to the next and across versions of the same problem?  To date, there is 

no unifying answer to these questions. A large body of work formalizes specific biases such as the 

Gambler’s Fallacy (Rabin 2002), sample size neglect in i.i.d. draws (Benjamin, Rabin, Raymond 

2016), base-rate neglect (Grether 1980), and underreaction in inference (Enke and Graeber 2023), but 

does not connect biases across problems or even within different versions of the same problem.2 

We build a new model based on selective attention to address these questions. When assessing 

a hypothesis, the decision maker (DM) focuses on its salient features and neglects other features, even 

if relevant. The hypotheses are thus incorrectly represented, a form of question substitution 

(Kahneman and Frederick 2002). Incorrect representation leads to incorrect beliefs.  This mechanism 

unifies different biases and their instability based on well-known regularities in salience-driven 

attention.  

As motivation, Section 2 documents that the distribution of estimates in famous statistical 

problems is multi-modal and unstable. When judging the relative likelihood of two sequences of a 

fair coin, some people commit the GF, while others give the correct 50:50 answer. The share of correct 

answers falls as sequences get longer, even though the correct answer remains the same. Similarly, 

when inferring the probability of a hypothesis based on a noisy signal, some people anchor to the 

prior, others to the likelihood, and very few integrate the two (see also Dohmen et al. 2009). Again, 

changes to the formulation that leave the correct answer the same create instability: holding fixed the 

numerical statistics, describing the signal as the report of a witness in court rather than abstractly 

sharply raises the neglect of the prior. Multi-modality and instability are inconsistent with existing 

 
2 The vast majority of this research is concerned with either inference problems or i.i.d. random sequences and sampling 
distribution problems.  In Benjamin’s (2019) review, out of the 123 cited papers that experimentally elicit beliefs in 
statistical problems, 91 are on inference, 14 cover random sequences, and 23 cover sampling distributions (some cover 
both). No paper to our knowledge jointly covers inference and random sequence problems. 
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models, which rely on a fixed mis-specified model (Rabin 2002), stable distortions of the Bayes’ rule 

(Grether 1980), or perceptual noise (Enke and Graeber 2023, Khaw, Li, and Woodford 2021). 

To see how this evidence connects to selective attention, consider the famous duck-rabbit 

illusion, in which a drawing can be interpreted as either a duck or a rabbit. Some people focus on the 

beak and see a duck, while others focus on the mouth and see a rabbit. One feature is attended to, the 

other neglected, so different people see a different animal. Nobody sees both animals at once, nor do 

people represent the picture as a mixture of duck and rabbit. Selective attention leads to only one 

representation at time.3 When sentencing a confessed bank robber (Clancy et al. 1981), some judges 

focus on the defendant’s age, others on whether he was armed, and still others on how much money 

he took, leading to different sentences for the same confessed crime under the same law. In bail 

decisions, some judges may even focus on irrelevant aspects, such as whether a defendant is well 

groomed (Ludwig and Mullainathan 2024). In these examples, selective attention to features yields 

sharply different representations and judgments. 

We argue that the same logic is at play when people solve statistical problems, except here 

there is an objectively correct answer. These problems also have many features, which people can 

selectively attend to. When judging two sequences of a fair coin such as ℎ𝑡ℎ𝑡𝑡ℎ vs. ℎℎℎℎℎℎ, people 

may focus on the individual flips of each sequence, or on the sequences’ share of heads (0.5 vs. 1). 

When judging the probability that a green ball comes from urn 𝐴 (vs 𝐵), people may focus on the ex-

ante probability of selecting urn 𝐴, or on the draw of a green ball from it. Depending on which feature 

is attended to and which ones are neglected, the same hypotheses are represented differently. 

Following Bordalo et al. (2022), we formalize two drivers of attention: contrast and 

prominence. First, a feature has high contrast and draws attention if it sharply discriminates between 

different options. In consumer choice, price has high contrast if one good is strikingly cheaper than 

another. In statistical problems, a feature analogously has high contrast if it sharply favors one 

hypothesis over another. Second, a feature can be prominent based on the description of the problem, 

drawing attention because it is highly visibly displayed, as in Chetty et al (2009) study of sales taxes. 

Similarly, different wording or framing of equivalent statistical problems may highlight their different 

features, bringing some but not others prominently to mind even though statistics are unchanged. In 

our approach, changes in the contrast or prominence of specific features may cause sharp changes in 

attention and thus representations, delivering the instability in measured biases. 

 
3 In line with this intuition, a literature in neuroscience documents competition between different representations as a key 
neuronal mechanism underlying visual attention (McClelland and Rumelhart 1981, Desimone and Duncan 1995), which 
can also lead to instability in visual representations over time. 
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The model accounts for and reconciles well-known biases in judgments about i.i.d. draws and 

inference based on the same mechanism, delivering multimodality and instability in both domains. It 

also makes two new predictions, which we test experimentally. First, our framework predicts a 

connection between bias and attention to specific features. In i.i.d. draws, DMs committing the GF 

should be more likely to attend to the sequences’ share of heads.  In inference, overreacting DMs 

should be more likely to attend to the signal relative to the prior, whereas people arriving at the 

Bayesian answer should attend to both features. We measure attention by: i) analyzing free-response 

reports on how people solve problems, ii) having participants select features they attended to from a 

list, and iii) eliciting similarity judgments. Across all methods, the model’s prediction is confirmed. 

Our second and key prediction is that exogenous changes in the salience of a feature should 

cause joint shifts in attention and the distribution of estimates. To test this prediction, in i.i.d. draws 

we make individual flips prominent by describing the same hypotheses in terms of the flips that 

differentiate them, and show that doing so reduces both measured attention to the share of heads and 

the incidence of the GF.  In inference, we increase the contrast of the signal by raising the likelihood 

and show that doing so jointly boosts attention and anchoring to the likelihood, and increases the 

share of people who neglect the base rate. We also increase the prominence of the match between the 

signal and different hypotheses by describing the likelihood in terms of the similarity between the 

two, and show this increases measured attention to this feature and anchoring to the likelihood. This 

mechanism accounts almost fully for the large shift in estimates from the balls and urns format 

(Edwards 1968), in which many people anchor to the base rate, to the “taxicabs” format (Kahneman 

and Tversky 1972), in which they anchor to the likelihood. 

Our model explains why presenting inference problems in a “frequency format” (Tversky and 

Kahneman 1983, Gigerenzer and Hoffrage 1995) promotes Bayesian answers: it curbs the neglect of 

either the base rate or the likelihood. This format is no panacea, though. To show this, we manipulate 

the salience of a hypothesis by not mentioning its alternative in the question. Consistent with the 

model, this treatment unveils a new bias predicted by our model: many people estimate the described 

hypothesis as the product of its base rate and likelihood, fully neglecting the alternative. Salience-

driven attention thus casts doubt on the general ecological rationality of human intuition and 

highlights the sensitivity of judgment to irrelevant features of context. 

We explain biases attributed to heuristics such as availability, representativeness, or anchoring 

(Kahneman and Tversky 1972, Gigerenzer 1996) as byproducts of selective attention to features. We 

formalize such attention using insights from psychology and machine learning (Tversky 1977, 

Kruschke 2008, Selfridge 1955, Guyon and Elisseeff 2003). Compared to models of goal-optimal 

attention (Sims 2003, Woodford 2003, 2020, Gabaix 2019), we explain why highly relevant 
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information can be neglected while irrelevant changes shape attention and biases. In our setup, 

prominence is treated as a latent variable which is not theoretically micro-founded but is disciplined 

through measurement.  Bordalo, Gennaioli, Lanzani, and Shleifer (2024) generalize the current model 

to include a theory of prominence based on experienced categories and visually salient cues.   

Our paper relates to a growing body of work showing that biases can persist even in the 

presence of feedback and incentives due to selective attention, which can arise from incorrect models 

(Schwartzstein 2014, Gagnon-Bartsch, Rabin, and Schwartzstein 2023, Esponda et al 2024) or 

computational complexity (Simon 1957, Enke and Zimmermann 2019, Enke 2020, Graeber 2023). 

In our model, bias arises even in computationally simple problems because of selective attention and 

incorrect representation (see also Ba et al. 2024). In coin flips, it is trivial to avoid GF by recognizing 

that each flip is 50:50. Bias arises because a particular feature, the share of heads, is salient but 

irrelevant for the problem at hand. Moreover, shifts in salience lead to instability of choices, whereas 

much of earlier work focuses on stickiness in biases.   

The paper proceeds as follows. Section 2 presents new evidence that the distribution of 

answers in coin-flip and inference problems is concentrated at specific modes, whose incidence 

changes with normatively irrelevant modifications. This evidence motivates our new approach. 

Section 3 introduces our model. Sections 4 and 5 develop and evaluate empirical predictions for coin 

flips and inference. Section 6 derives and tests other implications. Section 7 concludes. 

 

2. Puzzles in famous statistical problems 

In April 2023, we recruited participants online through Prolific to answer one “iid draws” 

problem and one “Inference” problem, in a random order at the beginning of the survey. They earned 

an additional bonus for each question if their answers were within 5 percentage points of the correct 

ones. Appendix B describes the experimental protocol and pre-registration. 

For iid draws, we told participants that we created a large number of sequences from tosses of 

a fair coin. In the first treatment, 100 of these sequences were either 𝐻! = 𝑡ℎ or 𝐻" = ℎℎ. In the 

second treatment, they were either 𝐻! = 𝑡ℎ𝑡ℎℎ𝑡 or 𝐻" = ℎℎℎℎℎℎ. We asked participants for their 

best guess of how many of these sequences were from 𝐻! or 𝐻". Panels A and B of Figure 1 show 

the distribution of beliefs about the relative share of the unbalanced sequence for each treatment. 

As in previous studies (Benjamin 2019), the mean response is below 0.5, confirming the 

Gambler’s Fallacy, the belief that a specific balanced sequence is more likely than an unbalanced one. 

There are, however, two new findings. First, GF is much more severe when 𝑛 = 6: the average 

probability estimate of 𝐻! drops from 47.2% in Panel A to 35.4% in Panel B (𝑝 = 0.00). Second, 
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this partly occurs because the share of people answering exactly 50% drops by about 14 percentage 

points (54.8% in panel A vs. 40.7% in panel B, 𝑝 = 0.00), with an increase in answers around 5%.  

 
Figure 1. Each panel reports the distribution of estimated Pr(𝐻!|𝐻" ∪ 𝐻!) . Answers closer to 0  indicate higher 
probability of the balanced sequence 𝐻". The blue bar marks the mean answer. 
 

Instability in the share of people committing GF is inconsistent with a heterogeneous yet stable 

tendency to use a mis-specified sampling model (Rabin 2002). In Rabin and Vayanos (2010), the GF 

can become more severe when sequences get longer only on the intensive margin, i.e. in the extent 

of error conditional on committing GF. Comparing Panel A to Panel B, in contrast, there is also a 

sharp increase in the extensive margin of people committing GF. The difference in the extensive 

margin suggests that when judging short sequences, many people attend to the fact that each flip has 

a 50: 50 chance of ℎ and 𝑡, but neglect this feature when the sequences are long. Why are different 

features neglected in the two experiments, where the correct answer is the same? 

Consider inference next. We presented a problem in two different yet normatively equivalent 

formats. In the “balls and urns” treatment (Edwards 1968), participants were told that an urn 𝐴 

contains 80% green and 20% blue balls, while urn 𝐵 contains 20% green and 80% blue balls. A 

computer selects urn 𝐴 or 𝐵 with probabilities 25% and 75%	respectively, and draws a ball from it. 

The ball is green. They are then asked the probability that it was drawn from 𝐴 vs. 𝐵. In the more 

naturalistic “cabs” treatment (Kahneman and Tversky 1972), participants were instead told there are 

two taxicab companies, the Blue and the Green, according to the color of the cabs they run.  25% of 

the cabs are Green, while 75% are Blue. A cab is involved in a hit and run accident, and a witness 

reports the cab as Green.  A test reveals that the witness can correctly identify each color cab with 

probability 80%. They are the asked the probability that the errant cab was indeed Green vs. Blue. 

We run the two formats with identical statistical parameters with two sets of participants, which to 

our knowledge has not been done before. Using Bayes’ rule, the correct answer is Pr(𝐴|𝑔) =

Pr(𝐺𝑟𝑒𝑒𝑛|𝑔) = 0.57 in both problems. The distribution of answers is reported in Figure 2. 
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Figure 2. The left panel reports the distribution of Pr(𝐴|𝑔), the right panel of Pr(𝐺𝑟𝑒𝑒𝑛|𝑔). The 
solid line indicates the mean answer, while the dashed line indicates the Bayesian answer of 0.57. 
 

Consistent with previous work (Benjamin 2019), in balls and urns (Panel A) under-reaction 

to the data prevails on average: the mean answer (solid line) is 52%, lower than the correct answer 

(dashed line). There is however pronounced multi-modality: many answers cluster on the base rate 

25%, the likelihood 80%, and 50%. Where do these different modes come from?  

Crucially, there is also instability: in the taxicab frame (Panel B), many more people anchor 

at or around 80% , so on average they over-react. Instability is inconsistent with a mechanical 

tendency toward base-rate neglect (Edwards 1968, Grether 1980), with a shrinkage of beliefs to the 

prior due to noise (Woodford 2020, Enke and Graeber 2023), or with any fixed heuristic. Even 

answers typically attributed to epistemic uncertainty (De Bruin et al 2000) are unstable: the 50:50 

mode essentially disappears when moving to taxicabs. The evidence is suggestive of selective 

attention. In balls and urns many people appear to neglect the color of the drawn ball, and answer 

with the base rate. In taxicabs, they instead neglect the baseline frequency of blue cabs, and answer 

with the likelihood. Why are different features neglected in different frames? 

We also ran the treatments of Figures 1 and 2 within subjects (see Appendix B for details). 

The results confirm both multimodality and instability. On one hand, at the individual level, there is 

a systematic heterogeneity in how subjects represent a given problem. In i.i.d. draws, subjects who 

commit the GF in one problem are more likely to do the same in a similar problem. In inference, 

subjects anchoring to the base rate/likelihood in one problem are more likely to do the same in a 

subsequent similar problem. On the other hand, comparing across different settings, there is instability 

in how a person represents a problem: the shift in beliefs in Figures 1 and 2 is almost fully explained 

by subjects who move between the dominant modes. For i.i.d. draws, a large fraction of subjects judge 

ℎ𝑡 as equally likely as ℎℎ, and yet commits the GF when judging six flip sequences. In inference, the 
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instability in Figure 2 is in good part explained by subjects who switch from anchoring to the base 

rate in balls and urns to anchoring to the likelihood in taxicabs.  

These findings raise two challenges. First, summarizing beliefs in an experiment by the mean 

or modal response is highly misleading in the presence of multimodality.  In Figures 1 and 2 hardly 

anyone is near the mean. This is especially clear in inference, where many people anchor to either the 

base rate or the likelihood and fail to combine them. In fact, experimental protocols that encourage 

participants to combine the two fail to elicit what people do naturally: grasp at straws in a complex 

situation. Answers to standard statistical problems look like duck-rabbit. 

Second, the sharp instability in the distributions of estimates across statistically equivalent 

problems shows that there are features of these problems other than statistical information that shape 

beliefs. The language of the question shapes the answer. This has key implications: under- and 

overreaction are not universal principles, but rather the result of whether in a particular setting 

relatively more people attend to features associated with the base rate (underreaction) or the 

likelihood (overreaction). To account for these findings, we need a new framework. 

 

3. The Model 

We present a model in which the patterns described in Section 2 arise from selective attention 

to the features of the events of hypotheses. We first define a statistical problem and a rational solution 

to it.  We next formalize the features of events and the role of attention. 

Formally, a statistical problem has three components: i) the sampling process, ii) the statistics, 

e.g. the probabilities of specific events, and iii) the hypotheses 𝐻# , 𝐻$#. The sampling process defines 

the set of possible outcomes, or sampling space Ω. Statistics are assigned to two kinds of events. The 

first are unconditional events 𝑘! ⊆ Ω, of the kind “drawing 𝑘!”. Each such event is assigned a statistic 

𝜋%# . The collection of such events, denoted by 𝐾!, is a partition of Ω, i.e. ∑ 𝜋%#%#∈'# = 1. Other 

events are conditional: they refine the partition of Ω. They are of the kind “drawing 𝑘" given 𝑘!”. A 

generic such event is denoted by 𝑘"|𝑘! ⊆ 𝑘! and assigned a statistic 𝜋%$|%#. The collection 𝐾"|𝑘! of 

such events form a partition of its parent 𝑘!, with ∑ 𝜋%$|%#%$∈'$|%# = 1 for all 𝑘!. There is a total of 

𝑛 ≥ 1 steps of conditioning, with the statistic corresponding to a generic step 𝑗 event (1 < 𝑗 ≤ 𝑛) 

denoted by 𝜋%%|%%&#⋯	%#. We focus on the case in which statistics are probabilities, but the model also 

covers the case in which they correspond to absolute frequencies (see Appendix B). Finally, 

hypotheses 𝐻# , 𝐻$# are events in Ω. We allow for 𝐻# ∪ 𝐻$# ⊂ Ω which captures, among other things, 

inference problems: data provision restricts hypotheses to a subset of Ω. The statistical problem is 
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solvable: the elementary events 𝜔 ∈ Ω constituting the hypotheses are generated by a specific path 

of events 𝑘!, 𝑘"|𝑘!… , 𝑘+|𝑘+$!… , 𝑘! to which statistics are attached. 

Consider the problems of Section 2. For sequences of two coin flips (𝑛 = 2), the sample space 

is Ω = {(ℎ, 𝑡), (𝑡, ℎ), (ℎ, ℎ), (𝑡, 𝑡)}. The first flip defines two unconditional events ℎ! = “drawing ℎ 

in the first flip” and 𝑡! = “drawing 𝑡 in the first flip”, which are associated with statistics 𝜋,# = 𝜋-# =

0.5. The second flip defines the conditional events ℎ"|𝑘! = “drawing ℎ in the second flip given 𝑘 in 

the first” and 𝑡"|𝑘! =”drawing 𝑡 in the second flip given 𝑘 in the first”. These events are assigned 

statistics 𝜋,$|%# = 𝜋-$|%# = 0.5 for 𝑘! = ℎ, 𝑡. A generic step 𝑗 event can be written unconditionally 

as 𝑘., with associated statistics 𝜋%% = 0.5 for 𝑘. = ℎ, 𝑡.  For inference, which has also two steps (𝑛 =

2), the sample space is Ω = {(𝐴, 𝑔), (𝐴, 𝑏), (𝐵, 𝑔), (𝐵, 𝑏)}. The unconditional events consist of the 

“selection of urn” 𝑈 = 𝐴, 𝐵, denoted by 𝑘! = 𝑈, and the conditional events consist of “drawing a ball 

of color 𝑘" from 𝑈”, denoted 𝑘"|𝑈 for 𝑘" = 𝑏, 𝑔. Unconditional events are assigned base rates 𝜋/ =

0.25 and 𝜋0 = 0.75, and conditional events are assigned likelihoods 𝜋1|/ = 0.8 and 𝜋2|/ = 0.2 for 

urn 𝐴 and 𝜋1|0 = 0.2 and 𝜋2|0 = 0.8 for urn 𝐵.  

A rational solution consists of: a) expressing each hypothesis as a partition of the events about 

which statistics are provided, b) computing the probability of each hypothesis using these statistics, 

and c) normalizing the estimate if the probabilities in b) do not add up to one, i.e., if 𝐻# ∪ 𝐻$# ⊂ Ω. 

Sometimes different partitions of hypotheses exist, but they all lead to a correct answer.  

We describe a decision maker, the DM, who solves the problem by attending to salient features 

of the hypotheses.  In Section 3.1 we formalize the features of events. In Section 3.2, we formalize 

how selective attention shapes probability estimates. The DM reaches the correct answer if she attends 

to the relevant features but commits errors if not. Section 3.3 formalizes two key drivers of DM’s 

attention to features: contrast and prominence.  Section 3.4 describes how to apply the model and test 

its predictions in the lab, offering some guidance for field applications. 

 

3.1 The Features of Events 

Each event 𝜔 ∈ Ω is described by 𝐹 > 𝑛 features, collected in vector 𝑓(𝜔) = (𝑓!, 𝑓", … , 𝑓3). 

The first 𝑛 features 𝑓!, … , 𝑓+ identify the unconditional and conditional events 𝑘!, 𝑘"|𝑘!, … that must 

occur for 𝜔  to happen, from the coarsest 𝑘!  to the finest 𝑘+|𝑘+$!…𝑘! . We call features 𝑗 ≤ 𝑛 

“statistical”, because each of them is associated with the true probability  PrV𝑓.W of each such event. 

With two coin flips the statistical features are 𝑓! =“first flip is 𝑘!” and 𝑓" = “second flip is 𝑘"” with 

true probabilities Pr(𝑘!) = 𝜋%# = 0.5  and Pr(𝑘") = 𝜋%$ = 0.5 .  In balls and urns, they are 



10 
 

𝑓! =”select urn 𝑘!” and 𝑓" = “draw a ball of color 𝑘" from 𝑘!”, whose true probabilities Pr(𝑘!) and 

Pr(𝑘"|𝑘!) are the base rate of urn 𝑘! and the likelihood of  𝑘" in 𝑘!, respectively.  

Features 𝑓+4!, … , 𝑓3 of 𝜔 are not directly tied to statistics, and we call them “ancillary”. Like 

statistical features, they capture observable properties of the event, i.e., equivalence classes to which 

it belongs. In coin flips, one such feature is a sequence’s “share of heads”, denoted by 𝑠ℎ ∈ [0,1], 

which identifies the class of sequences with the same share of heads as 𝜔. This is a notable feature 

for it is connected to similarity: (ℎ, 𝑡) is similar to the fair coin that produced it because its 0.5 share 

of heads is what a fair coin tends to produce.4 In inference, there is also an ancillary feature that 

captures the similarity of realized data to the data generating process: whether the realized signal is 

the most likely outcome of the hypothesis or not. In the example in Section 2, urn 𝐴 is 80% green 

and urn 𝐵 is 80% blue. Thus, a green signal is similar to 𝐴, not to 𝐵, and vice-versa for blue. We call 

“match” the feature taking value 𝑚 = 1 if the color of the ball is similar to the urn, and 𝑚 = 0 

otherwise. This feature defines two equivalence classes: (𝐴, 𝑔) and (𝐵, 𝑏) are events in which the 

signal and the hypothesis are similar, 𝑚 = 1, while in (𝐴, 𝑏) and (𝐵, 𝑔) they are dissimilar, 𝑚 = 0.5  

By capturing similarity to the data generating process, the share of heads in coin flips and 

match in inference are connected to KT’s “representativeness” heuristic: an event is representative of 

a statistical process if it resembles salient features of that process. In our model, though, there are no 

stable heuristics. There are instead many features. Some, the statistical ones, are tied to sampling 

steps. Others, like the similarity of a sequence/signal to the statistical process, capture different 

properties. These features “compete” for the DM’s attention, shaping representations and biases.  

To simplify the analysis, we focus on the case with 𝐹 = 𝑛 + 1: each 𝜔 ∈ Ω is described by 

the 𝑛 statistical features set by the problem plus an ancillary one, 𝑠ℎ in coin flips and 𝑚 in inference. 

The restriction to one ancillary feature may reduce the model’s explanatory power but buys us 

parsimony and does not affect our core predictions. In Section 3.4 we discuss the selection of features, 

in both experimental and field contexts, which are important to apply the model. 

 

3.2 Attention to Features, Representation and Solution 

The DM solves the problem by executing three tasks: 1) construct a simplified feature-based 

representation of the hypotheses based on selective attention, 2) compute the probability of these 

representations using the statistics, and 3) normalize the estimate. Denote by 𝛼. ∈ {0,1} the DM’s 

 
4 Longer sequences have more ancillary features, e.g. (ℎ, 𝑡, ℎ, 𝑡, ℎ, 𝑡) is “alternating”, and (𝑡, 𝑡, 𝑡, ℎ, ℎ, ℎ) is “sorted”.  
5 Inference problems with many draws may have more ancillary features, such as the match between the distribution of 
draws and the urn composition. Attention to this feature provides a foundation for the notion of exact representativeness 
(Camerer 1987, 1990, Grether 1980), whereby subjects overestimate the probability a set draws came from an urn with 
the corresponding composition. 
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attention to feature 𝑗 = 1,… , 𝑛 + 1, where 𝛼. = 1 if feature 𝑗 is attended to and 𝛼. = 0 if not. The 

attention profile is 𝛼 = (𝛼!, . . , 𝛼+4!). The DM can attend to at most 𝐾 features, ∑ 𝛼.. ≤ 𝐾, which 

captures well-established attention limits. For simplicity, she attends either to statistical or ancillary 

features, not to the mixtures of the two (this restriction can be relaxed). Denote the set of feasible 

attention profile by 𝐴'. Selective attention then distorts representations as follows. 

Task 1 (Selective Attention).  At attention profile 𝛼 ∈ 𝐴' the DM simplifies the feature vector 𝑓(𝜔) 

of each event 𝜔 ∈ 𝐻# in the hypothesis as 𝑓5(𝜔) = V𝑓5,!, … , 𝑓5,+4!W, where: 

𝑓5,. = _
𝑓. 					𝑖𝑓			𝛼. = 1
𝜑					𝑖𝑓			𝛼. = 0.																																																										(1) 

Hypothesis 𝐻# is then represented as 𝑅5(𝐻#) = ⋃ 𝑓5(𝜔)7∈8' . 

The DM replaces the value of each unattended feature in 𝑓(𝜔) with “𝜑”, meaning that this 

feature is not used to describe events. Consider a coin flip problem in which the DM evaluates 𝐻! =

(ℎ, ℎ) vs 𝐻" = (ℎ, 𝑡).  If she attends to individual flips, neglecting the share of heads, she represents 

𝐻!  as “first head and then head”, 𝑅5(𝐻!) = (ℎ!, ℎ", 𝜑) , and 𝐻"  as “first head and then tail”, 

𝑅5(𝐻") = (ℎ!, 𝑡", 𝜑). If instead she attends to the share of heads, neglecting individual flips, she 

represents 𝐻!  as “share of heads is 1”, 𝑅5(𝐻!) = (𝜑, 𝜑, 1) , and 𝐻"  as “share of heads is 0.5”, 

𝑅5(𝐻") = (𝜑, 𝜑, 0.5). The DM describes the hypotheses differently when she attends to different 

features of events. Attention to features then shapes her use of statistics in Task 2. 

Task 2 (Simulation). For each 𝑓(𝜔) ∈ 𝑅(𝐻#), let PrV𝑓.W denote the true probability of event 𝑓. in 

𝑓(𝜔), with the convention Pr(𝜑) = 1. The DM simulates 𝐻# as: 

PrV𝑅(𝐻#)W = d PrV𝑓!W ∙ PrV𝑓"W ∙∙∙ PrV𝑓+4!W
9:(7)∈=(8')

.																																				(2) 

The DM computes the joint probability of the features-events she attends to. If she attends to 

more than one statistical feature, for each vector 𝑓(𝜔) ∈ 𝑅(𝐻#) she computes PrV𝑓> ∩ …∩ 𝑓?W	by 

multiplying their probabilities. She then sums the products across all vectors. A DM attending to 

individual flips simulates 𝐻! = (ℎ, ℎ) and 𝐻" = (ℎ, 𝑡) by multiplying the 0.5 statistic attached to 

these features, PrV𝑅5(𝐻!)W = 𝜋,# ∙ 𝜋,$ = (0.5)" and PrV𝑅5(𝐻")W = 𝜋,# ∙ 𝜋-$ = (0.5)".  If instead 

the DM attends to the share of heads, she simulates representations 𝑅5(𝐻!) = (𝜑, 𝜑, 1)  and 

𝑅5(𝐻") = (𝜑, 𝜑, 0.5), computing the probability of the same hypotheses as Pr(𝑠ℎ = 1) = (0.5)" 

and Pr(𝑠ℎ = 0.5) = 2 ∗ (0.5)", respectively. Different representations focus the DM on different 

features, leading to different simulations. The final step normalizes the simulated probabilities.   

Task 3. (Normalization). The DM computes the probability of 𝐻# as: 
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Pr(𝐻#; 𝛼) =
PrV𝑅5(𝐻#)W

PrV𝑅5(𝐻#)W + PrV𝑅5(𝐻$#)W
.																																																(3) 

Normalization only matters if the simulated probabilities do not add to one, which is the case 

in our running example. A DM attending to individual flips estimates the relative probability of 𝐻! =

(ℎ, ℎ) vs 𝐻" = (ℎ, 𝑡) by normalizing the identical (0.5)" simulations of the two hypotheses, yielding 

Pr(𝐻!; 𝛼) = 0.5. This DM does not commit the GF.  A DM instead attending to the share of heads 

erroneously simulates 𝐻"  with the broad equivalence class of balanced sequences yielding, after 

normalization, Pr(𝐻!; 𝛼) = 1/3. This DM commits the GF.  This bias is due to the fact that she 

represents hypotheses using the wrong feature: the share of heads. 

In general, the DM is biased whenever she attends to the wrong features.      

Proposition 1 (Rationality). Given a statistical problem, there exists a set of event-specific attention 

vectors 𝛼∗(𝜔) = (𝛼!∗, … , 𝛼+4!∗ ),  𝜔 ∈ 𝐻# ∪ 𝐻$#, containing at least one zero such that a DM using 

attention 𝛼∗(𝜔) in Task 1 and then following Tasks 2 and 3, implements the Bayes’ rule.   

It is always possible for our DM to reach the correct solution.  To do so, she needs to simplify 

events by focusing on all features that are relevant to the problem while neglecting others. With the 

correct simplification strategy in Equation (1), Tasks 1, 2 and 3 guarantees a correct solution.6  But 

what shapes attention?  We address this question next. 

 

3.3 Salience-Driven Attention to Features 

Selective attention comes in several forms.  It can be goal-optimal, as for example in rational 

inattention models (Sims 2003, Gabaix 2019, Woodford 2003, 2020; Khaw et al. 2021). Attention 

can also reflect a focus on salient stimuli which causes neglect of other less salient, even if relevant, 

ones (BGS 2012, 2013, 2022, Li and Camerer 2022, Evers, Imas, and Kang 2023, Conlon 2024). 

Sometimes the salient feature is relevant to solving the problem but by drawing attention away from 

other relevant features still distorts the decision. While driving, a surprising police radar may cause 

us to neglect the car behind us, and brake too heavily. But a feature may draw attention even if it is 

entirely irrelevant to the current task, such as when a stain on the wall distracts us from a conversation. 

Section 2 showed that different people use different statistics, both within and across problems, 

despite having the same incentives for accuracy: they do not choose the “most accurate” statistics for 

a given attention limit 𝐾, as for instance in models of sparsity (Gabaix 2014) or other approaches to 

optimal selective attention.  Instead, the evidence suggests that systematic variation in attention is 

 
6 Another attention limit implicitly imposed in Task 1 compared to the rational benchmark in Proposition 1 is that the DM 
does not select an event-specific attention vector, 𝛼(𝜔) = 𝛼 for all 𝜔. This limit does not play a role in our analysis. As 
we show in the proof, the minimum number of relevant features of hypotheses can be found using a coarsest partition of 
them in terms of events whose probability can be computed. 
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driven in part by salience, which generates instability in representations and the use of statistics. We 

focus on two drivers of such salience (BGS 2022): contrast and prominence. In visual attention, a 

feature is contrasting if it sharply differs from the background (e.g. a dark stain on a white wall, a 

very low price).  A feature is prominent if the description of the problem brings it top of mind, either 

through prominent display or through its proximate relevance for solving the problem (home runs are 

top of mind, but walks are not, leading to errors in the evaluation of baseball players, see Lewis 2003).    

We formalize these forces using salience theory (BGS 2012, 2013, 2022), which models how 

the salient features of goods, e.g. quality or price, affect valuation and choice. In statistical problems, 

salience is a property of representations 𝑅5(𝐻#), 𝑅5(𝐻$#), which are shaped by the attention vector 

𝛼.  Consider first the contrast induced by 𝛼. In BGS, an attribute such as price is contrasting when it 

sharply favors one of the goods. In a statistical problem we likewise say that attending to a feature 

induces contrast if it sharply favors one hypothesis over the other. Formally, the contrast of 𝛼 is: 

𝐶(𝛼) =
kPrV𝑅5(𝐻#)W − PrV𝑅5(𝐻$#)Wk
PrV𝑅5(𝐻#)W + PrV𝑅5(𝐻$#)W

.																																																(4) 

The numerator captures the extent to which the representation favors one hypothesis over the other, 

while the denominator captures diminishing sensitivity, as in BGS (2012, 2013). To illustrate, when 

assessing (ℎ, ℎ)  vs (ℎ, 𝑡) , the contrast induced by the share of heads, 𝛼 = (0,0,1) , is given by 

|Pr(𝑠ℎ = 1) − Pr(𝑠ℎ = 0.5)|/(Pr(𝑠ℎ = 1) + Pr(𝑠ℎ = 0.5)) = 1/3 . The contrast induced by 

attention to individual flips, 𝛼 = (1,1,0) , is instead zero, |Pr(ℎ, ℎ) − Pr(ℎ, 𝑡)|/(Pr(ℎ, ℎ) +

Pr(ℎ, 𝑡)) = 0. Here contrast encourages attention to 𝑠ℎ. More generally, contrast is shaped by the 

objective parameters of the problem. In coin flips, it is shaped by the probability of a head and the 

sequence length 𝑛. In inference, it depends on the base rate and the likelihood. In our experiments, 

we manipulate contrast by changing statistics. 

Next, consider prominence. In BGS (2022), as in Chetty et al (2009), an attribute such as the 

price or sales tax is more prominent if it is more visible to the consumer. Analogously, in a statistical 

problem a feature is more prominent if the description of the problem brings it top of mind. Some 

formal ingredients of the problem, such as the data generating process and the hypotheses 𝐻! vs. 𝐻", 

can be described in a way that makes a specific feature prominent. In balls and urns, the composition 

of the urns could be described as “80% of the time the color of a drawn ball matches the color of the 

urn (Green vs. Blue) it comes from”. This data-generating process is equivalent to that in Section 2 

(where the contents of each urn are described directly), but the description makes the “match” feature 

more prominent. Likewise, describing the hypotheses as “Urn A” vs “Urn B” as in Section 2 makes 
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the urn selection feature more prominent than describing the hypotheses as whether the ball “matches” 

the color of the urn, though the two ways of describing hypotheses are logically identical.7 

In our experiments, we manipulate prominence by changing the description of the problem in 

ways that intuitively bring certain features top of mind. We validate our manipulation by separately 

measuring prominence using similarity judgments and attention measures. Denote the prominence of 

feature 𝑗 as a latent scalar 𝑃. . We let the prominence of attention profile 𝛼, denoted 𝑃(𝛼), be the 

average prominence of its features: 

𝑃(𝛼) =
∑ 𝛼.𝑃..

∑ 𝛼..
,																																																																						(5) 

which is a latent variable that can be recovered from measured attention 𝛼. Equation (5) captures, in 

the simplest way, two important aspects of attention.  First, making a feature more prominent, 

increasing 𝑃., increases the salience of all representations using this feature, i.e. of all profiles having 

𝛼. = 1. Second, there is interference: if a DM attends to feature 𝑗′, increasing the prominence of 

feature 𝑗 is less impactful, because the DM’s attention is divided. Interference creates sparsity, in the 

sense that people tend to attend to one feature or another, but rarely both. We see the duck or the 

rabbit, but not both at once. 

The salience of attention profile 𝛼 increases in its contrast 𝐶(𝛼), prominence 𝑃(𝛼), but also 

in an individual specific extreme-value term 𝜖5. The latter captures transient fluctuations in attention, 

but also stable individual differences in the prominence of specific features (for example due to past 

experiences of attending to them). To simplify, we assume salience is additive in these terms. 

Salience and Attention. The DM uses attention profile 𝛼 ∈ 𝐴' that maximizes total salience: 

𝛼 = 𝑎𝑟𝑔𝑚𝑎𝑥5A∈/		𝐶(𝛼r) + 𝑃(𝛼r) + 𝜖5A .																																																(6) 

The term 𝜖5A  yields a multinomial distribution of attention and, using Tasks 1-3, a distribution of 

judgments. Within a treatment, attention and biases should be correlated at the individual level, due 

to variation of 𝜖5A  across people. Second, and critically, attention and biases should be correlated 

across treatments: an increase in the salience of a feature should increase the share of people attending 

to it and making the associated judgment. In our experiments we test both predictions. For simplicity, 

in Sections 4 and 5 we assume that the attention limit is not binding: 𝐾 → ∞. We study the interaction 

of 𝐾 with salience in Section 6.2. 

 
7 As discussed in BGS (2022), much early work on prominence comes from the field of visual attention.  This field has 
identified reliable predictors of visual attention such as a stimulus' visual contrast and its centrality in the visual field.  
These correspond to our notions of contrast and prominence in description.  This literature also shows that attention is 
spontaneously drawn to stimuli that have recently been attended to, even if these stimuli are not relevant in the current 
problem (Remington et al. 1992).  This links prominence of a feature to its use in past problems, a channel we abstract 
from here. 
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3.4 Applying the Model 

To apply our model, the analyst must specify and measure two objects: features and attention. 

Statistical features are explicitly given by the problem. Ancillary features need not be explicitly 

mentioned, but can be discovered by intuition (e.g., our ancillary features were motivated by 

representativeness, Kahneman and Tversky 1972), directly asking people for a rationale for their 

choices, or using text analyses or algorithms.8  Specifying/discovering features is the key first step.  

Once a set of features are identified, the model can be tested by studying how beliefs, captured 

by the estimate Pr(𝐻#; 𝛼), and measured attention 𝛼 jointly shift when one feature becomes more 

salient. Several approaches to measuring attention are available. Eye tracking (Reutskaja et al 2011) 

is often used to capture visual attention, but for our purposes a measure of semantic attention, related 

to how a problem is solved, is more useful. We pre-registered three approaches to such measurement. 

First, after participants solve the statistical problem, we ask them, “Could you describe to us in your 

own words how you came up with your answer to the previous question?” We then use a large 

language model to code these responses according to whether the participant appeared to pay attention 

to specific features (see Appendix B for details). Second, after the free-response, a multiple-choice 

question asks participants to select from a list the features they felt they attended to. Third, we ask 

respondents to rate the similarity between events and infer attention from these ratings. The 

connection between similarity and attention to features is well established (e.g., Tversky and Gati 

1982, Nosofsky 1988): people judge two objects to be more similar when they agree on salient 

features. Conversely, this insight implies that similarity measurements can be used to assess the 

prominence of a feature independently of the original probability judgment task.9 We check whether 

different measures yield comparable results. 

With a set of features and measured attention to them in hand, the predictions of Equation (6) 

can be tested by examining the individual level correlation between attention and behavior 

 
8 Kleinberg, Liang, and Mullainathan (2017) use algorithms to detect predictable patterns people use when producing 
random looking sequences, which can help identify features of the data that people associate with randomness. In a field 
setting, Kleinberg et al (2018) find that judges underperform algorithms in identifying defendants who will commit crime 
on bail, and tend to be more lenient if the defendant is well groomed (Ludwig and Mullainathan 2024). This feature was 
discovered via machine learning, rather than specified by the analyst ex ante.  
9 In a classic example, Tversky (1977) showed that Austria was deemed similar to Hungary when geography is salient 
and hence attended to, but similar to Sweden when political alignment is salient and hence attended to. Formally, under 
attention profile 𝛼 the similarity between two events 𝜔" and 𝜔! could be written as: 

𝑆(𝜔", 𝜔!; 𝛼) = 1 −3 𝑤(𝑑(
(

, 

where 𝑑(  takes value 1 if the two events differ along feature 𝑗 = 1,… , 𝐹  and zero otherwise, while 𝑤( = 𝛼(/∑ 𝛼))  
captures the DM’s attention to feature 𝑗 relative to the other features she attends to. Empirically, the psychology literature 
has developed the technique of multidimensional scaling (Torgerson 1952), which uses similarity assessments to embed 
objects in Euclidean space. The embedding function is then informative of which features weigh prominently in judgment. 
See Nosofsky et al (2018) for a recent application. 
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(multimodality), and the joint aggregate shifts in these measures across settings (instability). In 

Sections 4 and 5, we showcase this method in the domains of coin flips and inference, respectively. 

 

4. Salience, Multimodality, and Instability in Gambler’s Fallacy  

We first apply our model to coin flips. It delivers the patterns in Figure 1 and yields new 

predictions, which we test, on how changes in the description of the problem affects measured 

attention to features and the GF. 

The Problem and its Features. Here Ω ≡ {ℎ, 𝑡}+, where 𝑛 is the number of flips.  A sequence 

𝜔  has 𝑛  statistical features, each corresponding to individual flips 𝑓# = ℎ# , 𝑡#  for 𝑖 ≤ 𝑛 , and the 

ancillary feature 𝑓+4! = 𝑠ℎ, which is the share of heads in 𝜔. The DM assesses the relative likelihood 

of sequences 𝐻! vs. 𝐻", where the former is unbalanced (𝑠ℎ = 1), and the latter is balanced (𝑠ℎ =

0.5). Each hypothesis-sequence 𝜔 has its feature vector  𝑓(𝜔) = (𝑓!, … , 𝑓+, 𝑠ℎ). 

Attention and Representation. A DM attending to 𝑟 ≤ 𝑛 statistical features, individual flips, 

while ignoring the share of heads, 𝛼> = (1,1, … ,0), represents the generic hypothesis by 𝑅5*(𝐻#) =

(𝑓!, … , 𝑓> , 𝜑). This DM behaves rationally: by Equation (2) she simulates Pr v𝑅5*(𝐻#)w = (0.5)>, 

which is identical across hypotheses, yielding after normalization the correct estimate Pr(𝐻!|𝛼>) =

0.5. In contrast, a DM attending only to the share of heads, 𝛼B,+ = (0,…0,1), represents hypotheses 

as 𝑅5+,-(𝐻#) = (𝜑,… , 𝜑, 𝑠ℎ). By (2) she simulates them by the probability of its share of heads, 

Pr(𝑠ℎ), which causes her to underestimate  𝐻! and commit the GF.    

Endogenous Attention and Estimates. To determine the distribution of attention and estimates 

in an experiment, we must describe the attention profile of different DMs. Denote by 𝑃 the scalar 

prominence of each individual flip relative to 𝑠ℎ. Denote by 𝐶V𝛼B,+W the contrast of 𝛼B,+ , which 

depends on length 𝑛. Proposition 2 characterizes multimodality, Corollary 3 instability.  

Proposition 2 A share 𝜇V𝛼B,+W of DMs attends to the share of heads and for 𝑛 > 1 commits the 

Gambler’s Fallacy, estimating the relative probability of the unbalanced sequence as: 

PrV𝐻!; 𝛼B,+W = y1 + v
𝑛
𝑛/2wz

$!
< 0.5.																																																								(7) 

The remaining DMs attend to a subset of flips and answer 50: 50.  

There are two modes for beliefs and attention: one at 50% with attention to individual flips, 

another below 50%, as in Equation (7), with attention to the share of heads.10  The key new prediction 

besides multimodality is the connection between judgments modes and measured attention. The 

 
10 In Section 6 we show that the attention limit qualifies this result: when 𝐾 < ∞ and 𝑛 > 2 several modes of the kind 
in (7) arise, some of which exhibit a more severe form of the GF than others. 
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model also predicts that bias and attention should change when the salience of the same feature 

changes. 
 

Corollary 3 The share 𝜇V𝛼B,+W of DMs who attend to the share of heads and commit the GF increases 

in sequence length 𝑛 and decreases in the prominence of individual flips 𝑃. 
 

As 𝑛  increases, more people commit the GF because the contrast-based salience of 𝑠ℎ , 

𝐶V𝛼B,+W = yv
𝑛
𝑛/2w − 1z / yv

𝑛
𝑛/2w + 1z, rises with 𝑛. When comparing two long sequences such as 

ℎ𝑡ℎ𝑡𝑡ℎ and ℎℎℎℎℎℎ, the DM cannot avoid thinking how much harder it is, with a fair coin, to get a 

long streak of heads compared to a 50: 50 outcome. The share of heads sticks out as a salient 

representation, and for many DMs replaces the original question. Thus, our model explains the fall in 

the 50:50 mode when moving from Panel A to Panel B in Figure 1: it is caused by the higher contrast 

of the share of heads when 𝑛 = 6 compared to 𝑛 = 2.11  Corollary 3 also predicts a prominence effect: 

increasing the salience of individual flips in the problem’s description causes them to be top of mind, 

draws attention away from 𝑠ℎ, in turn reducing the incidence of the GF. 

These predictions distinguish our model from existing accounts of biases in i.i.d. draws. In 

these models, bias is due to the use of incorrect sampling models, such as draws without replacement 

(Rabin 2002, Rabin and Vayanos 2010). These models do not predict a link between bias and attention 

to an irrelevant feature of hypotheses: hypotheses are correctly represented and estimated according 

to a stable but incorrect model. A fortiori, these models do not predict the instability in the share of 

people who attend to an irrelevant feature and commit the GF. We next test these predictions. 

Coin Flip Experiments. Table 1 provides a summary of the treatments. In all treatments, 

individuals are asked to judge the relative likelihood of two given sequences and report what features 

of the data they attended to. In treatments 𝑇" and 𝑇C, which we showed in Section 2, the two sequences 

are given by 𝐻! = ℎℎ  vs. 𝐻" = 𝑡ℎ  and 𝐻! = ℎℎℎℎℎℎ  vs. 𝐻" = 𝑡ℎ𝑡ℎℎ𝑡  respectively. We also 

introduce two new treatments to study the role of prominence. In 𝑇9DEE, subjects are asked to estimate 

𝐻! = ℎℎℎℎℎℎ vs. 𝐻" = ℎℎℎℎℎ𝑡, where the hypotheses are described by full sequences, as in 𝑇" and 

𝑇C. In 𝑇EF?-, we instead tell subjects, “the first five flips were ℎℎℎℎℎ. What is the probability that the 

final flip was heads or tails?” 𝑇EF?- is logically equivalent to 𝑇9DEE, but the description of hypotheses 

makes the last flip more prominent. 

We validate our treatment by separately measuring attention to features – 1) the share of heads, 

2) whether the final flip is heads or tails, and 3) anything else – in three complementary ways, as 

 
11 In our model the severity of the GF, conditional on committing it, increases with 𝑛 also because, conditional on 
attending to the share of heads, the faulty equivalence class of balanced sequences gets larger, so bias in (7) increases. 
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outlined in Section 3.4. First, after eliciting participants’ probability assessments, we independently 

measure free-response and direct-elicitation proxies for attention to features. Next, for a subset of 

participants, later in the survey we also elicit perceived similarity between sequences, independently 

of the original probability assessment.  In line with the discussion in Section 3.4, this assessment 

should reflect prominence of sequences’ share of heads: if the share of heads of a sequence is 

prominent to the DM, then two sequences 𝐻! and 𝐻" should be less similar if the sequences differ 

sharply along 𝑠ℎ.12 We interpret perceived similarity as a more direct proxy for prominence of the 

share of heads, whereas the first two measures reflect the total salience of features, which may also 

be driven by contrast. 

 Across the four treatments, we test two predictions. First, by Proposition 2, a participant’s 

attention to the ancillary feature 𝑠ℎ should be positively correlated with her tendency to commit GF. 

Second, by Corollary 3, there should be instability across treatments: the share of participants 

committing GF and those attending to the share of heads should be greater for longer sequences (𝑇" 

vs 𝑇C), due to contrast, and smaller when individual flips are more prominent (𝑇9DEE vs 𝑇EF?-).  
  

Treatment N Summary Purpose 

𝑇! 434 Balanced vs unbalanced 2-flip sequences Compare to 𝑇" 

    

𝑇" 405 Balanced vs unbalanced 6-flip sequences 
Increase contrast of share 

compared to 𝑇! 

    

𝑇#$%% 1038 
Ask about full 6-flip sequences  

𝐻& = ℎℎℎℎℎ𝑡 vs 𝐻! = ℎℎℎℎℎℎ 
Compare to 𝑇%'() 

    

𝑇%'() 978 
Ask about final flip. in 6-flip sequences 

i.e.. P(ℎ	vs	𝑡	|	ℎℎℎℎℎ) 

Increase prominence of final flip 

compared to 𝑇#$%% and thereby 

reduce attention to share heads 

    

Table 1. Treatments manipulating salience in the gambler’s fallacy problem. 

Multimodality in Attention and Estimates. We first document multimodality in attention and 

probability estimates within each treatment. Pooling across all treatments and adding treatment fixed 

effects, we run OLS regressions of a respondent-level indicator for whether she commits the GF (i.e., 

reports a belief of less than 50 out of 100 for the unbalanced sequence) on indicators for directly 

 
12 Using the similarity function in footnote 6, if the DM attends to all individual flips the similarity between a balanced 
and an unbalanced sequence is 0.5, if she attends to the share of heads it is zero. 
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elicited and free-response attention to share of heads (Table 2, Column 1), on the perceived similarity 

between sequences (Column 2), and on all three attention proxies (Column 3). 

 

 
Dependent Variable: Commit 

Gambler’s Fallacy 

 (1) (2) (3) 

Directly Elicited Attention to Share 0.169***  0.174*** 

 (0.017)  (0.032) 

Free-Response Attention to Share 0.083***  0.092*** 

 (0.017)  (0.032) 

Similarity between Judged Sequences  -0.078*** -0.076*** 

  (0.021) (0.020) 

Treatment FEs Yes Yes Yes 

N 2855 846 846 

𝑅" 0.110 0.093 0.137 

Table 2. Correlating measures of attention with the Gambler’s Fallacy. Table shows OLS regressions where 
the dependent variable is an indicator whether the participant judged the unbalanced sequence to be less likely 
than the balanced sequence. Similarity measure is normalized (within sequence lengths) to have a mean of 0 
and standard deviation of 1. *** indicates statistical significance at the 1% level. 
 
 

Consistent with our model, a subject attending to the share of heads is more likely to commit 

GF (Column 1), and a subject perceiving the same two sequences as more similar, which indicates 

less attention to 𝑠ℎ, is less likely to commit GF (Column 2). Each measure of attention has predictive 

power conditional on the others (Column 3).  These findings support the notion that bias arises due 

to an erroneous representation of hypotheses caused by a salient yet irrelevant feature.   

 

Instability in Beliefs and Attention. Consider instability next. In Figure 1, as we saw in Section 2, 

increasing sequence length from 𝑛 = 2 to 𝑛 = 6 increases the incidence of GF. Figure 3 compares 

beliefs for 𝑇EF?- and 𝑇9DEE: we find that the mean estimate of 𝐻! is significantly higher (49.3 vs 44.4 

out of 100, 𝑝	 < 	0.01) for 𝑇EF?- than 𝑇9DEE, driven also by an increase in the mode at 50: 50 (68% vs 

54%	of participants, 𝑝 < 0.01). Consistent with Corollary 3, changing the description of hypotheses 

in a way that renders individual flips salient reduces the share of people committing the GF. This is 
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consistent with the idea that instability in bias is generated by instability in the representation of 

hypotheses.13   

 
Figure 3. Making the last flip more prominent reduces the Gambler’s Fallacy. This figure reports the 
distribution of estimated Pr(ℎℎℎℎℎℎ	|	ℎℎℎℎℎ𝑡	𝑜𝑟	ℎℎℎℎℎℎ). Answers closer to 0 indicate higher probability 
of the more balanced sequence.  

 
 

 
Figure 4. Treatment effects on the incidence of Gambler’s Fallacy and attention. The x-axis is the fraction of 
participants in each treatment that attend to share heads according to our direct-elicitation (Panel A) and free-
response (Panel B) attention measures. The y-axis is the fraction of participants across treatments who judge 
the balanced sequence to be more likely than the unbalanced sequence. 
 

We next test whether treatment effects in beliefs correspond to changes in attention, which 

proxy for the changing salience of different features. Figure 4 plots the fraction of subjects in each 

treatment who commit the GF along with that of attending to 𝑠ℎ according to the direct-elicitation 

 
13 Previous literature finds some prevalence of Gambler’s Fallacy in settings where, similar to 𝑇./01, subjects are asked 
about the next coin flip in a sequence (Benjamin 2019). Our prediction here concerns not the level of GF (a positive 
prevalence in such problems is fully consistent with our model) but the comparative static that arises from making the 
last flip more prominent.  Note also that while we find a significant prevalence of the Gambler’s Fallacy in 𝑇./01, it is 
weaker than in our baseline treatment 𝑇2, where the more balanced sequence is ℎ𝑡ℎ𝑡𝑡ℎ. This is in line with our model, 
since the share of heads has higher contrast-driven salience in 𝑇2, as well as with the literature. 
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(Panel A) and the free-response (Panel B) proxies. We find a positive correlation in both panels. The 

correlation is only significant for the free-response measure, since direct elicitation fails to detect 

greater attention to 𝑠ℎ in 𝑇C than in 𝑇" (but it correctly detects greater attention to 𝑠ℎ in 𝑇9DEE than in 

𝑇EF?-).14 Reassuringly, the free response measure, based on subjects’ report of their reasoning, detects 

model-consistent instability in attention across all treatments. As predicted by our model, instability 

in the GF is associated with shifting attention to an irrelevant feature, the share of heads. The 

correlation coefficient between treatment-level attention to the share of heads and the fraction of 

participants committing the GF is 0.74 for the direct-attention elicitation and 0.95 for the free-

response measure. 

We conclude by further connecting attention to the share of heads, similarity, and probability 

judgments. At the end of the survey, all participants answered two additional modules. In 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦+, participants rated the unconditional probability of multiple randomly generated 𝑛-flip 

sequences. In 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦+, they rated the similarity of pairs of 𝑛-flip sequences. The sequence length 

𝑛 was randomized across participants to be either 2, 4, or 6. For 𝑛 = 2 (𝑛 = 4), participants rated all 

four (sixteen) sequences and two (eight) non-overlapping pairs. For 𝑛 = 6, they rated 16 randomly 

selected sequences and non-overlapping pairs (we correct for the fact that some sequences were more 

likely to be selected). The similarity measure in Table 1 came from answers in 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦+. 

Figure 5 plots the average stated frequency of a target sequence against its average judged 

similarity to other sequences, for 𝑛 = 2 (Panel A) and 𝑛 = 6 (Panel B) (see the appendix for 𝑛 = 4), 

with lighter dots indicating more balanced target sequences. In both panels, more balanced targets are 

perceived to be more similar to the average sequence than unbalanced ones. Intuitively, a balanced 

sequence is similar to the many other unbalanced sequences despite the differences in individual flips. 

Consistent with our model’s account of GF, there is a clear positive correlation between judged 

frequency of a sequence and its average similarity to other sequences (p < 0.05 for both panels). When 

the DM attends to 𝑠ℎ, the balanced sequence is confused with many other balanced sequences to 

which is similar, boosting its estimated frequency. Furthermore, the share of heads appears to be the 

feature that drives this pattern: controlling for the share of heads removes any significant correlation 

between similarity and frequency (see Appendix B). 

 
14 In direct elicitation, attention to 𝑠ℎ is not significantly different across 𝑇! and 𝑇2 (and in fact goes slightly in the wrong 
direction, 65.7% vs 62.0%, p = 0.27). One explanation is that when 𝑛 = 2 even a respondent focusing on individual flips 
has in mind that (ℎ, 𝑡) is balanced. In the free response measure attention to 𝑠ℎ is 46.4% in 𝑇2 and 40.8% in 𝑇! (p=0.10). 
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Figure 5. Average judged similarity to other sequences predicts frequency judgments. Lighter dots indicate 
more balanced sequences, indicating that share heads drives both measures. Frequency judgments are expected 
number of sequences out of 100 (Panel A) or 1000 (Panel B). 
 

Attention-driven representations explain why similarity and probability go hand in hand.  In 

their analysis of human inference, Kahneman and Tversky (1972) famously showed that the perceived 

similarity between the description of a person called Tom and a librarian correlates with the judged 

probability that Tom works as a librarian, causing neglect of the low base rate of this occupation. Our 

model suggests that, when thinking about Tom, people attend to his described features – “a meek and 

tidy soul” – and simulate a librarian, neglecting many non-salient features that may cause Tom to 

land in a different job. Similarity and probability judgments are driven by partial attention to features. 

 

5. Salience, Multimodality and Instability in Inference 

We next show that salience-driven attention to features accounts for the patterns of beliefs in 

inference problems shown in Figure 2, and assess new predictions regarding the link between 

measured attention and beliefs and the instability in inference. 

The Problem and its Features. In balls and urns, Ω ≡ {(𝐴, 𝑔), (𝐴, 𝑏), (𝐵, 𝑔), (𝐵, 𝑏)} , the 

statistical features are 𝑓! = “select urn 𝑈” (𝑈 = 𝐴, 𝐵) and 𝑓" = “draw color 𝑐 from urn 𝑈” (𝑐|𝑈, 𝑐 =

𝑔, 𝑏, 𝑈 = 𝐴, 𝐵). As discussed in Section 3, we also define the ancillary “match” feature 𝑚, which is 

1 for (𝐴, 𝑔) and (𝐵, 𝑏) and zero otherwise. The DM is asked to estimate the probability of urn 𝐴 vs 

𝐵 after a green signal. The urn-𝑈 hypothesis, 𝐻G = (𝑈, 𝑔), has feature vector (𝑈, 𝑐|𝑈,𝑚), where 𝑚 

is 1 for 𝐻/ and zero for 𝐻0. As in Section 2, urn 𝐴 is less likely to be selected and mostly green (𝜋/ <

𝜋0 , 𝜋1|/ = 𝜋2|0 = 𝑞 > 0.5), and the Bayesian answer is 𝛽 > 0.5. 

Attention and Representation. We consider five attention profiles 𝛼 = V𝛼G , 𝛼H|G , 𝛼IW. First, 

a DM attending to both statistical features, 𝛼J = (1,1,0), represents the generic hypothesis 𝐻G as first 

selecting the urn and next drawing a green ball from it, 𝑅53(𝐻G) = (𝑈, 𝑔|𝑈, 𝜑).  This DM simulates 
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the hypothesis as 𝜋1|G𝜋G  and obtains, after normalization, the Bayesian answer, PrV𝐻/; 𝛼JW = 𝛽. 

Bayes’ rule is recovered with full attention to relevant features. 

Under the other four attention profiles, the DM is biased. A DM attending to urn selection and 

neglecting the drawing of a color, 𝛼0= = (1,0,0), represents the problem as “what is the probability 

that a ball is drawn from 𝐴  vs 𝐵 ?”, formally 𝑅545(𝐻G) = (𝑈, 𝜑, 𝜑) . This DM simulates each 

hypothesis using its base rate, which yields the answer Pr(𝐻/; 𝛼0=) = 𝜋/. 

A DM attending only to drawing a green ball from 𝑈, 𝛼H = (0,1,0), represents the problem 

as “what is the probability that a ball drawn from 𝐴 is green compared to one drawn from 𝐵?”, 

formally 𝑅56(𝐻G) = (𝜑, 𝑐|𝑈, 𝜑). This DM simulates 𝐻G using its likelihood 𝜋1|G, yielding the final 

estimate Pr(𝐻/; 𝛼H) = 𝑞. A DM attending to the ancillary “match” feature, 𝛼I = (0,01), represents 

the problem as “what is the probability that a ball matches the urn’s color?”, 𝑅57(𝐻G) = (𝜑, 𝜑,𝑚). 

This DM simulates 𝐻/ as Pr(𝑚 = 1) = 𝜋1|/𝜋/ + 𝜋2|0𝜋0, which also yields Pr(𝐻/; 𝛼I) = 𝑞.  

In the last two cases, bias takes the form of the DM anchoring to only one statistic in the 

problem, the base rate or the likelihood. Finally, DMs who attend to none of the features 𝛼K = (0,0,0) 

represent the problem as “what is the probability that one hypothesis vs another is true?”.  These DMs 

think “a green ball could come from either urn” and report 50: 50.15 This bias does not reflect a 

sophisticated reaction to epistemic uncertainty, but rather the fact that no feature is salient to the DM. 

When a feature becomes salient, anchoring to 50:50 should drop, as we find in Figure 2. 

Endogenous Attention and Estimates. Proposition 4 collects the results above by allowing for 

individual level variation in attention in Equation (6). 
 

Proposition 4 A share 𝜇V𝛼JW	of DMs attends to both statistical features, 𝛼J, and gives the correct 

answer, PrV𝐻/; 𝛼JW = 𝛽. A share 𝜇(𝛼0=)	of DMs attends only to urn selection,	𝛼0=, anchoring to 

the base rate Pr(𝐻/; 𝛼0=) = 𝜋/. Shares 𝜇(𝛼H) and 𝜇(𝛼I) of DMs attend to the color of the ball or 

to “match”,	𝛼H  and 𝛼I  respectively, and anchor to the likelihood Pr(𝐻/; 𝛼) = 𝑞. The remaining 

DMs neglect all features and answer Pr(𝐻/; 𝛼K) = 0.5. 
 

The model predicts, within an experimental treatment, a systematic relationship between 

measured attention to features – which varies across people due to the shock 𝜖5 – and the probability 

estimate which accounts for the multi-modality observed in Figure 2. As in coin flips, the model then 

also predicts instability. Denote by 𝑃E the scalar prominence of feature 𝑙 = 𝑈, 𝑐|𝑈,𝑚. 
 

 
15 Here, no attention to features can also capture the possibility that the DM’s attention jumps between “urn selection” 
and “color of ball”, which favor different hypotheses, without settling on either. 
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Corollary 5 The ratio [𝜇(𝛼H) + 𝜇(𝛼I)]/𝜇(𝛼0=), which describes the share of DMs attending to 

signal or match vs. urn selection, as well as the share of answers at the likelihood vs. the base rate, 

increases with: 1) Contrast of color, i.e. the likelihood 𝑞, and 2) Prominence of color, 𝑃1|G, or of 

match, 𝑃I. The relative share of Bayesian answers 𝜇V𝛼JW/𝜇(𝛼0=), is insensitive to 𝑃I.   
 

Due to contrast, making the signal more informative boosts the attention it gets and the share 

of people anchoring to the likelihood (the opposite occurs if the base rate becomes more extreme). 

Due to prominence, purely contextual changes do the same, jointly increasing attention to a feature 

and anchoring to its associated statistic (the likelihood) at the expense of other features. 

Corollary 5 offers an explanation for the instability in Figure 2: features of the likelihood are 

more prominent in taxicabs than in balls and urns, relative to the base rate. Consider the description 

of the sampling process.  In balls and urns, the likelihoods are described separately as the composition 

of urns 𝐴 and 𝐵, making the urns prominent. In taxicabs, the likelihood is described in terms of the 

probability the signal matches the hypothesis: “a test reveals that the witness can correctly identify 

each cab color with probability 80%”. This raises the prominence of the “match” feature. Hypotheses 

are also described differently: in balls-and-urns the hypotheses are framed as “𝐴” vs “𝐵”, making urn 

selection prominent, in taxicabs they are framed as whether “the errant cab is indeed Green vs Blue 

(as the witness claimed)”, raising the prominence of the match. Lastly, the courtroom context of 

taxicabs may also increase the prominence of the witness’ accuracy for some participants, due to 

personal or fictional past experiences of witness reports in court. All of these irrelevant changes may 

shape attention and explain instability. A key prediction of our model, which we now test, is that such 

description changes should be reflected in changes in attention to specific features.   

Proposition 4 and Corollary 5 capture a key, distinctive implication of our model, namely a 

tight connection between judgment, attention, and instability. Approaches that assume stable 

distortions of the Bayes’ rule do not capture the neglect (in both judgment and measured attention) 

of relevant features, the use of irrelevant features, and the instability in attention and bias when the 

problem’s statistical contrast or framing change.16 

With respect to contrast, Corollary 5 predicts that making one relevant piece of information 

more extreme (the likelihood) interferes with attention to, and hence the use of, another relevant piece 

of information (the base rate). In standard models, making one statistic more extreme does not inhibit 

the use of the other. With respect to prominence, Corollary 5 predicts that normatively irrelevant 

 
16 In Enke and Graeber (2023) people perceive likelihoods imprecisely, which causes: i) a dispersion of estimates, and ii) 
a shrinkage of posteriors toward the prior which gives an average under-reaction bias. In our data, we see some estimates 
that are not anchored to the base rate or likelihood or to 50:50, but we do not see the concentration around the middle that 
is the hallmark of under-reaction in that model. 
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changes in description should shape attention to specific features and judgments, which does not 

happen in standard models. We next test Proposition 4 and Corollary 5. 

Inference Experiments. Table 3 summarizes our inference treatments. 𝑇0  and 𝑇L  are our 

baseline balls-and-urns and cabs treatment of Section 2. To test the new predictions, we add 4 

treatments. 𝑇MN and 𝑇ON test the role of contrast: in the “less extreme” likelihood treatment, 𝑇MN, the 

base rate is 0.15 and the likelihood is 0.70, while in the “more extreme” treatment, 𝑇ON , the base rate 

stays at 0.15 but the likelihood is increased to 0.90. The wording of 𝑇MN  and 𝑇ON  are otherwise 

identical to that of 𝑇0 .  

𝑇8 and 𝑇G test the role of prominence, which we hypothesized to play a role in the instability 

across 𝑇0 and 𝑇L: while the underlying statistical problem remains the same as that of 𝑇0 and 𝑇L , the 

treatments differ in the problem’s description. In treatment 𝑇8, we modify 𝑇G by labeling the urns by 

their modal color, “Green-urn” vs. “Blue-urn,” and by describing the likelihood (80%) as the 

probability a drawn ball “matches” the color of the urn.17 The rewording thus intuitively increases the 

prominence of the “match” and the “color of ball” features, which we also verify experimentally.  

In treatment 𝑇G , we conversely change 𝑇L  to make the signal less prominent. We modify: i) 

the description of the witness to “the court found that the witness was very unreliable: he was able to 

identify each color correctly only about 80% of the time…”, and ii) that of the base rate to “the large 

majority of cabs in the city—75% to be exact—are Blue, while the remaining 25% are Green.” These 

changes decrease the perceived relevance and prominence of the report, which affect attention and 

biases even though the statistical informativeness of the signal is unchanged.   

To measure attention, we ask participants to justify their probability estimates in a free-

response elicitation and then to choose which features they attended to from a list that in balls and 

urns includes 1) the probability the computer would choose Jar 𝐴 vs. 𝐵, 2) whether the drawn ball 

was green or blue, 3) whether the drawn ball matched many balls in the jar it came from, and 4) none 

of the above. For taxicabs, analogous options appeared about the cab companies and the witness 

report.18 Free-response attention is measured by querying GPT 3.5 with separate yes-no questions 

about whether the free form response appears to indicate attention to each of the features 1)-4). 

 
17 The question includes the following text: “Imagine two jars filled with marbles, the “Blue Jar” and the “Green Jar”. 
Each jar contains some blue marbles and some green marbles. A computer randomly chooses a jar and draws a marble 
from it. With probability 25% it chooses the Green Jar, and with probability 75% it chooses the Blue Jar. The computer 
then records the color of the jar and of the marble. Finally, it puts the marble back and shakes the jar to shuffle its contents. 
After repeating this procedure many times, we observed the following. For each jar, the marble matched the color of the 
jar it came from about 80% of the time. About 20% of the time, it was the opposite color.” 
18 When deriving the model’s predictions, we assume the DM either attends only to (a subset of) the statistical features or 
only to the ancillary features. Here we assume that statistical features take precedence when participants report paying 
attention to both statistical features and the ancillary feature. That is, we treat such participants as if they only paid 
attention to the statistical features they report attending to. In practice, this choice does not affect our main results, as by 
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Across the six treatments, we again test two predictions. First, by Proposition 4, reported 

attention to urns, color, and match should align with which mode the DM anchors to. Second, by 

Corollary 5, an increase in the contrast of the likelihood (𝑇MN vs 𝑇ON) or the prominence of match (𝑇8 

vs 𝑇0) should boost both attention to the signal and anchoring to the likelihood. Conversely, lowering 

the prominence of the signal (𝑇G  vs 𝑇L) should shift attention away from the signal and increase 

anchoring to base rates. Finally, we test in the experiment of Section 2 whether moving from balls 

and urns (𝑇0) to taxicabs (𝑇L) leads to greater attention to match and color.  
 

Treatment 
Base 

Rate 
Likelihood N Summary Purpose 

𝑇* 0.25 0.80 480 Balls and urns: baseline Compare to 𝑇+ 

      

𝑇,  0.25 0.80 199 Taxicabs: baseline Compare to 𝑇- 

      

𝑇./ 0.15 0.70 497 
Balls and urns: less 

extreme likelihood 
Compare to 𝑇0/ 

      

𝑇0/ 0.15 0.90 487 
Balls and urns: more 

extreme likelihood 

Increase contrast of likelihood 

compared to 𝑇./ 

      

𝑇+ 0.25 0.80 202 
Balls and urns: highlight 

match 

Increase prominence of match 

compared to 𝑇* 

      

𝑇- 0.25 0.80 196 
Taxicabs: undermine 

witness’s report 

Decrease (increase) prominence 

of report/match (company) 

compared to 𝑇,  

Table 3. Treatments manipulating salience in inference problems. 
 

Multimodality in Attention and Estimates. We test Proposition 4 by connecting within each 

treatment multimodality in attention and judgments. The large majority of answers are anchored to 

one of the modes in Proposition 4 (ranging from 68.2% to 78.2% of answers depending on treatment). 

Pooling all inference treatments in Table 4, we run OLS regressions of an indicator for whether 

participants anchor at a given mode (base rate, likelihood, the Bayesian answer, and 50-50) on 

indicators for measures of attention to its associated feature profile as well as treatment fixed effects.  
 

 
far the most common such attention profile (28% of participants) involves paying attention to both the signal and the 
match feature (recall that attending to either feature in our model would yield the same answer to the inference problem). 
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 (1) (2) (3) (4) 

 Base Rate Likelihood Bayes 50% 

Directly Elicited Attention  

Only Urn 0.418***    

 (0.022)    

Only Color/Match  0.408***   

  (0.023)   

Only Urn and Color   0.128***  

   (0.026)  

Nothing    0.166*** 

    (0.041) 

Free-Response Attention 

Only Urn 0.169***    

 (0.022)    

Only Color/Match  0.121***   

  (0.027)   

Only Urn and Color   0.110***  

   (0.026)  

Nothing    0.054*** 

    (0.011) 

     

Treatment FEs Yes Yes Yes Yes 

N 2061 2061 2061 2061 

R^2 0.296 0.256 0.069 0.052 

Table 4. Multimodality in attention and in estimates. The dependent variable is whether participants’ answers 
were the base rate (column 1), the likelihood (column 2), within 5 percentage points of the Bayesian answer 
(column 3), or 50-50 in the inference problem (column 4). All regressions include treatment fixed effects. 
Robust standard errors in parentheses. *** indicates statistical significance at the 1% level. 
 

Table 4 shows that measured attention profiles strongly predict estimates in a way consistent 

with Proposition 4.  For example, participants who report attending to only the urn feature are 41.8 

percentage points more likely to anchor to the base rate.  Free-response attention to urn further 

increases that probability by 16.9 percentage points. Similar results hold for other modes.  

Furthermore, many people report paying attention to only one feature, which is either a statistic or 

the irrelevant match feature, which is then reflected in which statistics they use or neglect.  

Participants who pay attention to both features are more likely to make a correct judgment.   

One potential concern is that, when selecting attention from the list, participants may 

mechanically ex post select features associated with their estimates. This, however, does not explain 
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why attention to ancillary features that are not associated with statistics, such as the share of heads or 

match in balls and urns, also predicts beliefs. Furthermore, this is much less of a concern for the free-

response measure, which is based on how respondents themselves describe how they thought about 

the problem, and that in Table 4 exhibits additional explanatory power beyond directly-elicited 

attention.    
 

Attention and Instability in Estimates We next show the effect of controlled manipulations of contrast 

and prominence. We first look at participants’ estimates, and then document shifts in attention as 

predicted by Corollary 5. Consider contrast first. The left graphs of Figure 6 compare the 𝑇MN vs. 𝑇ON 

likelihood treatments. In Panel A, consistent with the model, increasing the likelihood from 0.7 in 

𝑇MN to 0.9 in 𝑇ON, increases the share anchored to the likelihood (from 15.5% to 22.8%, 𝑝 = 0.00), 

and decreases the share anchored to the base rate (from 32.8% to 23.4%, 𝑝 = 0.00), with little effect 

on the mass near (i.e., within 5 percentage points of) the Bayesian answer (from 12.1% to 9.2%, 𝑝 =

0.15).19 Consequently, in Panel B the relative share of answers at the likelihood or Bayes vs. the base 

rate increases, consistent with Corollary 5. 

 
19 Changing the likelihood also changes the correct answer. In the Appendix, we describe a sharper test in which the 
contrast of the ball’s color increases in a spurious way, keeping the correct answer the same. To do so, we describe urns 
using absolute rather than relative frequencies (i.e, the number of blue vs green balls in each), so that across treatments 
urns have the same share of green and blue balls but different absolute numbers. Consistent with the model’s prediction, 
when the absolute difference in the number green balls increases, overreaction becomes more common. 
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Figure 6. A shows the distribution of beliefs about Pr(𝐴	|	𝑔) across inference treatments. Panel B shows treatment 
effects on the fraction of participants who anchor to the likelihood or Bayesian mode divided by the fraction who anchor 
to the base rate. Whiskers show +/- one standard error.  
 

In a broad class of Bayesian or quasi-Bayesian models people integrate the prior and the 

likelihood, with a greater revision in beliefs if the likelihood is higher. This is inconsistent with the 

evidence, which instead points to a failure of integration, as in our mechanism. A higher likelihood 

causes a sharply bimodal adjustment of beliefs: a fraction of people shifts to anchoring to the 

likelihood, increasing neglect of the base rate, while a fraction continues to neglect the signal.20  

We next show that prominence reconciles the balls and urns and taxicabs formats.  The middle 

graphs of Figure 6 compare balls and urns when the match feature is made salient, 𝑇8, versus 𝑇0 

when it is not. Panel A shows that describing the problem in terms of the match feature, 𝑇8 greatly 

increases the share of participants who anchor to the likelihood compared to standard balls and urns 

𝑇0, both in absolute terms (22.8% vs 15.5%, p<0.01) and relative to the base rate (2.2 vs 0.8, p<0.01), 

in line with Corollary 5. There is also a modest reduction in the relative prevalence of the Bayesian 

 
20 Augenblick, Lazarus, and Thaler (2021) find that average beliefs underreact more for higher likelihoods. Their format 
is different from ours in several respects, but their finding about average beliefs is consistent with our model: it arises 
when the fraction of people anchoring to the likelihood increases slowly with the likelihood itself. This condition holds 
in our data: in terms of odds ratio, mean beliefs for 𝐴 are twice as high for 𝑇89 than for 𝑇:9, compared to the Bayesian 
benchmark in which it should be three times higher.  
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answer. Similarly, the right graphs of Figure 6 show that the “undermining the witness” treatment 𝑇G, 

designed to reduce the salience of the signal relative to the base rate, increases anchoring to the base 

rate and decreases anchoring to the likelihood: one feature crowds out another, despite the fact that 

statistics are unchanged.21  

If these changes in bias are due to the changing salience of specific features, attention to these 

features should change accordingly, as in Corollary 5. To see if this is the case, Figure 7 plots on the 

x axis the share of subjects paying attention to color, match, or both, relative to those attending to urn 

selection. It plots on the y axis the share of participants anchoring at the corresponding likelihood and 

Bayes modes relative to those at the base rate. Panel A reports the results using the direct elicitation 

measure, Panel B using the free response measure. Both measures of attention are consistent with 

Corollary 5. Increasing the likelihood from 𝑇MN  to 𝑇ON  increases attention to color or match and 

anchoring to the likelihood. Highlighting the match feature in 𝑇8 strongly boosts attention to the same 

feature and anchoring to the likelihood compared to baseline balls and urns 𝑇0. Finally, undermining 

the witness in 𝑇G increases relative attention to the base rate and anchoring to it. 
 

 
Figure 7. Treatment effects on beliefs and attention. The x-axis is the fraction of participants in each treatment 
attending to color and/or match (left figure within each panel) and to urn + color (right with each panel) divided 
by the fraction attending only to urn according to our direct-elicitation (Panel A) and free-response (Panel B) 
measures. The y-axis is the fraction of participants who anchor to the likelihood (left within each panel) or 
close to the Bayesian answer (right within each panel) divided by the fraction who anchor at the base rate. 
 
 

These results underscore the centrality of salience-driven attention for understanding bias: 

there is a mapping between attention and estimates, so that changes in salience can reconcile various 

 
21 Tversky and Kahneman (1977) discuss a variation of the taxicab problem in which the base rate refers to the frequency 
of accidents instead of the frequency of cabs (the problem states “although the two companies are roughly equal in size, 
85% of cab accidents in the city involve Green cabs, and 15% involve Blue cabs.”)  This description makes the base rate 
of the hypotheses “Green” and “Blue” more explicit, thereby increasing its prominence.  Consistent with this 
interpretation, there is substantially less overreaction in this version of the problem.   
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biases and their instability. While “balls and urns problems” are worded in a way that makes the 

individual urns A and B more prominent, the statistically equivalent base-rate neglect problems, e.g. 

cabs, are worded to highlight how the signal is similar to the hypothesis. To understand biases, one 

needs to go beyond objective probabilities, and instead measure attention and feature salience.22 

Model Estimation. We provide a structural test of our model by estimating it via maximum 

likelihood (details are in Appendix C). This allows us to estimate latent prominence and the weight 

of contrast from observed probability estimates, and then assess whether the pattern of attention 

predicted by the model matches measured attention out-of-sample. We test two additional restrictions. 

First, the treatment-level prominence of the ancillary feature (“match”) should be associated only 

with increases in measured attention to “match” itself, not to Bayes. Second, the estimates tell us how 

much of the shift in measured attention is due to contrast across all treatments. 

Due to the model’s multinomial structure, the share of estimates at a given mode 𝑒 = Bayes, 

Likelihood, relative to that at the base rate in Corollary 5 is given by: 

ln
𝜇(𝛼P)
𝜇(𝛼0=)

= (𝑃P − 𝑃G) + 𝛽	[𝐶(𝛼P) − 𝐶(𝛼0=)]																																									(8) 

where (𝑃P − 𝑃G) is the prominence of attention profile 𝛼P, while the second term is its contrast, all 

relative to urn selection. 𝐶(𝛼) is pinned down by the statistics of the problem, but here we test 

whether 𝛽 > 0. The constant in (8) captures the relative prominence of 𝑒. Figure 8 plots on the x axis 

model-implied salience and on the y axis measured attention to the same feature profile.  

 
Figure 8.  Measured vs revealed attention to features. The x-axis is the estimated salience of each attention 
profile (where we sum together the color and match salience estimate) relative to the estimated salience of urn. 
The y-axis is the share of participants who attend to the corresponding profile, as measured by our direct 
elicitation (Panel A) or free-response measure (Panel B). 
 

 
22 A distinction has also been drawn between balls and urns and “forecasting”, in which overreaction also prevails (Fan 
Liang, and Peng 2021). One explanation is that forecasting tasks (in which people must guess a future signal rather than 
the urn the current signal comes from) also make signals more salient compared to inference, fostering overreaction. 
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Measured and model-implied attention are positively correlated. When beliefs move “as if” 

there was an increase in the salience of the signal, match, or the Bayes profile, measured attention on 

these profiles also increases. Second, contrast matters: its coefficient is estimated as 𝛽 = 1.2, with a 

95% bootstrap confidence interval of [0.55, 1.80].  Third, consistent with our model, the prominence 

of the “match” feature, estimated from beliefs data, is strongly correlated at the treatment level with 

the independently measured attention to “match”, but not to the measured attention to the Bayes 

profile (participants that report attending to both the color and the urn). For example, comparing 𝑇0 

to 𝑇8, attention to (only) the match feature increases from 7.1% to 17.8% (p < 0.01), while attention 

to the Bayesian profile (urn + color) decreases from 22.1% to 4.0% (p<0.01). Consistent with 

interference, the salience of match also reduces attention to “only color” (12.3% vs 6.9%, p=0.02).  

 

6. Additional Implications of Salience driven Attention  

We derive and test additional implications of our approach. Section 6.1 shows that salience 

may cause the DM to neglect certain hypotheses. Section 6.2 shows that in complex problems, where 

the attention limit 𝐾 is binding, partial attention generates the insensitivity of judgments to sample 

size (Kahneman Tversky 1972) and to the weight of evidence (Griffin and Tversky 1992). 

 

6.1 Non-Salient Hypotheses: Confirmation Bias and the Gigerenzer-Hoffrage Critique 

Nickerson (1998) argues that the confirmation bias, the tendency to interpret data as overly 

supporting a hypothesis, is often due to the neglect of the alternative hypothesis. A hypochondriac 

may overreact to mild symptoms by failing to imagine that the latter could also arise with good health. 

Attention accounts for this phenomenon: one hypothesis is salient in the DM’s mind, and so is more 

easily simulated than its alternative. One way to test for this mechanism is to change the prominence 

of a hypothesis in the description. In balls and urns hypotheses are described as “what is the 

probability that the ball is drawn from 𝐴 vs. 𝐵?” The same question could be phrased as: “what is the 

probability that ball is drawn from 𝐴?” By leaving urn 𝐵 implicit, the second phrasing may allow the 

DM to neglect 𝐵. Thus, she simulates only A and fails to normalize (Task 3). 

To see how this works, denote by 𝛼0 ∈ {0,1} the attention to hypothesis 𝐻0. The attention 

profile is 𝛼 = (𝛼!, . . , 𝛼Q , 𝛼0).23  When 𝛼0 = 1 both hypotheses are attended to, which is the case 

studied so far. When 𝛼0 = 0, the DM fails to simulate 𝐻0 and solves the problem as: 

Pr(𝐻/; 𝛼) = PrV𝑅5(𝐻/)W,																																																													(9) 

 
23 In a more cumbersome specification, each hypothesis can have its own attention profile.  Neglect of a non-focal 𝐻;< 
can then be formalized as 𝐻;< being represented by the feature of being the complement of 𝐻<. 
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setting Pr(𝐻0; 𝛼) = 1 − Pr(𝐻/; 𝛼). Equation (9) yields Nickerson’s intuition: the DM who neglects 

𝐻0 forms beliefs by imagining only the focal hypothesis 𝐻/. Attention is still determined by Equation 

(6). The only modification is that 𝑃(𝛼) now depends also on the prominence 𝑃0 of 𝐻0, and contrast 

𝐶(𝛼) is computed using (9) whenever 𝐻0 is not attended to.  The “standard” balls and urns format in 

which both hypotheses are mentioned has high 𝑃0, whereas the “focal 𝐻/” format in which hypothesis 

𝐻0 is implicit has low 𝑃0. We then obtain: 
 

Proposition 6 Moving from a “standard” to a “focal 𝐻/” balls and urns format reduces the Bayes 

mode and raises the mode at the probability of “𝐴 and green”, PrV𝐻/; 𝛼/∩1W = 𝜋/ ∙ 𝑞. 
 

Neglect of 𝐻0  reduces the share of correct answers because the Bayes’ rule calls for full 

attention, including to hypotheses. It also increases the base rate and likelihood modes, which remain 

feasible because these statistics are already normalized, so they do not need Task 3. Interestingly, 

DMs who neglect 𝐻0 and attend only to “drawing a green ball” exhibit a kind of confirmation bias. 

They think only about urn 𝐴, appreciate that it has 𝑞 green balls, and thus estimate its probability as 

𝑞. They seem to confirm their favored hypothesis 𝐴 based on its high probability of generating the 

data, neglecting that green balls are also in 𝐵 . This logic causes anchoring to 𝐴’s likelihood 𝑞 

regardless of the color composition of 𝐵, which is not the case for the mechanism in Proposition 4.24 

Second, and crucially, the “focal 𝐻/” format creates an entirely “new mode”, 𝛼/∩1 anchored 

at 𝜋/ ∙ 𝑞.  At this mode, which sharply identifies neglect of 𝐻0, the DM attends to both statistical 

features (the selection of 𝐴 and the drawing of a green ball from it), and replaces the original question 

with “what is the probability that a ball is green and from 𝐴”?  These DMs simulate 𝐴 by computing 

the joint probability 𝜋/ ∙ 𝑞 as in Equation (9). The deliberate simulation of a specific event further 

confirms that biases are due to erroneous representations. Remarkably, at this mode the DM sets the 

probability of 𝐴 below its base rate, despite receiving favorable information. The reason is that the 

DM fails to appreciate that green balls are even rarer in urn B. To our knowledge, we are the first to 

unveil this bias despite the fact that in many experiments its incidence is large, as we show next is 

true in our data. 

We test Proposition 4 by running the “focal 𝐻/” version of the experiment in Section 2.  As 

predicted, making urn 𝐵 implicit and thus less prominent leads to a decrease in the Bayesian mode 

and a concurrent large increase in the new mode at 𝜋/𝑞 = (0.25) ∗ (0.8) = 0.2. 

 
24 In asymmetric problems, in which Pr(𝑔|𝐴) ≠ Pr(𝑏|𝐵), neglect of 𝐻=  can be detected by DMs’ anchoring to the 
likelihood of 𝐴 rather than to a combination of the two likelihoods.  
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Figure 9. The Figure shows the distribution of beliefs about Pr(𝐴	|	𝑔). 

 

 

Keeping the alternative implicit is only a modest change in description, yet it has a large effect. The 

share of subjects anchoring at 𝜋/𝑞 = 0.2 increases from 7.3% to 19.2% (𝑝 < 0.01). The incidence of 

this mode is widespread, even in treatments when 𝐻0 is explicit. We did not directly elicit attention 

to hypotheses, but we can use our free-response attention measure. The share of participants coded 

as paying attention to the possibility that the drawn marble came from Jar B falls from 49.2% in the 

standard format to 39.6% in the Focal A one (p<0.01).  

The new mode is relevant for the debate on base rate neglect. Gigerenzer and Hoffrage (GH, 

1995) showed that more accurate inference is promoted by describing unconditional frequencies: a 

share 0.2 of balls are green and in urn 𝐴, a share 0.05 are blue and in 𝐴, a share 0.15 are green and 

in 𝐵, and the remaining share 0.6 are blue balls in 𝐵. In this “frequency format” computing the correct 

answer is easier for it only calls for taking the ratio of 0.2 to 0.15. Our model captures this idea. In 

this format, in fact, there is a single statistical feature: “drawing a ball from 𝑈 and of color 𝑐”, denoted 

by 𝑓! = 𝑈𝑐 where 𝑐 = 𝑔, 𝑏, 𝑈 = 𝐴, 𝐵. The scope for distortions is therefore much reduced: there is 

no longer anchoring to base rate and likelihoods (which are not mentioned).  

GH argue that the efficacy of this format supports the ecological validity of human intuition, 

since naturalistic contexts expose people to frequencies, not to base rates and likelihoods.25 This 

conclusion, however, does not follow from our model. Even in problems with one single statistical 

feature, distortions can arise if people focus on 𝐻/ and neglect the alternative hypothesis 𝐻0, or if 

they focus on ancillary features, phenomena that can both occur in naturalistic settings.   

 
25 The frequency format could also be described as: 25 out of 100 balls are in urn 𝐴. Out of those, 20 are blue and 5 are 
green. The remaining 75 are in urn B. Out of those, 15 are blue and 60 are green. There are many studies of the effect of 
training and communication of statistics (Visschers et al 2009, Gigerenzer 2014, Operskalski and Barbey 2016). 
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To test whether displaying frequencies is sufficient to promote Bayesian answers, we compare 

two versions of balls-and-urns where probabilities are described in frequency format. In the standard 

frequency format, both hypotheses 𝐴 and 𝐵 are prominently displayed. In the “focal 𝐻/” frequency 

format, 𝐻0 is implicit. If exposing people to frequencies is enough to promote Bayesian answers, 

there should be no difference across these versions. If instead it is also necessary to draw attention to 

the alternative hypothesis, the new mode 𝜋/ ⋅ 𝑞 should appear in the “focal 𝐻/” frequency format, at 

the expense of the Bayesian answer. Figure 10 compares the distribution of answers in the standard 

frequency format (Panel A) and the “focal 𝐻/” format (Panel B).   

 
Figure 10. Balls and urns in baseline and frequency formats. Each panel shows the distribution of Pr(𝐴	|	𝑔). 
 

The results are strongly in line with our model. In Panel A, compared to canonical balls and 

urns, the frequency format sharply increases the mode around the Bayesian answer. This, however, 

is not due to the fact that the naturalistic frequency format implements Bayesian intuitions. Consider 

Panel B: as alternative 𝐵 is made less salient in the “focal 𝐻/” version, the new “𝐴 ∩ 𝑔” mode at 

20% becomes dominant. The benefit of the frequency format over the standard one is no longer clear: 

it leads many people to estimate 𝐴 below its base rate despite the favorable signal.26 

As this example illustrates, it is too optimistic to expect naturalistic contexts to reduce biases. 

Bayes’ rule typically requires attention to many relevant features, which may be hard to attain. 

Psychology work on problem solving is consistent with this view: sometimes naturalistic settings and 

prior knowledge help, as in solving the Wason task (Wason 1968); other times they impair problem 

 
26 Notably, even in the frequency format a number of participants anchors to the base rate and the likelihood. Our model 
can produce this result if DMs attend to the now ancillary “color” and “urn” features. Esponda et al. (2022) show that 
even the power of experienced frequencies is rather weak. Their subjects solve standard “base rate neglect problems” 
(e.g., taxicabs), and then receive feedback on the joint distribution of signals and states. Despite the feedback, many 
subjects stay anchored to their initial answers. Stable representations can help explain this fact. 
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solving because people fail to see unusual but useful properties of an object, as in the famous candle 

problem (Galinsky Moskowitz 2000). Systematically engaging with salience-driven attention, shaped 

by contrast and prominence, may help design architectures conducive to improved judgments.27   

 

6.2 Attention limits and Insensitivity in complex problems 

In complex problems, in which the attention limit 𝐾 is binding, our model yields well known 

forms of insensitivity of probability estimates to the quantity of data. Intuitively, as the sample 

size/number of signals grows, so does the number of relevant features, bolstering the role of salience 

in selecting which ones to attend to, up to the maximum of 𝐾, and which ones to neglect. 

 

6.2.1 Insensitivity to Sample Size 

For iid processes, Kahneman and Tversky (1972) and Benjamin, Rabin, and Raymond (2016) 

document a strong “insensitivity to sample size”: estimated sampling distributions fail to converge to 

the population mean as the sample size grows. Specifically, suppose that the DM evaluates the relative 

likelihood of 𝐻! = “a sequence of length	𝑛 has the same number of heads and tails”, versus 𝐻" = “a 

sequence of length	𝑛 has only heads”. The true answer is Pr(𝐻!) / Pr(𝐻") = v
𝑛
𝑛/2w, which increases 

in 𝑛. In experiments, the estimated ratio increases too little, if at all, with 𝑛.  

Consider this phenomenon through the lens of our model. The DM’s estimate is shaped by the 

number 𝑟 ≤ min(𝐾, 𝑛) of flips he attends to, captured by attention profile 𝛼>. The latter pins down 

the representation 𝑅5*(𝐻#), which is the union of attended subsequences of length 𝑟 of the hypothesis’ 

atoms, 𝜔 ∈ 𝐻# .28 The salience of 𝛼>  is additive in the average prominence of its flips 𝑃(𝛼) = 	𝑃, 

contrast 𝐶(𝛼>), and the shock 𝜖5 . As before, 𝜖5  is common to all profiles 𝛼  in which flips are 

attended to, so it does not matter here. As we show in Appendix B, contrast increases in 𝑟: the more 

flips the DM attends to, the more she believes that balanced sequences are likelier than unbalanced 

ones. While contrast favors rich representations, the attention limit 𝐾 may bind.  We assume that 𝐾 

is distributed according to a pdf 𝜋(𝐾) in support [1, 𝐾�]. Variations in 𝐾 across DMs may reflect 

individual differences in mental faculties, or in situational factors, such as distractions. 
 

 
27 We only considered prominence as a source of hypothesis neglect, but contrast may also play a role.  Ba, Bohren and 
Imas (2023) show that overreaction to data increases when a neutral urn 𝐶 with a 50-50 color compositions and a large 
prior probability is added to urns 𝐴 and 𝐵.  One explanation of this finding is that, upon observing a green ball, neglect 
of urn C maximizes contrast. As the DM edits out this urn and its high prior, she strongly reacts to data.  
28 The ancillary feature shares is relevant in this case but as discussed in Section 3 it does not simplify the estimation 
process. For simplicity we do not consider it here. Using it is equivalent to hitting the bound 𝑛> = min(𝐾, 𝑛). 
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Proposition 7 The average DM underestimates the probability of 𝐻! vs 𝐻", more so when smaller 

values of 𝐾 are more likely. As 𝑛 increases, average beliefs converge to 𝜋�(𝐾�). 
 

Due to attention limits, the DM cannot think about all possible ways of producing balanced 

sequences for large 𝑛. Eventually, beliefs become fully insensitive to 𝑛, consistent with KT’s finding 

that people use a “universal distribution” based on a limited number of iid draws. Existing models 

have wrestled with reconciling the faulty reliance on the law of large numbers in the Gambler’s 

Fallacy with an insufficient reliance on it in large samples (Benjamin, Moore, and Rabin 2017).  These 

phenomena naturally arise in our model: the DM uses a similar representation for the two problems, 

the class of balanced sequences, whose estimated size grows insufficiently with 𝑛. 

As we show in the proof of Proposition 7, this mechanism yields new predictions on the 

Gambler’s Fallacy. First, conditional on committing it, its severity should be higher for DMs who 

have less severe attention limits, higher 𝐾. Heterogeneity in 𝐾 therefore yields the heterogeneity in 

the severity of GF observed in Figure 1. Second, the average estimated probability of a sequence of 

𝑛 flips and share of heads 𝑠ℎ should exhibit insensitivity to the true size of its “share of heads” 

equivalence class, v 𝑛
𝑛 ∗ 𝑠ℎw. As the latter becomes larger, it is increasingly difficult – due to attention 

limits – to simulate its cardinality. Thus, a person focusing on the share of heads will estimate the 

probability of 𝑡ℎ𝑡ℎ to be higher than that of ℎℎℎℎ, but less than 6 times, which is the objective ratio 

of the prevalence of balanced sequences. We can test this prediction using our experiment in Section 

4: conditional on a subject committing the Gambler’s fallacy, we regress the log of the estimated 

probability of a sequence on the log of the size of its equivalence class (and on the log of the true 

probability when we pool different sequence lengths).  

Consistent with our prediction, the coefficient on the size of the equivalence class is positive 

but less than one, showing insensitivity, and is smaller for longer sequences 𝑛 = 4,6 compared to 

𝑛 = 2. Thus, salience-driven attention generates three observed behaviors: i) the share of subjects 

committing the GF increases in sequence length 𝑛 (contrast); furthermore, conditional on committing 

the fallacy ii) its severity increases with the size of a sequence’s equivalence class based on 𝑠ℎ 

(question substitution) but iii) less than proportionally to the latter’s size (insensitivity). Property iii) 

follows from our model but to our knowledge has not been documented before. 
 

 (1) (2) (3) (4) 

 Length 2 Length 4 Length 6 Pooled 

Log( Size of Equivalence Class ) 0.67*** 0.48*** 0.43*** 0.47*** 

 (0.04) (0.02) (0.02) (0.05) 
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Log (Truth)    0.39*** 

    (0.04) 

     

Constant -1.26*** -3.48*** -4.89*** -3.51*** 

 (0.03) (0.04) (0.07) (0.14) 

     

Observations 1128 8528 8016 17672 

Individuals 282 533 501 1316 

R^2 0.20 0.10 0.06 0.37 

Table 5. The dependent variable is the log of the judged probability of each coin-flip sequence of the length 
indicated in the column heading (pooling all lengths in column 4). Robust standard errors in parentheses. ** 
and *** indicate significance at the 5% and 1% levels, respectively. Data are restricted to participants for 
whom judged probabilities and balanced-ness of heads and tails are positively correlated. 
 

6.2.2 Insensitivity to the Weight of Evidence 

Griffin and Tversky (1992) document a strong “insensitivity to the weight of evidence” in 

inference, where beliefs are insensitive to the number of signals. Consider the inference problem of 

Section 2, but allow for multiple draws with replacement from the urn. There are 𝑛 + 1 statistical 

features: the selected urn, associated with the base rate 𝜋G, and the 𝑛 draws, each associated with a 

likelihood. Denote by 𝐷 = V𝑛1, 𝑛2W the data, consisting of green and blue balls, 𝑛1 + 𝑛2 = 𝑛. The 

data is favorable to 𝐴, 𝑛1 > 𝑛2, with 𝜋/ < 0.5. 

As in Section 3, the DM may neglect drawn balls, focusing only on urn selection, denoted by 

𝛼G. Or she may neglect urn selection and, as in the case of coin flips, attend to 𝑟 ≤ 𝑛 ball draws, 

denoted by 𝛼>. Finally, she may attend both to urn selection and to 𝑟 ≤ 𝑛 draws, denoted by 𝛼G,>. 

The salience of each profile is additive in prominence 𝑃(𝛼), contrast 𝐶(𝛼) and a random shock 𝜖5.  

As for coin flips, 𝜖5 does not depend on the number of draws 𝑟. We prove the following result. 
 

Proposition 8 The average DM is insensitive to the evidence in favor of 𝐻/. Specifically:  

i) She underestimates 𝐻/ for sufficiently many green signals 𝐷 = V𝑛1, 0W, 𝑛1 > 𝑛∗. 

ii) The estimate of 𝐻/ based on an extra green ball, 𝐷 = (𝑁 + 1,𝑁), drops in the number 

signals 𝑁, which also increases attention to urn selection and anchoring to base rates.  
 

Result i) is analogous to insensitivity to sample size: due to capacity constraints, the DM fails 

to integrate all signals favorable to urn 𝐴. The predicted distribution is still multimodal, with some 

people anchoring at the 𝜋/  or the likelihood 𝑞  (those with 𝐾 = 1) while others integrating more 
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signals and hence yielding more extreme answers, but not to the full extent. The average estimate is 

too low compared to what is warranted by the signals. The same mechanism yields, in ii), Griffin and 

Tversky’s insensitivity to the weight of evidence. Relative to a single green signal, adding an equal 

number of green and blue signals causes the limit 𝐾 to become binding. This reduces the DM’s ability 

to appreciate that green signals outnumber the blue ones, in turn reducing the contrast associated with 

the signal itself, which boosts anchoring to the base rate. This result sharply distinguishes our model 

from rational inattention. When the DM receives a single green signal, she may anchor to the 

likelihood, exhibiting a strong overreaction as in Kahneman and Tversky (1972). Upon instead 

receiving the same favorable evidence for 𝐴 in terms of mixed signals, she may neglect all signals 

and anchor to the base rate. Instead of being aggregated, different signals interfere with one another.  

We test these predictions. In the first new treatment, 𝑇"S , subjects estimate the probability of 

𝐴 conditional on the draw of two green balls, rather than only one green signal in 𝑇0. Panel A of 

Figure 11 shows the distribution of beliefs in these two treatments. Consistent with the insensitivity 

in i), the average response is 52.6% (only 1.4 p.p. higher than in 𝑇0 , 𝑝 = 0.50), which exhibits more 

average under-reaction than when one green ball is drawn. The distribution is also clearly still 

multimodal, with about 74.1% people anchored at the base rate, the likelihood, and 50:50. 

In the second new treatment, 𝑇TSU0 ,	we test prediction ii) by eliciting beliefs after 5 green and 

4 blue signals, under the same base rate 𝜋/ = 0.25 and the likelihood 𝑞 = 0.8 as 𝑇0 . Panel B of 

Figure 13 compares the resulting distribution of beliefs between 𝑇0  and 𝑇TSU0 . Consistent with 

prediction ii), the mode at the base rate sharply increases from 26.5%	to 39.8%, even though the 

correct answer is unchanged.  In GT’s language, increasing the weight and lowering the strength of 

evidence boosts the share of people who fully neglect the signal in favor of the base rate.29 

 
29 We did not elicit attention to specific numbers and colors of signals, so we cannot test whether treatment effects on 
measured attention line up with the model. We see, however, that 𝑇?@A= increases attention to urn selection, consistent 
with our mechanism for insensitivity to the weight of evidence.       
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Figure 11. Multiple signals (5 green+ 4 blue and 2 green) in balls-and-urns inference task. Figure shows the 
distribution of beliefs about the probability of Jar A conditional on the signal(s). 
 

 

7. Conclusion 

Understanding belief formation is critical to understanding economic behavior. Over the past 

sixty years, psychologists and behavioral scientists have unveiled many systematic departures of 

beliefs from the standard Bayesian model (Benjamin 2019), including the Gambler’s Fallacy, under-

reaction and overreaction in inference, and others.  This evidence has led to a proliferation of bias-

specific models, reflecting wide ranging and sometimes contradictory findings. This research has 

produced important insights but has also opened many doors, leaving a sense that anything goes. 

Statistical problems are a useful laboratory to study belief formation and unveil unifying 

mechanisms, because in these problems: i) there is a correct answer and ii) the given statistics offer 

anchors for detecting shifting attention between them. On this testing ground, our analysis shows that 

bias-specific models cannot account for two key empirical regularities: multimodality and instability. 

These phenomena point to a basic cognitive mechanism: salience-driven attention to the features of 

events. Statistical problems are characterized by multiple features, some of which are irrelevant to 

the problem at hand but may nevertheless draw attention. Selective attention to these features can 

lead to different distorted representations of the hypothesis, which are different forms of question 

substitution. This mechanism accounts for many known biases, as well as new ones we document, 

promising a unified psychological approach to decisions. 

This approach differs from a leading social science model viewing attention as a scarce 

resource that is optimally allocated to further the decision maker’s goals (e.g. “rational inattention” 
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in economics or “efficient coding” in psychology). While the scarcity of attention is uncontroversial, 

our analysis challenges its goal-optimality. In our experiments all DMs have the same incentives and 

yet their decisions cluster on different modes and change from one mode to another when goal-

irrelevant aspects of the problem are changed. Salience plays a key role to explaining such anomalies, 

in line with substantial research in psychology showing its role in attention allocation.  Developing a 

deeper understanding of how goals shape salience and attention allocation is an important avenue for 

future work. 

To that effect, an important direction is to integrate the roles of attention and selective memory. 

In the statistical problems we considered, all relevant data is put in front of subjects. Yet recalled past 

experiences arguably influence what features they attend to, representations, and estimates. One way 

in which the relevance of a witness statement in court draws attention is that it reminds the DM’s of 

similar past experiences of people giving testimony. Briefly mentioning that a witness is unreliable 

cues the opposite reaction – we are indeed used to ignoring unreliable data – causing some people to 

wholly neglect the report’s numerical accuracy. Understanding how past experiences in one problem 

affect which features people recall and attend to in a new problem is an important ingredient in a 

theory of prominence and could shed light on a range of issues, including why different people 

represent the same problem in different ways and make different choices, and why features that 

capture similarity to the data generating process can be prominent (Bordalo, Gennaioli, Lanzani, 

Shleifer 2024).  In the field, such a theory of prominence would shed light on which narratives or 

partial models people use in different cases, why beliefs diverge despite a great deal of common 

information, why learning about a process might be hampered by prominent past experiences 

(Schwartzstein 2014, Esponda, Vespa, and Yuksel 2024), but also why learning can be sped up once 

neglected relevant features are made prominent (Hanna, Mullainathan, and Schwartzstein 2014, 

Graeber 2023).  

Integrating attention and memory is also important to understand belief formation in 

naturalistic settings.  In these settings, statistics or other numerical information are often unavailable 

(or anyhow not retrieved or used), and people form beliefs by sampling information from memory.  

Bordalo, Burro et al. (2024) and Bordalo, Conlon et al (2023) present a model of such sampling based 

on the psychology of selective recall and show that it sheds light on several belief anomalies in the 

field, characterizing the sources of both disagreement and of average bias in the distribution of 

estimates.  The approach has also proven fruitful to explain survey data on covid risks, career choices, 

or investments (Bordalo, Burro et al. 2024, Conlon and Patel 2023, Jiang et al. 2023). Attention-

driven representations can add a crucial ingredient to this theory: which cue in the environment is 

noticed and triggers retrieval.  For example, the salient losses or failure of an individual bank may 
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draw investors’ attention, causing them to retrieve past episodes of financial meltdown, and to neglect 

the rarity of cataclysmic events and strong pessimism.  

The combination of memory and salience-driven attention is also relevant for consumer choice. 

BGS (2022) offer a theory of consumer choice in which memory and attention interact to shape the 

perception of the numerical or hedonic magnitude of an attribute and show that this approach accounts 

for reference point effects. Our current approach to attention acts at a higher cognitive level, shaping 

which attributes/features are used to represent choice problems, and which are instead neglected or 

forgotten. Selective attention to features, driven by contrast and prominence but also surprise, can 

expand our understanding of heterogeneity and instability of observed choices. Based on past 

experiences, a consumer deciding whether to buy a good may represent the choice as “Is this a fair 

price?”; an investor considering a firm may represent it as “do I want to invest in a fast growing 

sector?”; taking a position on a policy can be represented as “am I attached to this party?”. The 

combination of memory and attention to features raises the promise of a general theory of intuitive 

judgments in both naturalistic and abstract settings. 

 

Data Availability Statement.  The data and code underlying this research is available on Zenodo at 

https://dx.doi.org/10.5281/zenodo.14036127. 
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