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Abstract. We study sequential experiments where sampling is costly and a decision-

maker aims to determine the best treatment for full scale implementation by (1) adap-

tively allocating units between two possible treatments, and (2) stopping the experiment

when the expected welfare (inclusive of sampling costs) from implementing the chosen

treatment is maximized. Working under a continuous time limit, we characterize the

optimal policies under the minimax regret criterion. We show that the same policies

also remain optimal under both parametric and non-parametric outcome distributions

in an asymptotic regime where sampling costs approach zero. The minimax optimal

sampling rule is just the Neyman allocation: it is independent of sampling costs and

does not adapt to observed outcomes. The decision-maker halts sampling when the

product of the average treatment difference and the number of observations surpasses a

specific threshold. The results derived also apply to the so-called best-arm identification

problem, where the number of observations is exogenously specified.
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1. Introduction

Acquiring information is expensive. Experimenters need to carefully choose how many

units of each treatment to sample and when to stop sampling. This paper seeks to develop

techniques for incorporating the cost of information into experimental design. Specifically,

we focus our analysis of costly experimentation within the context of comparative trials

where the aim is to determine the best of two treatments.

In the computer science literature, such experiments are referred to as A/B tests.

Technology companies like Amazon, Google and Microsoft routinely run hundreds of

A/B tests a week to evaluate product changes, such as a tweak to a website layout or

an update to a search algorithm. However, experimentation is expensive, especially if

the changes being tested are very small and require evaluation on large amounts of data;

e.g., Deng et al. (2013) state that even hundreds of millions of users were considered

insufficient at Google to detect the treatment effects they were interested in. Clinical or

randomized trials are another example of A/B tests. Even here, reducing experimentation

costs is a key goal. In fact, this has been a major objective for the FDA since 2004 when

it introduced the ‘Critical Path Initiative’ for streamlining drug development; this in

turn led the FDA to promote sequential designs in clinical trials (see, e.g., US Food and

Drug Admin., 2018, for the current guidance, which was influenced by the need to reduce

experimentation costs). For this reason, many recent clinical trials, such as the ones used

to test the effectiveness of Covid vaccines (e.g., Baden et al., 2021), now use multi-stage

designs where the experiment can be terminated early if a particularly positive or negative

effect is seen in early stages.

In practice, the cost of experimentation directly or indirectly enters the researchers’

experimental design when they choose an implicit or explicit stopping time (note that we

use stopping time interchangeably with the number of observations in the experiment).

For instance, in testing the efficacy of vaccines, experimenters stop after a pre-determined

number of infections. In other cases, a power analysis may be used to determine sample

size before the start of the experiment. But if the aim is to maximize social welfare (or

profits), neither of these procedures is optimal.1

In this paper, we develop optimal experimentation designs that maximize welfare while

also taking into account the cost of information. In particular, we study optimal sampling

and stopping rules in sequential experiments where sampling is costly and the decision
1See, e.g., Manski and Tetenov (2016) for a critique on the common use of power analysis for determining
the sample size in randomized control trials.
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maker (DM) aims to determine the best of two treatments by: (1) adaptively allocating

units to one of these treatments, and (2) stopping the experiment when the expected

welfare, inclusive of sampling costs, is maximized. We term this the generalized Wald

problem, and use minimax regret (Manski, 2021), a natural choice criterion under ambi-

guity aversion, to determine the optimal decision rule.2

We first derive the optimal decision rule in continuous time, under the so-called diffu-

sion regime (Fan and Glynn, 2021; Kuang and Wager, 2024) where information arrives

gradually in the form of (continuous) Gaussian increments. Then, we show that analogues

of this decision rule are also asymptotically optimal under parametric and non-parametric

distributions of outcomes. The asymptotics, which appear to be novel, involve taking the

marginal cost of experimentation to 0 at a specific rate. Section 4 delves into the rationale

behind these ‘small cost asymptotics’, and argues that they are practically quite relevant.

It is important to clarify here that ‘small costs’ need not literally imply the monetary

costs of experimentation are close to 0. Rather, it denotes that these costs are small

compared to the benefit of choosing the best treatment for full-scale implementation.

The optimal decision rule has a number of interesting, and perhaps, surprising prop-

erties. First, the optimal sampling rule is history independent and also independent of

sampling costs. In fact, it is just the Neyman allocation, which is well known in the Ran-

domized Control Trial (RCT) literature as the (fixed) sampling strategy that minimizes

estimation variance; our results state that one cannot do better than this even when

allowing for adaptive strategies. Second, it is optimal to stop when the difference in

average outcomes between the treatments, multiplied by the number of observations col-

lected up to that point, exceeds a specific threshold. The threshold depends on sampling

costs and the standard deviation of the treatment outcomes. Finally, at the conclusion of

the experiment, the DM chooses the treatment with the highest average outcomes. The

decision rule therefore has a simple form that makes it attractive for applications.

Our results also apply to the best arm identification problem with two arms.3 Best arm

identification shares the same aim of determining the best treatment but the number of

observations is now exogenously specified, even as the sampling strategy is allowed to be

adaptive. Despite this difference, we find Neyman allocation to be the minimax-regret

optimal sampling rule in this context as well. However, by not stopping adaptively, we
2We do not consider the minimax risk criterion as it leads to a trivial decision: the DM should never
experiment and always apply the status quo treatment.
3The results for best arm identification were previously circulated in an unpublished note by the author,
accessible from ArXiV at https://arxiv.org/abs/2204.05527. The current paper subsumes these results.
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lose on experimentation costs. Compared to best arm identification, we show that the

use of an optimal stopping time allows us to attain the same regret, exclusive of sampling

costs, with 40% fewer observations on average (under the least-favorable prior); this is

independent of model parameters such as sampling costs and outcome variances.

For the most part, this paper focuses on constant sampling costs (i.e., constant per

observation). This has been a standard assumption since the classic work of Wald (1947),

see also Arrow et al. (1949) and Fudenberg et al. (2018), among others. In fact, many

online marketplaces for running experiments, e.g., Amazon Mechanical Turk, charge a

fixed cost per query/observation. Note also that the costs may be indirect: for online

platforms like Google or Microsoft that routinely run thousands of A/B tests, these could

correspond to how much experimentation hurts user experience. Still, one may wonder

whether and how our results change under other cost functions and modeling choices,

e.g., when data is collected in batches, or, when we measure regret in terms of nonlinear

or quantile welfare. We asses this in Section 6. Almost all our results still go through

under these variations. We also identify a broader class of cost functions, nesting the

constant case, in which the form of the optimal decision stays the same.

1.1. Related literature. The question of when to stop sampling has a rich history in

economics and statistics. It was first studied by Wald (1947) and Arrow et al. (1949) with

the goal being hypothesis testing, specifically, optimizing the trade-off between type I and

type II errors, instead of welfare maximization. Still, one can place these results into the

present framework by imagining that the distributions of outcomes under both treatments

are known, but it is unknown which distribution corresponds to which treatment. This

paper generalizes these results by allowing the distributions to be unknown. For this

reason, we term the question studied here the generalized Wald problem.

Chernoff (1959) studied the sequential hypothesis testing problem under multiple hy-

potheses, using large deviation methods. The asymptotics there involve taking the sam-

pling costs to 0, even as there is a fixed reward gap between the treatments. More

recently, the stopping rules of Chernoff (1959) were incorporated into the δ-PAC (Prob-

ably Approximately Correct) algorithms devised by Garivier and Kaufmann (2016) and

Qin et al. (2017) for best arm identification with a fixed confidence. The aim in these

studies is to minimize the amount of time needed to attain a pre-specified probability,

1 − δ, of selecting the optimal arm. However, these algorithms do not directly minimize

a welfare criterion, and the constraint of pre-specifying a δ could be misplaced, if, e.g.,
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there is very little difference between the first and second best treatments. In fact, un-

der the least-favorable prior, our minimax decision rule mis-identifies the best treatment

about 23% of the time. Qin and Russo (2022) study the costly sampling problem under

fixed reward gap asymptotics using large deviation methods. The present paper differs in

using local asymptotics and in appealing to a minimax regret criterion. However, unlike

the papers cited above, we only study binary treatments.

A number of papers (Colton, 1963; Lai et al., 1980; Chernoff and Petkau, 1981) have

studied sequential trials in which there is a population of N units, and at each period, the

DM randomly selects two individuals from this population, and assigns them to the two

treatments. The DM is allowed to stop experimenting at any point and apply a single

treatment on the remainder of the population. The setup in these papers is intermediate

between our own and two-armed bandits: while the aim, as in here, is to minimize regret,

acquiring samples is not by itself expensive and the outcomes in the experimentation

phase matter for welfare. This literature also does not consider optimal sampling rules.

The paper is also closely related to the growing literature on information acquisition

and design, see, Hébert and Woodford (2017); Fudenberg et al. (2018); Morris and Strack

(2019); Liang et al. (2022), among others. Fudenberg et al. (2018) study the question of

optimal stopping when there are two treatments and the goal is to maximize Bayes welfare

(which is equivalent to minimizing Bayes regret) under normal priors and costly sampling.

While their approach relies on an exogenously specified sampling rule, Liang et al. (2022)

extend this line of inquiry by allowing for endogenous selection of the sampling rule. In

fact, for constant sampling costs, the setup in Liang et al. (2022) is similar to ours but

the welfare criterion is different: their framework adopts a Bayesian perspective with

normal priors. Although the Neyman allocation plays a key role in the optimal sampling

rules under both frameworks, the optimal stopping times have very different qualitative

and quantitative properties. A detailed comparison is provided in Section 3.2. These

differences in stopping times arise because the minimax regret criterion corresponds to

a least-favorable prior with a specific two-point support. Thus, our results highlight

the important role played by the prior in determining even the qualitative properties of

optimal decisions. This motivates the need for robust decision rules, and the minimax

regret criterion is one way to obtain them.

Our results also speak to the literature on drift-diffusion models (DDMs), which are

widely used in neuroscience and psychology to study choice processes (Luce et al., 1986;
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Ratcliff and McKoon, 2008; Fehr and Rangel, 2011). DDMs are based on the classic binary

state hypothesis testing problem of Wald (1947). Fudenberg et al. (2018) extend this

model to allow for continuous states, using Gaussian priors, and show that the resulting

optimal decision rules are very different, even qualitatively, from the predictions of DDM.

In this paper, we show that if the DM is ambiguity averse and uses the minimax regret

criterion, then the predictions of the DDM model are recovered even under continuous

states. In other words, decision making under ignorance can bring us back to DDM.

Finally, the results in this paper are unique in regards to all the above strands of

literature in showing that any discrete time parametric and non-parametric version of the

problem can be reduced to the diffusion limit under small cost asymptotics. Diffusion

asymptotics were introduced by Fan and Glynn (2021) and Kuang and Wager (2024) to

study the properties of Thompson sampling in bandit experiments. The techniques for

showing asymptotic equivalence to the limit experiment build on, and extend, previous

work on sequential experiments by Adusumilli (2021). Relative to that paper, the novelty

here is two-fold: first, we derive a sharp characterization of the minimax optimal decision

rule for the Wald problem. Second, we introduce ‘small cost asymptotics’ that may be

of independent interest in other, related problems where there is a ‘local-to-zero’ cost of

continuing an experiment.

2. Setup under incremental learning

Following Fudenberg et al. (2018) and Liang et al. (2022), we start by describing the

problem under a stylized setting where time is continuous and information arrives gradu-

ally in the form of Gaussian increments. In statistics and econometrics, this framework is

also known as diffusion asymptotics (Adusumilli, 2021; Fan and Glynn, 2021; Kuang and

Wager, 2024). The benefit of the continuous time analysis is that it enables us to provide

a sharp characterization of the minimax optimal decision rule; this is otherwise obscured

by the discrete nature of the observations in a standard analysis. Section 4 describes

how these asymptotics naturally arise under a limit of experiments perspective when we

employ small-cost asymptotics and a local-to-zero scaling for the treatment effect.

The setup is as follows. There are two treatments 0, 1 corresponding to unknown mean

rewards µ := (µ1, µ0) and known variances σ2
1, σ

2
0. It is without loss of generality to

take σ2
1, σ

2
0 to be known in the current setting, as they could otherwise be completely

determined in an instant from the quadratic variations of the signal processes x1(·) and

x0(·), defined below in (2.1). The aim of the decision maker (DM) is to determine which

6



treatment to implement on the population. To guide her choice, the DM conducts a

sequential experiment, while paying a flow cost c as long as the experiment is in progress.

At each time-point t, the DM samples a treatment according to the sampling rule πa(t) ≡

π(A = a|Ft), a ∈ {0, 1}, which specifies the probability of selecting treatment a given

some filtration Ft. The DM then keeps track of the signals, x1(t), x0(t) from the two

treatments, as well as the fraction of times, q1(t), q0(t) each treatment was sampled so

far:

dxa(t) = µaπa(t)dt+ σa

√
πa(t)dWa(t), (2.1)

dqa(t) = πa(t)dt. (2.2)

Here, W1(t),W0(t) are independent one-dimensional Wiener processes. The experiment

ends in accordance with an Ft-adapted stopping time, τ . At the conclusion of the ex-

periment, the DM chooses an Fτ measurable implementation rule, δ ∈ {0, 1}, specifying

which treatment to implement on the population. The DM’s decision thus consists of the

triple d := (π, τ, δ).

Denote s(t) = (x1(t), x0(t), q1(t), q0(t)) and take Ft ≡ σ{s(u);u ≤ t} to be the filtration

generated by the state variables s(·) until time t.4 Let Ed|µ[·] denote the expectation

under a decision rule d, given some value of µ. We evaluate various decision rules by the

maximum regret criterion, defined as

Vmax(d) = max
µ∈R×R

V (d,µ) , with

V (d,µ) := Ed|µ [max{µ1 − µ0, 0} − (µ1 − µ0)δ + cτ ] . (2.3)

To understand this expression, consider an oracle decision rule {τ = 0, δ = I{µ1 > µ0}},

which has full knowledge of µ. The oracle would achieve a realized welfare of max{µ1, µ0}.

In contrast, a given decision rule d generates a realized welfare of µ0 + (µ1 − µ0)δ − cτ .

The difference between these two welfares, max{µ1 − µ0, 0} − (µ1 − µ0)δ+ cτ , is referred

to as regret. The quantity V (d,µ) therefore represents the ‘frequentist regret’, i.e., the

expected regret of d given µ. The decision rule, d∗, that minimizes Vmax(d) is known as

the minimax-regret optimal decision rule.

Minimax regret is a commonly used decision theoretic criterion when the DM faces

ambiguity over the values of µ. In contrast, a Bayesian DM would place some prior p0

4As in Liang et al. (2022), we restrict attention to sampling rules πa for which a weak solution to the
functional SDEs (2.1), (2.2) exists. This is true if either πa : {s(z) : z ≤ t} → [0, 1] is continuous, see
Karatzas and Shreve (2012, Section 5.4), or, if it is any deterministic function of t.
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over µ and aim to minimize Bayes regret, defined as

V (d, p0) :=
∫
V (d,µ) dp0(µ). (2.4)

We can relate max-regret to Bayes regret as Vmax(d) = supp0∈P V (d, p0), where P denotes

the set of all possible probability distributions over µ. This suggests a multiple prior

interpretation for the minimax regret criterion. As we show in Section 3, minimax regret

can be viewed as the value of a zero-sum game played between nature and the DM, where

nature chooses the prior p0 and the DM chooses the decision rule d. The minimax-regret

optimal rule, d∗, is then Bayes optimal under nature’s regret-maximizing choice of the

prior, also known as the least-favorable prior.

The decision rules d are dynamic since they are history dependent. But as stated,

the max-regret criterion Vmax(d) is ‘static’ since it ranks decision rules only at t = 0;

it implicitly assumes the DM can fully commit to the course of action prescribed by d.

Nonetheless, the criterion admits a dynamically consistent extension, Vmax(d; t), which

allows for a consistent conditional ranking of d given any history Ft. This extension is

possible because the space of priors P is unrestricted and therefore ‘rectangular’ in the

sense of Epstein and Schneider (2003). As in Epstein and Schneider (2003), rectangularity

implies existence of a Vmax(d; t) with a recursive structure, such that Vmax(d; 0) = Vmax(d),

Vmax(d; τ) = sup
p0∈P

Ep0 [max{µ1 − µ0, 0} − (µ1 − µ0)δ| Fτ ] , and

Vmax(d; t) = sup
p0∈P

Ep0 [c · (τ ∧ t′ − t) + Vmax (d; t′)| Ft] ∀ t′ > t,

where Ep0 [ ·| Ft] is the expectation with respect to the posterior of p0 given Ft. Thus, d∗

is dynamically optimal under Vmax(d; t), the dynamically consistent extension of Vmax(d).

In any event, dynamic consistency is arguably less relevant in the context of the A/B

testing examples that are the focus of this paper. In these examples, it is quite reasonable

to suppose that the DM is able to commit to the chosen decision rule. For instance,

in clinical trials, regulatory agencies explicitly require and enforce adherence to a pre-

specified experimental strategy, see, e.g., FDA’s guidance for adaptive experiments (US

Food and Drug Admin., 2019, Section III.C).

2.1. Best arm identification. The best arm identification problem is a special case of

the generalized Wald problem where the stopping time is fixed beforehand and set to

τ = 1 without loss of generality. This is equivalent to fixing the number of observations
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before the start of the experiment; in fact, we show in Section 4 that a unit time interval

corresponds to a pre-specified number of observations, n, in a discrete time analysis.

Thus, decisions now consist only of d = (π, δ), but π is still allowed to be adaptive. If

we further restrict π to be fixed (i.e., non-adaptive), we get back to the typical setting of

Randomized Control Trials (RCTs).

Despite these differences, we show in Section 3 that the minimax-regret optimal sam-

pling and implementation rules are the same in all cases; the optimal sampling rule is

the Neyman allocation π∗
a(t) = σa/(σ1 + σ0), while the optimal implementation rule is

to choose the treatment with the higher average outcomes. Somewhat surprisingly, then,

there is no difference in the optimal strategy between best arm identification and standard

RCTs (under minimax regret). The presence of τ , however, makes the generalized Wald

problem fundamentally different from the other two. We provide a relative comparison

of the benefit of optimal stopping in Section 3.3.

2.2. Bayesian formulation. It is convenient to first describe minimal regret under the

Bayesian approach, given a prior p0. As noted earlier, we can characterize minimax regret

as Bayes regret under a least-favorable prior.

Let p(µ|s) denote the posterior density of µ given the current state s = (x1, x0, q1, q0) ∈

R4. By standard results in stochastic filtering, (here, and in what follows, ∝ denotes

equality up to a normalization constant)

p(µ|s) ∝ p(s|µ) · p0(µ)

∝ pq1(x1|µ1) · pq0(x0|µ0) · p0(µ); pqa(·|µa) := N (·|qaµa, qaσ
2
a)

where N (·|µ, σ2) is the normal density with mean µ and variance σ2, and the second

proportionality follows from the fact W1(·),W0(·) are independent Wiener processes.

Define V ∗(s; p0) as the minimal expected Bayes regret given state s, i.e.,

V ∗(s; p0) = inf
d∈D

Eµ|s [V (d,µ)] ,

where D is the set of all decision rules that satisfy the measurability conditions set out pre-

viously. The minimal (ex-ante) Bayes regret, following (2.4), is then related to V ∗(·; p0)

as infd∈D V (d, p0) = V ∗(s0; p0), where s0 := (0, 0, 0, 0) represents the initial state. In

principle, one could characterize V ∗(·; p0) as a Hamilton-Jacobi-Bellman Variational In-

equality (HJB-VI; Øksendal, 2003, Chapter 10), compute it numerically and characterize

the optimal Bayes decision rules. However, this can be computationally expensive, and
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moreover, does not provide a closed form characterization of the optimal decisions. An-

alytical expressions can be obtained under two types of priors:

2.2.1. Gaussian priors. In this case, the posterior is also Gaussian and its mean and

variance can be computed analytically. Liang et al. (2022) derive the optimal decision

rule in this setting. See Section 3.2 for a comparison with our proposal. Additional details

are provided in Appendix H.

2.2.2. Two-point priors. Two point priors are closely related to hypothesis testing and

the sequential likelihood ratio procedures of Wald (1947) and Arrow et al. (1949). More

importantly for us, the least-favorable prior for minimax regret, described in the next

section, has a two point support.

Suppose the prior over µ ≡ (µ1, µ0) is supported on the two points (ā, b̄), (a, b). Let

λ = 1 represent the event µ = (ā, b̄) and λ = 0 the event µ = (a, b). Also, let (Ω,F ,Pπ)

denote the relevant probability space given a (possibly) randomized policy π, where F :=

∪∞
t=1Ft ∪σ(λ) is the σ-field generated by λ and the filtration {Ft}t defined previously, and

Pπ is the joint probability distribution over µ and the sample paths of s(t) under π. Set

P 0
π , P

1
π to be the probability measures P 0

π (A) := Pπ(A|λ = 0) and P 1
π (A) := Pπ(A|λ = 1)

for any A ∈ F .

Clearly, the likelihood ratio process φπ(t) := EP 0
π

[
dP 1

π

dP 0
π

∣∣∣Ft

]
is a sufficient statistic for

λ.5 An application of the Girsanov theorem, noting that W1(·),W0(·) are independent of

each other, gives (see also Shiryaev, 2007, Section 4.2.1)

lnφπ(t) = (ā− a)
σ2

1
x1(t) + (b̄− b)

σ2
0

x0(t) − (ā2 − a2)
2σ2

1
q1(t) − (b̄2 − b2)

2σ2
0

q0(t). (2.5)

Let m0 denote the prior probability that λ = 1. Additionally, given a sampling rule π, let

mπ(t) = P(λ = 1|Ft) denote the belief process describing the posterior probability that

λ = 1. Following Shiryaev (2007, Section 4.2.1), mπ(t) can be related to φπ(t) as

mπ(t) = m0φ
π(t)

(1 −m0) +m0φπ(t) . (2.6)

The Bayes optimal implementation rule at the end of the experiment is

δπ,τ = I
{
āmπ(τ) + a(1 −mπ(τ)) ≥ b̄mπ(τ) + b(1 −mπ(τ))

}
= I

{
lnφπ(τ) ≥ ln (b− a)(1 −m0)

(ā− b̄)m0

}
. (2.7)

5Note that dP 1
π

dP 0
π

is a random variable, being the Radon-Nikodym derivative of P 1
π with respect to P 0

π .
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The superscript on δ highlights that the above implementation rule is conditional on a

given choice of (π, τ). Relatedly, the Bayes regret at the implementation phase of the

experiment (from employing the optimal implementation rule) is

ϖπ(τ) := EPπ [max{µ1 − µ0, 0} − (µ1 − µ0)δπ,τ | Fτ ]

= EPπ [max{µ1 − µ0, 0}| Fτ ] − EPπ [µ1 − µ0| Fτ ] δπ,τ

= min
{
(ā− b̄)mπ(τ), (b− a)(1 −mπ(τ))

}
. (2.8)

Hence, for a given sampling rule π, the Bayes optimal stopping time τπ, can be obtained

as the solution to the optimal stopping problem

τπ = inf
τ∈T

Eπ [ϖπ(τ) + cτ ] , (2.9)

where T is the set of all Ft measurable stopping times, and Eπ[·] denotes the expectation

under the sampling rule π.

3. Minimax regret and optimal decision rules

The minimax regret value can be written as

inf
d∈D

Vmax(d) = inf
d∈D

sup
p0∈P

V (d, p0). (3.1)

Following Wald (1945), we can characterize minimax regret as the value of a zero-sum

game played between nature and the DM. Nature’s action involves choosing a prior p0 ∈ P

over µ, while the DM chooses the decision rule d. The equilibrium action of nature is

termed the least-favorable prior, and that of the DM, the minimax decision rule. Note

that nature’s action in the game is static, as it only chooses a prior p0 at the beginning

of the experiment. In contrast, the DM selects a dynamic decision rule d that, to be

a best response to nature’s choice, must be Bayes optimal with respect to that choice

of prior. Consequently, the minimax-regret optimal rule d∗ must be consistent with

Bayesian updating of the least-favorable prior throughout the experiment.

The following is the main result of this section: Let γ∗
0 ≈ 0.536357, ∆∗

0 ≈ 2.19613 denote

universal constants derived from solving a univariate minimax problem (3.9) described

later in this section. Also, define η :=
(

2c
σ1+σ0

)1/3
, γ∗ = γ∗

0/η and ∆∗ = η∆∗
0.

Theorem 1. The zero-sum two player game (3.1) has a Nash equilibrium with a unique

minimax-regret value. The minimax-regret optimal decision rule is d∗ := (π∗, τ ∗, δ∗),
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where π∗
a(t) = σa/(σ1 + σ0) for a ∈ {0, 1},

τ ∗ = inf
{
t :
∣∣∣∣∣x1(t)
σ1

− x0(t)
σ0

∣∣∣∣∣ ≥ γ∗
}
,

and δ∗ = I
{

x1(τ∗)
σ1

− x0(τ∗)
σ0

≥ 0
}
. Furthermore, the least-favorable prior is a symmetric

two-point distribution supported on (σ1∆∗/2,−σ0∆∗/2), (−σ1∆∗/2, σ0∆∗/2).

Theorem 1 makes no claim as to the uniqueness of the Nash equilibrium.6 Even if mul-

tiple equilibria were to exist, however, the value of the game V ∗ = infd∈D supp0∈P V (d, p0)

would be unique, and d∗ would still be minimax-regret optimal.

The optimal strategies under best arm identification can be derived in the same manner

as Theorem 1, but the proof is simpler as it does not involve a stopping rule. Let Φ(·)

denote the CDF of the standard normal distribution.

Corollary 1. The minimax-regret optimal decision rule for best arm identification is

d∗
BAI := (π∗, δ∗), where π∗, δ∗ are defined in Theorem 1. The corresponding least-favorable

prior is a symmetric two-point distribution supported on (σ1∆̄∗
0/2,−σ0∆̄∗

0/2), (−σ1∆̄∗
0/2, σ0∆̄∗

0/2),

where ∆̄∗
0 := 2 arg maxδ δΦ(−δ).

3.1. Proof sketch of Theorem 1. The main challenge with analyzing the game (3.1) is

that the action spaces P ,D of both nature and the DM are infinite dimensional. There-

fore, to prove Theorem 1, we first restrict the action spaces of both players and then show

that a Nash equilibrium exists within this restricted class.

For nature, we employ the restricted action space, Prest := {p∆ : ∆ ∈ R+}, consisting of

all ‘indifference priors’ indexed by ∆ ∈ R. Specifically, each ‘indifference prior’ p∆ is a two-

point prior supported on (σ1∆/2,−σ0∆/2), (−σ1∆/2, σ0∆/2), with a prior probability of

0.5 at each support point. As for the DM, we employ the restricted action space

Drest :=
{
d̃γ = (π∗, τγ, δ

τγ ) : γ ∈ R+
}
,

where

τγ := inf
{
t :
∣∣∣∣∣x1(t)
σ1

− x0(t)
σ0

∣∣∣∣∣ ≥ γ

}
, and (3.2)

δτγ := I
{
x1(τγ)
σ1

− x0(τγ)
σ0

≥ 0
}
. (3.3)

6In fact, this would depend on the topology defined over D and P.

12



We demonstrate that for each p∆ ∈ Prest, there exists a unique γ ∈ R+ such that d̃γ is

an unconstrained best response of the DM to p∆. In other words, d̃γ is a best response

within the unrestricted class D, not just within Drest. Similarly, for each d̃γ ∈ Drest, there

exists a ∆ ∈ R+ such that p∆ is an unconstrained best response of nature to d̃γ. These

results imply that any Nash equilibrium within the restricted action space Prest × Drest

would also be a Nash equilibrium within the unrestricted action space P × D. We then

formally demonstrate the existence of a Nash equilibrium in the restricted setting and

characterize the equilibrium set of actions.

We elaborate on these steps below:

The DM’s response to p∆. The term ‘indifference priors’ indicates that these priors make

the DM indifferent between any sampling rule π. The intuitive explanation is as fol-

lows: Let λ = 1 represent the event µ = (σ1∆/2,−σ0∆/2) and λ = 0 the event

µ = (−σ1∆/2, σ0∆/2). These support points are configured in such a way that both

treatments provide equal information about λ, making the choice of treatment irrelevant.

To illustrate, assume σ1 = σ0 = 1. If the DM samples arm 1 for a period of time δt,

she would observe the signal process x1(t) = (2λ − 1)∆
2 t + W1(t) over that time-period,

with a drift of either ∆/2 or −∆/2 depending on whether λ = 1 or λ = 0. Alterna-

tively, sampling arm 0 yields x0(t) = −(2λ − 1)∆
2 t + W0(t), with an exactly opposite

drift. Since W1(·),W0(·) are independent Wiener processes, both sampling strategies are

equally informative about λ in the Blackwell sense.

We now describe the formal argument. For both support points of p∆, (2.5) implies

lnφπ(t) =
(
x1(t)
σ1

− x0(t)
σ0

)
· ∆. (3.4)

Suppose λ = 1. By (2.1) and (2.2)

dx1(t)
σ1

− dx0(t)
σ0

= ∆
2 dt+

√
π1(t)dW1(t) −

√
π0(t)dW0(t)

= ∆
2 dt+ dW̃ (t), (3.5)

where W̃ (·), defined as dW̃ (t) :=
√
π1(t)dW1(t) −

√
π0(t)dW0(t), is a one dimensional

Wiener process, being a linear combination of two independent Wiener processes with

π1(t) + π0(t) = 1. Plugging the above into (3.4) gives

d lnφπ(t) = ∆2

2 dt+ ∆dW̃ (t).

13



In a similar manner, we can show under λ = 0 that d lnφπ(t) = −∆2

2 dt+ ∆dW̃ (t). Thus,

the evolution of the log-likelihood ratio process, lnφπ(t), can be decomposed into two

parts: a drift term (2λ − 1)∆2

2 dt that depends on the state of the world λ ∈ {0, 1}, and

noise ∆dW̃ (t). Different sampling rules, π, induce the same drift and leave unchanged

the distribution of noise, W̃ (·). Therefore, the choice of π does not affect the sample-path

distribution of φπ(·), and consequently, has no bearing on the sample-path distribution

of the belief process mπ(·).

Crucially, this invariance to the choice of π holds at every time point during the exper-

iment, even as p∆ is revised through Bayesian updating. The key to this invariance lies

in the fact that Bayesian updating does not alter the support points of the prior, and it

is solely these support points, together with π, that govern the evolution of φπ(·) under

Wiener process noise. Now, the precise form of the support points of p∆ ensures the drift

of φπ(t) is independent of π. Then, the linearity property of Wiener processes implies

that a linear combination of such processes remains a Wiener process, thereby preserving

the independence of the noise process from the choice of π as well.

As the distributions of φπ(·),mπ(·) do not depend on π, the Bayes optimal stopping

time in (2.9) is also independent of π for indifference priors (standard results in optimal

stopping, see e.g., Øksendal, 2003, Chapter 10, imply that the optimal stopping time in

(2.9) is a function only of mπ(t) which is now independent of π). In fact, it has the same

form as the optimal stopping time in the Bayesian hypothesis testing problem of Arrow

et al. (1949), analyzed in continuous time by Shiryaev (2007, Section 4.2.1) and Morris

and Strack (2019). An adaptation of their results (see, Lemma 1 in Appendix A) shows

that the Bayes optimal stopping time corresponding to p∆ is

τγ(∆) = inf
{
t :
∣∣∣∣∣x1(t)
σ1

− x0(t)
σ0

∣∣∣∣∣ ≥ γ(∆)
}
, (3.6)

where γ(∆) is defined in Lemma 1. By (2.7) and (3.4), the corresponding Bayes optimal

implementation rule is seen to be δτγ(∆) , as defined in (3.3). Hence, the decision rule d̃γ(∆)

is a best response of the DM to nature’s choice of p∆.

Nature’s response to d̃γ. Lemma 2 in Appendix A shows that the frequentist regret

V
(
d̃γ,µ

)
, given some µ = (µ1, µ0), depends only on |µ1 −µ0|. To understand this result,

observe that

V
(
d̃γ,µ

)
= max{µ1 − µ0, 0} − (µ1 − µ0)Ed|µ [δτγ ] + cEd|µ [τγ] . (3.7)
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Clearly, τγ, δ
τγ depend on the data only through the stochastic process σ−1

1 x1(·)−σ−1
0 x0(·).

Under the Neyman allocation, (2.1) and (2.2) imply

x1(t)
σ1

− x0(t)
σ0

= µ1 − µ0

σ1 + σ0
t+ W̃ (t) (3.8)

for any µ ∈ R2, where W̃ (·) :=
√

σ1
σ1+σ0

W1(·)−
√

σ0
σ1+σ0

W0(·) is a standard one-dimensional

Wiener process. Consequently, the distributions of τγ, δ
τγ depend on µ only through µ1 −

µ0. This in turn implies, based on (3.7), that V
(
d̃γ,µ

)
depends on µ only through µ1−µ0.

This dependence can be further reduced to |µ1 − µ0| by symmetry since interchanging

the treatment labels 0, 1 would not affect the frequentist regret of d̃γ.

Since µ affects V
(
d̃γ,µ

)
only through |µ1 − µ0|, it is maximized at |µ1 − µ2| = (σ1 +

σ0)∆(γ)/2, where ∆(γ) is some function of γ. Thus, the best response of nature to d̃γ is

to pick any prior that is supported on {µ : |µ1 − µ0| = (σ1 + σ0)∆(γ)/2}. Therefore, the

two-point prior p∆(γ) is a best response to d̃γ.

The use of Neyman allocation is essential for the above conclusion. With a different

sampling rule, the distributions of τγ, δ
τγ would depend not only on µ1 − µ0, but also

on the individual levels of µ1, µ0. In such cases, nature could drive the max-regret of

the corresponding decision rule to ∞ through an adversarial choice of µ, as we show in

Appendix B. This explains why only the Neyman allocation is minimax optimal, even

though the DM is indifferent to any sampling rule under p∆: it is needed to ensure

nature’s choice of p∆ is supported as a best response to d̃γ.

Nash equilibrium. The above observations imply that the overall Nash equilibrium to

(3.1) is the same as the Nash equilibrium in the restricted sub-problem where nature

chooses an indifference prior, p∆, indexed by ∆ ∈ R+, and the DM chooses a decision

rule d̃γ, indexed by γ ∈ R+. Thus, the action spaces of nature and the DM in this

sub-problem are scalar. Lemma 3 in Appendix A formally demonstrates existence of a

Nash equilibrium in the sub-problem using Sion’s minimax theorem (Sion, 1958). The

equilibrium values of ∆, γ can be computed numerically by writing down the relevant

first order conditions for a Nash equilibrium (see, also, Figure A.1 for the best response

functions). The universal constants, γ∗
0 ,∆∗

0 used in Theorem 1 are derived in this manner.

Specifically, Lemma 3 demonstrates that these constants solve the following minimax

problem, which characterizes the Nash equilibrium in the restricted sub-problem when

η = 1:

min
γ∈R+

max
∆∈R+

{
∆ 1 − e−∆γ

e∆γ − e−∆γ
+ 2γ

∆
e∆γ + e−∆γ − 2
e∆γ − e−∆γ

}
. (3.9)
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3.2. Discussion.

3.2.1. Sampling rule. Perhaps the most striking aspect of the sampling rule is that it is

just the Neyman allocation. This rule is non-adaptive (i.e., it is history independent), and

is also independent of sampling costs. In fact, Corollary 1 shows that the sampling and

implementation rules are identical to those used in the best arm identification problem.

The Neyman allocation is well known in the RCT literature for being the sampling

rule that minimizes the estimation variance of the treatment effect µ1 − µ0. Armstrong

(2022) shows that it retains its optimality for estimating µ1 − µ0 even when adaptive

sampling strategies are allowed. While Armstrong’s (2022) result does not apply to best

arm identification, Corollary 1 confirms that Neyman allocation is optimal in this context

as well. Hence, practitioners should continue using the randomization designs employed

in standard (i.e., non-sequential) experiments, even when adaptivity is allowed.

By way of comparison, the optimal sampling rule under Gaussian priors is also non-

adaptive, but it varies deterministically with time (Liang et al., 2022). In fact, after a

set time point t∗ that depends on (σ1, σ0) and the prior variance, it too becomes equal to

the Neyman allocation; see Appendix H for a detailed description. There are likely priors

for which the Bayes optimal sampling rule is adaptive, but analyzing optimal decision

rules under general classes of priors (beyond Gaussian or two-point priors) presents a

challenging stochastic-filtering problem. As such, it appears difficult to provide any

general claims on what priors lead to adaptive sampling.

3.2.2. Stopping time. The stopping time τ ∗ is adaptive but has a simple form: the DM

ends the experiment when ρ(t) := σ−1
1 x1(t) − σ−1

0 x0(t) exceeds (σ1+σ0
2c

)1/3γ∗
0 in absolute

value. The threshold is decreasing in c and increasing in σ1 +σ0. Let x̄a(t) := xa(t)/qa(t)

denote the sample average of outcomes from treatment a at time t. Since qa(t) = σat/(σ1+

σ0) under π∗, we can rewrite the optimal stopping rule as

τ ∗ = inf {t : t |x̄1(t) − x̄0(t)| ≥ (σ1 + σ0)γ∗} ,

meaning the experiment is stopped when the difference in average outcomes multiplied

by the duration t exceeds (σ1 + σ0)γ∗. Furthermore, from the definition of τ ∗ and (3.8),

we can infer that earlier stopping is indicative of larger reward gaps µ1 − µ0, with the

average length of the experiment being longest when µ1 − µ0 = 0.

In contrast, Fudenberg et al. (2018) show that when σ1 = σ0, the Bayes optimal

stopping time under the independent Gaussian prior µ ∼ N (0, ς) × N (0, ς) has the form
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τBayes = I {|ρ(t)| ≥ b∗(t; c, σ1, ς)}, where the threshold b∗(t; ·) is now time-varying. The

following intuition, adapted from Fudenberg et al. (2018), helps explain the difference:

Suppose that ρ(t) ≈ 0 for some large t. Under the Gaussian prior, this likely indicates

that µ1 − µ0 is close to 0, suggesting no significant difference between the treatments,

so the DM should terminate the experiment straightaway. Conversely, under the least-

favorable prior p∆∗ , which has a two-point support, ρ(t) ≈ 0 would be interpreted as

noise, so the DM should proceed henceforth as if starting the experiment from scratch.

Thus, the properties of the stopping time are very different depending on the prior. The

above intuition also suggests that the relation between µ1 −µ0 and stopping times is more

complicated under Gaussian priors, and not monotone as under minimax regret.

The stopping time, τ ∗, induces a specific probability of mis-identification of the optimal

treatment under the least-favorable prior. By Lemmas 2 and 3, this probability is

α∗ = 1 − e−∆∗γ∗

e∆∗γ∗ − e−∆∗γ∗ = 1 − e−∆∗
0γ∗

0

e∆∗
0γ∗

0 − e−∆∗
0γ∗

0
≈ 0.235. (3.10)

Interestingly, α∗ is independent of the model parameters c, σ1, σ0. This is because the

least-favorable prior adjusts the reward gap in response to these quantities.

Another remarkable property, following from Fudenberg et al. (2018, Theorem 1), is

that the probability of mis-identification is independent of the stopping time for any given

value of µ, i.e., P(δ∗ = 1|τ ∗,µ = b) = P(δ∗ = 1|µ = b) for any b ∈ R2. This is again

different from the setting with Gaussian priors, where earlier stopping is indicative of a

higher probability of selecting the best treatment.

3.3. Benefit of adaptive experimentation. In both best arm identification and stan-

dard RCTs, the number of units of experimentation is specified beforehand. As we have

seen previously, the Neyman allocation is minimax optimal under both adaptive and non-

adaptive experiments. The benefit of the decision rule, d∗, however, is that it enables

one to stop the experiment early, thus saving on experimental costs. To quantify this

benefit, fix some values of σ1, σ0, c, and suppose that nature chooses the least-favorable

prior, p∆∗ , for the generalized Wald problem. Note that p∆∗ is in general different from

the least-favorable prior for the best arm identification problem.7

Let

R∗ :=
∫

Ed∗|µ [max{µ1 − µ0, 0} − (µ1 − µ0)δ] dp∆∗

7However, the two coincide if the parameter values are such that η :=
(

2c
σ1+σ0

)1/3
= ∆̄∗

0/∆∗
0 ≈ 0.484,

where ∆∗
0, ∆̄∗

0 are universal constants defined in the contexts of Theorem 1 and Corollary 1.
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denote the Bayes regret, under p∆∗ , of the minimax decision rule d∗ net of sampling

costs. In fact, by symmetry, the above is also the frequentist regret of d∗ under both

the support points of p∆∗ . Now, let TR∗ denote the duration of time required in a non-

adaptive experiment to achieve the same Bayes regret R∗ (also under the least-favorable

prior and net of sampling costs). Then, making use of some results from Shiryaev (2007,

Section 4.2.5), we show in Appendix B.2 that

E[τ ∗]
TR∗

= 1 − 2α∗

2 (Φ−1(1 − α∗))2 ln 1 − α∗

α∗ ≈ 0.6. (3.11)

In other words, the use of an adaptive stopping time enables us to attain the same regret

with 40% fewer observations on average. Interestingly, the above result is independent of

σ1, σ0, c, though the values of E[τ ∗] and TR∗ do depend on these quantities (it is only the

ratio that is constant). Admittedly, (3.11) does not quantify the welfare gain from using

an adaptive experiment - this will depend on the sampling costs - but it is nevertheless

useful as an informal measure of how much the amount of experimentation can be reduced.

4. Parametric regimes and small cost asymptotics

We now turn to the analysis of parametric models in discrete time. As before, the DM is

tasked with selecting a treatment for implementation across a population. To this end, the

DM experiments sequentially in periods j = 1, 2, . . . after paying an ‘effective sampling

cost’ C per period. Let 1/n denote the time interval between successive time periods.

To analyze asymptotic behavior in this context, we introduce small cost asymptotics,

wherein C = c/n3/2 for some c ∈ (0,∞), and n → ∞.

Are small cost asymptotics realistic? We contend they are, as C is not the actual

cost of experimentation, but rather characterizes the tradeoff between these costs and

the benefits from full-scale implementation following the experiment. Indeed, one way

to motivate this asymptotic regime is to imagine there are n3/2 population units in the

implementation phase, so the benefit of applying treatment a is n3/2µa, but we divide

by n3/2 throughout. The actual cost of sampling an additional unit is c, which becomes

c/n3/2 after the division. Moreover, time t is measured in units of n. This framework

aligns with the practical observation that sampling costs are relatively small compared

to population size, as seen in both online platforms (Deng et al., 2013) and clinical trials.

For example, in Phase 3 clinical trials, the per-unit cost of treatment is relatively

high - Moore et al. (2018) estimate the median cost per patient to be around 41,000$.
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However, the potential welfare implications for the population are even more substantial,

as the decisions from these trials impact millions of people and firms can expect to earn

billions of dollars from successful blockbuster drugs. The effective marginal cost of each

observation, obtained by dividing the monetary cost by the population size, is therefore

quite small and falls well within our asymptotic framework. More generally, our scaling

suggests that if the population size is n3/2, one should aim to experiment on a sample size

of the order n to achieve optimal welfare. This naturally leads to small cost asymptotics.

As with any asymptotic regime, small-cost asymptotics only provide an approximation

to the finite sample properties of decision rules (unless the outcomes are truly Gaussian,

in which case they would be exact). The actual finite sample performance needs to be

assessed using simulations. Nonetheless, asymptotic analysis offers a valuable benchmark:

while there may exist decision rules that outperform our proposal in finite samples, it

would be difficult to justify using one that is asymptotically inefficient.

4.1. Setup in parametric regimes. In each period, the DM assigns a treatment to a

single unit of observation according to some sampling rule πj(·). The treatment assign-

ment is a random draw Aj ∼ Bernoulli(πj). This results in an outcome Y (a) ∼ P
(a)
θ , with

P
(a)
θ denoting the population distribution of outcomes under treatment a. In this section,

we assume that this distribution is known up to some unknown θ(a) ∈ Rd. It is without

loss of generality to assume Y (1), Y (0) are mutually independent (conditional on θ(1), θ(0))

as we only ever observe the outcomes from one treatment anyway. After observing the

outcome, the DM can decide either to stop sampling, or call up the next unit. At the

end of the experiment, the DM prescribes a treatment to apply on the population.

We use the ‘stack-of-rewards-representation’ for the outcomes from each arm (Latti-

more and Szepesvári, 2020, Section 4.6). Specifically, Y (a)
i denotes the outcome for i-th

data point corresponding to treatment a. Also, ynq := {Y (a)
i }⌊nq⌋

i=1 denotes the sequence

of outcomes after ⌊nq⌋ observations from treatment a. We can imagine that prior to the

experiment, nature draws an infinite stack of outcomes, y(a) := {Y (a)
i }∞

i=1, corresponding

to each treatment a, and at each period j, if Aj = a, the DM observes the outcome at

the top of the stack (this outcome is then removed from the stack corresponding to that

treatment).

Recall that t is the number of periods elapsed divided by n. Let

qa(t) := 1
n

⌊nt⌋∑
j=1

I(Aj = a),
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and take Ft to be the σ-algebra generated by

ξt :=
{
{Aj}⌊nt⌋

j=1 , {Y
(1)

i }⌊nq1(t)⌋
i=1 , {Y (0)

i }⌊nq0(t)⌋
i=1

}
, (4.1)

the set of all actions and rewards until period nt. The sequence of σ-algebras, {Ft}t∈Tn ,

where Tn := {1/n, 2/n, . . . }, constitutes a filtration. We require πnt(·) to be Ft−1/n

measurable, the stopping time, τ , to be Ft−1/n measurable, and the implementation rule,

δ, to be Fτ measurable. The set of all decision rules d ≡ ({πnt}t∈Tn , τ, δ) satisfying these

requirements is denoted by Dn. As unbounded stopping times pose technical challenges,

we generally work with Dn,T ≡ {d ∈ Dn : τ ≤ T a.s}, the set of all decision rules with

stopping times bounded by some arbitrarily large, but finite, T .

The mean outcomes under a parameter θ are denoted by µa(θ) := E
P

(a)
θ

[Y (a)
i ]. Following

Hirano and Porter (2009), for each a ∈ {0, 1}, we consider local perturbations of the form

{θ(a)
0 +ha/

√
n;ha ∈ Rd}, with ha unknown, around a reference parameter θ(a)

0 . As in that

paper, θ(a)
0 is chosen such that µ1(θ(1)

0 ) = µ0(θ(0)
0 ) = 0; the last equality, which sets the

quantities to 0, is not necessary and is simply a convenient re-centering. This choice of θ(a)
0

defines the hardest instance of the generalized Wald problem. When µ1(θ(1)
0 ) ̸= µ0(θ(0)

0 ),

determining the best treatment is trivial under large n, and many decision rules, including

the one we propose here (in Section 4.4), would achieve zero asymptotic regret.

Let P (a)
h := P

(a)
θ

(a)
0 +h/

√
n

and take E(a)
h [·] to be its corresponding expectation. We as-

sume P (a)
θ is differentiable in quadratic mean around θ(a)

0 with score functions ψa(Yi) and

information matrices Ia := E(a)
0 [ψaψ

⊺
a]. For each h ∈ Rd, denote

µn,a(h) := µa(θ(a)
0 + h/

√
n) ≈ µ̇⊺

ah/
√
n,

where µ̇a := ∇θµa(θ(a)
0 ). To reduce some notational overhead, we set θ(1)

0 = θ
(0)
0 = θ0, and

also suppose that µn,a(h) = −µn,a(−h) for all h. The latter is always true asymptotically.

Both simplifications can be easily dispensed with, at the expense of some additional

notation: we emphasize that our results do not fundamentally require θ(1)
0 , θ

(0)
0 to be the

same or even have the same dimension.

4.2. Bayes and minimax regret under fixed n. Let P (a)
n,h denote the joint probability

over y(a)
nT :=

{
Y

(a)
1 , . . . , Y

(a)
nT

}
- the largest possible (under τ ≤ T ) iid sequence of outcomes

that can be observed from treatment a - when Y (a) ∼ P
(a)
h . Define h := (h1, h0), take

Pn,h to be the joint probability P
(1)
n,h1 × P

(0)
n,h0 , and En,h[·] its corresponding expectation.
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The frequentist regret of decision rule d is defined as

Vn(d,h) = Vn (d, (µn,1(h1), µn,0(h0)))

:=
√
nEn,h

[
max {µn,1(h1) − µn,0(h0), 0} − (µn,1(h1) − µn,0(h0)) δ + c

n3/2nτ
]

=
√
nEn,h [max {µn,1(h1) − µn,0(h0), 0} − (µn,1(h1) − µn,0(h0)) δ] + cEn,h[τ ],

where the multiplication by
√
n in the second line of the above equation is a normalization

ensuring Vn(d,h) converges to a non-trivial quantity.

Let ν denote a dominating measure over {Pθ : θ ∈ Θ}, and define pθ := dPθ/dν.

Also, take M0 to be some prior over h, and m0 its density with respect to some other

dominating measure ν1. By Adusumilli (2021), the posterior density (wrt ν1), pn(·|Ft),

of h depends only on y(a)
nqa(t) = {Y (a)

i }⌊nqa(t)⌋
i=1 for a ∈ {0, 1}. Hence,

pn(h|Ft) = pn

(
h|y(1)

nq1(t),y
(0)
nq0(t)

)
∝


⌊nq1(t)⌋∏

i=1
p

(1)
θ0+h1/

√
n(Y (1)

i )




⌊nq0(t)⌋∏
i=1

p
(0)
θ0+h0/

√
n(Y (0)

i )

m0(h). (4.2)

The fixed n Bayes regret of a decision d is given by Vn(d,m0) :=
∫
Vn(d,h)dm0(h).

Following definition (4.1), let ξτ denote the set of all actions and rewards generated

over the course of the experiment. From the form of Vn(d,h), it is clear that the Bayes

optimal implementation rule is δ∗(ξτ ) = I {µn,1(ξτ ) ≥ µn,0(ξτ )}, and the resulting Bayes

regret at the terminal state is

ϖn(ξτ ) := µmax
n (ξτ ) − max {µn,1(ξτ ), µn,0(ξτ )} , (4.3)

where µn,a(ξτ ) := Eh|ξτ [µn,a(ha)] and µmax
n (ξτ ) := Eh|ξτ [max{µn,1(h1), µn,0(h0)}]. We can

thus associate each combination, (π, τ), of sampling rules and stopping times with the

distribution Pπ,τ that they induce over (ϖn(ξτ ), τ). Thus,

Vn (d,m0) = Eπ,τ

[√
nϖn(ξτ ) + cτ

]
.

For any given T < ∞, the minimal Bayes regret in the fixed n setting is therefore

V ∗
n,T (m0) = inf

d∈Dn,T

Eπ,τ

[√
nϖn(ξτ ) + cτ

]
.

While our interest is in minimax regret, V ∗
n,T := infd∈Dn,T

suph Vn(d,h), the minimal

Bayes regret is a useful theoretical device as it provides a lower bound, V ∗
n,T ≥ V ∗

n,T (m0)

for any prior m0.
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4.3. Lower bound on minimax regret. We impose the following assumptions (here,

and in what follows, | · | denotes the Euclidean norm):

Assumption 1. (i) The class {P (a)
θ ; θ ∈ Rd} is differentiable in quadratic mean around

θ0 for each a ∈ {0, 1}. (ii) E(a)
0 [exp |ψa(Y (a)

i )|] < ∞ for a ∈ {0, 1}. (iii) There exist µ̇1, µ̇0

and ϵ(1)
n , ϵ(0)

n → 0 s.t
√
nµ

(
P

(a)
h

)
:=

√
nµn,a(h) = µ̇⊺

ah + ϵ(a)
n |h|2 for each a ∈ {0, 1} and

h ∈ Rd.

The assumptions are standard, with the only onerous requirement being Assumption

1(ii), which requires the score function to have bounded exponential moments. This is

needed due to the proof techniques, which are adapted from Adusumilli (2021).

Let V ∗ denote the asymptotic minimax regret, defined as the value of the minimax

problem in (3.1).

Theorem 2. Suppose Assumptions 1(i)-(iii) hold. Then,

sup
J

lim
T →∞

lim inf
n→∞

inf
d∈Dn,T

sup
h∈J

Vn(d,h) ≥ V ∗,

where the outer supremum is taken over all finite subsets J of Rd × Rd.

It is straightforward to extend Theorem 2 to best arm identification. We omit the

formal statement for brevity. The proof proceeds as follows: Let σ2
a := µ̇⊺

aI
−1
a µ̇a,

h∗
a := σa∆∗

2µ̇⊺
aI−1

a µ̇a

I−1
a µ̇a,

and take m∗
0 to be the symmetric two-prior supported on (h∗

1,−h∗
0) and (−h∗

1, h
∗
0). This is

the parametric counterpart to the least-favorable prior described in Theorem 1. Clearly,

there exist subsets J such that

inf
d∈Dn,T

sup
h∈J

Vn(d,h) ≥ inf
d∈Dn,T

Vn(d,m∗
0).

In Appendix A, we show

lim
T →∞

lim
n→∞

inf
d∈Dn,T

Vn(d,m∗
0) = V ∗. (4.4)

To prove (4.4), we build on previous work in Adusumilli (2021). Standard techniques, such

as asymptotic representation theorems (van der Vaart, 2000), are not easily applicable

here due to the continuous time nature of the problem. We instead employ a three step

approach: First, we replace Pn,h with a simpler family of measures whose likelihood ratios

(under different values of h) are the same as those under Gaussian distributions. Then,

22



for this family, we write down a HJB-Variational Inequality (HJB-VI) to characterize

the optimal value function under fixed n. PDE approximation arguments then let us

approximate the fixed-n value function with that under continuous time. The latter is

shown to be V ∗.

The definition of asymptotic minimax risk used in Theorem 2 is standard, see, e.g.,

van der Vaart (2000, Theorem 8.11), apart from the limT →∞ operation. The theorem

asserts that V ∗ is a lower bound on minimax regret under any bounded stopping time.

The bound T can be arbitrarily large. Our proof techniques require bounded stopping

times as various approximation results, e.g., the SLAN property (see, equation (A.10) in

Appendix E), are only valid when the experiment is of bounded duration.8 Nevertheless,

we conjecture that there is no loss in setting T = ∞ in practice.

4.4. Attaining the bound. We now describe a decision rule dn = (πn, τn, δn) that is

asymptotically minimax optimal. Let σ2
a = µ̇⊺

aI
−1
a µ̇a for each a and

ρn(t) := x1(t)
σ1

− x0(t)
σ0

, where xa(t) := µ̇⊺
aI

−1
a√
n

⌊nqa(t)⌋∑
i=1

ψa(Y (a)
i ).

Note that xa(t) is the efficient influence function process for estimation of µa(θ). We

assume µ̇a, Ia, σa are known; but in practice, they should be replaced with consistent

estimates (from a vanishingly small initial sample) so that they do not require knowledge

of the reference parameter θ0. As described in the next section, this can be done without

affecting the asymptotic results.

Take πn to be any sampling rule such that∣∣∣∣∣qa(t)
t

− σa

σ1 + σ0

∣∣∣∣∣ ≤ B ⌊nt⌋−b0 uniformly over bounded t, (4.5)

for some B < ∞ and b0 > 1/2. To simplify matters, we suppose that πn is deterministic,

e.g., πn,1(t) = I {q1(t) ≤ tσ1/(σ1 + σ0)}. Fully randomized rules, πn,1(t) = σ1/(σ0 + σ1),

do not satisfy the ‘fine-balance’ condition (4.5) and we indeed found them to perform

poorly in simulations. We further employ

τn,T = inf {t : |ρn(t)| ≥ γ∗} ∧ T

as the stopping time, and as the implementation rule, set δn,T = I {ρn(τn,T ) ≥ 0}.

8For any given h, the dominated convergence theorem implies limT →∞ infd∈Dn,T
Vn(d, h) =

infd∈Dn Vn(d, h). However, to allow T = ∞ in Theorem 1, we need to show that this equality holds
uniformly over n. In specific instances, e.g., when the parametric family is Gaussian, this is indeed the
case, but we are not aware of any general results in this direction.
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Intuitively, dn,T = (πn, τn,T , δn,T ) is the finite sample counterpart of the minimax opti-

mal decision rule d∗ from Section 3. The following theorem shows that it is asymptotically

minimax optimal in that it attains the lower bound of Theorem 2.

Theorem 3. Suppose Assumptions 1(i)-(iii) hold. Then,

sup
J

lim
T →∞

lim inf
n→∞

sup
h∈J

Vn(dn,T ,h) = V ∗,

where the outer supremum is taken over all finite subsets J of Rd × Rd.

An important implication of Theorem 3 is that the minimax optimal decision rule only

involves one state variable, ρn(t). This is even though the state space in principle includes

all the past observations until period i, for a total of at least 2i variables. The theorem

thus provides a major reduction in dimension.

4.5. Unknown variances. Replacing σ1, σ0 (and other population quantities) with con-

sistent estimates has no effect on asymptotic regret. We suggest two approaches to attain

the minimax lower bounds when these parameters are unknown.

The first approach uses ‘forced exploration’ (see, e.g., Lattimore and Szepesvári, 2020,

Chapter 33, Note 7): we set π∗
n(t) = 1/2 for the first n̄ = na observations, where a ∈ (0, 1).

This corresponds to a time duration of t̄ = na−1. We use the data from these periods

to obtain consistent estimates, σ̂2
1, σ̂

2
0 of σ2

1, σ
2
0. From t̄ onwards, we apply the minimax

optimal rule dn,T after plugging-in σ̂1, σ̂0 in place of σ1, σ0. Note that when applying

dn,T , we should start x1(·), x0(·) from their values at t̄ to ensure the information accrued

before t̄ is also taken into account. This strategy is asymptotically minimax optimal for

any a ∈ (0, 1).

Our second suggestion is to place a prior on σ1, σ0, and continuously revise their values

using the posterior means. We recommend using an inverse-gamma prior and computing

the posterior by treating the scores ψa(Y (a)
i ) as Gaussian (which is justified asymptoti-

cally). This approach has the advantage of not requiring any tuning parameters.

Admittedly, both proposals treat estimation of σ1, σ0 as separate and somewhat less

critical than the estimation of the population mean parameters. However, this merely

reflects the significant asymmetry in the complexity of estimating these parameters in

the continuous time setting. As noted in Section 2, σ1, σ0 can be learnt instantly in

continuous time from the quadratic variations of x1(t), x0(t). Conversely, running the

sequential experiment for a brief period would only marginally update the prior over µ.
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Furthermore, in the finite n setting, it is important to recognize that θ(a) characterizes

the entire distribution of Y (a), including its mean and variance. The quantities σ1, σ0

do not represent the variances of the underlying probability distributions - which are

subject to change anyway under the local sequence θ(a)
0 + ha/

√
n - but are rather the

information matrices evaluated at the reference parameters θ(1)
0 , θ

(0)
0 . Conceptually, under

local asymptotics, these reference parameters are assumed to be known in advance. While

one would aim, in practice, to construct procedures that adapt to or are invariant to these

quantities, the impact of estimating them cannot be accounted for in the local asymptotic

framework itself. This is not to diminish the importance of efficiently estimating σ1, σ0;

rather, the issue lies outside the scope of first-order asymptotic theory, which is just

too coarse an approximation for this purpose. Addressing this would require employing

higher-order asymptotics.

5. Numerical illustration

A/B testing is commonly used in online platforms for optimizing websites. Conse-

quently, to assess the finite sample performance of our proposed policies, we run a

Monte-Carlo simulation calibrated to a realistic example of such an A/B test. Sup-

pose there are two candidate website layouts, with exit rates γ0, γ1, and we want to run

an A/B test to determine the one with the lowest exit rate.9 The outcomes are binary,

Y (a) ∼ Bernoulli(γa). This is a parametric setting with score functions ψa(Y (a)
i ) = Y

(a)
i .

We calibrate γ0 = 0.4, which is a typical value for an exit rate. The cost of experimenta-

tion is normalized to c = 1 and we consider various values of n, corresponding to different

‘population sizes’ (recall that the benefit during implementation is scaled as n3/2γa). We

then set γ1 = γ0 + ∆/
√
n, and describe the results under varying ∆. Local asymptotics

provide a good approximation in practice because raw performance gains are generally

small - typically, |γ1 − γ0| is of the order 0.05 or less (see, e.g., Deng et al., 2013) - but

these gains can translate into large profits when applied at scale, i.e., when n is large.

Since σa =
√
γa(1 − γa) is unknown, we employ ‘forced sampling’ with n̄ = max(50, 0.05n),

i.e., using about 5% of the sample, to estimate σ1, σ0. Note that the asymptotically op-

timal sampling rule is always 1/2 in the Bernoulli setting, so forced sampling is in fact

asymptotically costless. We also experimented with a beta prior to continuously update

σa, but found the results to be somewhat inferior, (see Appendix C for details). Figure 5.1,

9The exit rate is defined as the fraction of viewers of a webpage who exit from the website it is part of
(i.e., without viewing other pages in that website).
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A: Frequentist regret profiles B: Performance under least-favorable prior

Note: The solid curve in Panel A is the regret profile of d∗; the vertical line denotes ∆∗. We only plot the
results for ∆ > 0 as the values are close to symmetric. The dashed line in Panel B is V ∗, the asymptotic
minimax regret. The solid horizontal lines denote the Bayes regret in finite samples, under the least-favorable
prior. The bars describe the interquartile range of regret.

Figure 5.1. Finite sample performance of dn

Panel A plots the finite sample frequentist regret profiles of our policy rules dn := dn,∞

(with T = ∞) for various values of n, along with that of the minimax optimal policy

d∗ under the diffusion regime; the regret profile of the latter is derived analytically in

Lemma 3. Diffusion asymptotics provide a very good approximation to the finite sample

properties of dn, even for such relatively small values of n as n = 1000. In practice, A/B

tests often involve tens, even hundreds, of thousands of observations. The max-regret of

dn is also very close to the asymptotic lower bound V ∗ (the max-regret of d∗).

Figure 5.1, Panel B displays some summary statistics for the Bayes regret of dn under

the least-favorable prior, p∆∗ . The regret distribution is positively skewed and heavy

tailed. The finite sample Bayes regret is again very close to V ∗.

Appendix C reports additional simulation results using Gaussian outcomes.

6. Variations and extensions

We now consider various modifications of the basic setup and analyze if, and how, the

optimal decisions change. Appendix G discusses extensions to multiple treatments.

6.1. Batching. In practice, it may be that data is collected in batches instead of one at

a time, and the DM can only make decisions after processing each batch. Let Bn denote

the number of observations considered in each batch. In the context of Section 4, this

corresponds to a time duration of Bn/n. An analysis of its proof shows that Theorem

2 continues to hold as long as Bn/n → 0. Thus, dn,T remains asymptotically minimax

optimal in this scenario.
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Even for Bn/n → m ∈ (0, 1), the optimal decision rules remain broadly unchanged.

Asymptotically, we have equivalence to Gaussian experiments, so we can analyze batched

experiments under the diffusion framework by imagining that the stopping time is only

allowed to take on discrete values {0, 1/m, 2/m, . . . }. It is then clear from the discussion

in Section 3.1 that the optimal sampling and implementation rules remain unchanged.

The discrete nature of the setting makes determining the optimal stopping rule difficult,

but it is easy to show that the decision rule (π∗, τ ∗
m, δ

τ∗
m), where

τ ∗
m := inf

{
t ∈ {0, 1/m, 2/m, . . . } :

∣∣∣∣∣x1(t)
σ1

− x0(t)
σ0

∣∣∣∣∣ ≥ γ∗
}

and δτ∗
m := I

{
σ−1

1 x1(τ ∗
m) − σ−1

0 x0(τ ∗
m) ≥ 0

}
, while not being exactly optimal, has a min-

imax regret that is arbitrarily close to V ∗ for large enough m (note that no batched

experiment can attain a minimax regret that is lower than V ∗).

6.2. Alternative cost functions. All our results so far were derived under constant

sampling costs. The same techniques apply to other types of flow costs as long as these

depend only on ρ(t) := σ−1
1 x1(t) − σ−1

0 x0(t). In particular, suppose that the frequentist

regret is given by

V (d,µ) = Ed|µ

[
max{µ1 − µ0, 0} − (µ1 − µ0)δ +

∫ τ

0
c(ρ(t))dt

]
,

where c(z) is the flow cost of experimentation when ρ(t) = z. We require c(·) to be

(i) positive, (ii) bounded away from 0, i.e., infz c(z) ≥ c > 0, and (iii) symmetric, i.e.,

c(z) = c(−z). By (3.8), (σ1 + σ0)ρ(t)/t is an estimate of the treatment effect µ1 − µ0,

so the above allows for situations in which sampling costs depend on the magnitude of

the estimated treatment effects. While we are not aware of any real world examples of

such costs, they could arise if there is feedback between the observations and sampling

costs, e.g., if it is harder to find subjects for experimentation when the treatment effect

estimates are higher. When there are only two states, the ‘ex-ante’ entropy cost of Sims

(2003) is also equivalent to a specific flow cost of the form c(·) above, see Morris and

Strack (2019).10

For the above class of cost functions, we show in Appendix D that the minimax optimal

decision rule d∗ and the least-favorable prior p∗
∆ have the same form as in Theorem 1,

but the values of γ∗,∆∗ are different and need to be calculated by solving the minimax

10However, we are not aware of any extension of this result to continuous states.
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problem

min
γ

max
∆


(
σ1 + σ0

2

) (1 − e−∆γ
)

∆
e∆γ − e−∆γ

+

(
e∆γ − 1

)
ζ∆(γ) +

(
1 − e−∆γ

)
ζ∆(−γ)

e∆γ − e−∆γ

 ,
where

ζ∆(x) := 2
∫ x

0

∫ y

0
e∆(z−y)c(z)dzdy.

Beyond this class of sampling costs, however, it is easy to conceive of scenarios in which

the optimal decision rule differs markedly from the one we obtain here. For instance,

Neyman allocation would no longer be the optimal sampling rule if the costs for sampling

each treatment were different. Alternatively, if c(·) were to depend on t, the optimal

stopping time could have a very different form. The analysis of these cost functions is

not covered by the present techniques.

6.3. Non-parametric outcomes. In Appendix E, we extend Theorems 2 and 3 to the

non-parametric setting, where there is no a-priori information about the distributions

P (1), P (0) of Y (1)
i and Y (0)

i . The minimax optimal rule retains the same form as in Section

4.4, but with xa(t) now defined as n−1/2∑⌊nqa(t)⌋
i=1 Y

(a)
i , and σ2

a as the variance of Y (a)
i at

some reference distribution P
(a)
0 (as in Section 4, P (1)

0 , P
(0)
0 are to be chosen such that

E
P

(1)
0

[Y (1)
i ] = E

P
(0)
0

[Y (0)
i ]). One can obtain these same results by simply assuming the

outcomes to be Gaussian.

The above results can also be extended to different regret measures. Specifically, in-

stead of µ(·) denoting the mean functional in the definition of regret max{µ(P (1)) −

µ(P (0)), 0} − (µ(P (1)) − µ(P (0)))δ + cτ , it can denote other functionals of the outcome

distribution in the implementation phase (we still need costs to be linear and additively

separable). For instance, µ(·) could be the quantile function. In Appendix E.4, we show

that the decision rule dn.T from Section 4.4 is still minimax optimal if we just redefine

xa(t) to now be the efficient influence function process n−1/2∑⌊nqa(t)⌋
i=1 ψa(Y (a)

i ), where

ψa(·) is the efficient influence function corresponding to µ(P (a)).

7. Conclusion

This paper proposes a minimax-regret optimal procedure for determining the best

treatment when sampling is costly. The optimal sampling rule is simply the Neyman al-

location, while the optimal stopping rule advises that the experiment be terminated when

the average difference in outcomes multiplied by the number of observations exceeds a

specific threshold. While these rules were derived under diffusion asymptotics, it is shown
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that finite sample counterparts of these rules remain optimal under both parametric and

non-parametric regimes. The form of these rules is robust to a number of different vari-

ations of the original problem, e.g., under batching, different cost functions etc. Given

the simple nature of these rules, and the potential for large efficiency gains (requiring, on

average, 40% fewer observations than standard approaches), we believe they hold a lot

of promise for practical use.

Data availability statement. The data and code underlying this article are available in

Zenodo, at https://doi.org/10.5281/zenodo.14792035.

References

Adusumilli, K. (2021): “Risk and optimal policies in bandit experiments,” arXiv

preprint arXiv:2112.06363.

Armstrong, T. B. (2022): “Asymptotic efficiency bounds for a class of experimental

designs,” arXiv preprint arXiv:2205.02726.

Arrow, K. J., D. Blackwell, and M. A. Girshick (1949): “Bayes and minimax

solutions of sequential decision problems,” Econometrica, 213–244.

Baden, L. R. et al. (2021): “Efficacy and safety of the mRNA-1273 SARS-CoV-2

vaccine,” New England Journal of Medicine, 384, 403–416.

Berger, J. O. (2013): Statistical decision theory and Bayesian analysis: Springer Sci-

ence & Business Media.

Chernoff, H. (1959): “Sequential design of experiments,” The Annals of Mathematical

Statistics, 30, 755–770.

Chernoff, H., and A. J. Petkau (1981): “Sequential medical trials involving paired

data,” Biometrika, 68, 119–132.

Colton, T. (1963): “A model for selecting one of two medical treatments,” Journal of

the American Statistical Association, 58, 388–400.

Deng, A., Y. Xu, R. Kohavi, and T. Walker (2013): “Improving the sensitivity of

online controlled experiments by utilizing pre-experiment data,” in Proceedings of the

sixth ACM international conference on Web search and data mining, 123–132.

Epstein, L. G., and M. Schneider (2003): “Recursive multiple-priors,” Journal of

Economic Theory, 113, 1–31.

Fan, L., and P. W. Glynn (2021): “Diffusion Approximations for Thompson Sam-

pling,” arXiv preprint arXiv:2105.09232.

29

https://doi.org/10.5281/zenodo.14792035


Fehr, E., and A. Rangel (2011): “Neuroeconomic Foundations of Economic Choice–

Recent Advances,” Journal of Economic Perspectives, 25, 3–30.

Fudenberg, D., P. Strack, and T. Strzalecki (2018): “Speed, accuracy, and the

optimal timing of choices,” American Economic Review, 108, 3651–84.

Garivier, A., and E. Kaufmann (2016): “Optimal best arm identification with fixed

confidence,” in Conference on Learning Theory, 998–1027, PMLR.

Hébert, B., and M. Woodford (2017): “Rational inattention and sequential infor-

mation sampling,”Technical report, National Bureau of Economic Research.

Hirano, K., and J. R. Porter (2009): “Asymptotics for statistical treatment rules,”

Econometrica, 77, 1683–1701.

Karatzas, I., and S. Shreve (2012): Brownian motion and stochastic calculus Volume

113: Springer Science & Business Media.

Kuang, X., and S. Wager (2024): “Weak signal asymptotics for sequentially random-

ized experiments,” Management Science, 70, 7024–7041.

Lai, T., B. Levin, H. Robbins, and D. Siegmund (1980): “Sequential medical

trials,” Proc. Natl. Acad. Sci. U.S.A., 77, 3135–3138.

Lattimore, T., and C. Szepesvári (2020): Bandit algorithms: Cambridge University

Press.

Liang, A., X. Mu, and V. Syrgkanis (2022): “Dynamically aggregating diverse

information,” Econometrica, 90, 47–80.

Luce, R. D. et al. (1986): Response times: Their role in inferring elementary mental

organization (8): Oxford University Press on Demand.

Manski, C. F. (2021): “Econometrics for decision making: Building foundations

sketched by haavelmo and wald,” Econometrica, 89, 2827–2853.

Manski, C. F., and A. Tetenov (2016): “Sufficient trial size to inform clinical prac-

tice,” Proc. Natl. Acad. Sci. U.S.A., 113, 10518–10523.

Moore, T. J., H. Zhang, G. Anderson, and G. C. Alexander (2018): “Esti-

mated costs of pivotal trials for novel therapeutic agents approved by the US Food and

Drug Administration, 2015-2016,” JAMA Internal Medicine, 178, 1451–1457.

Morris, S., and P. Strack (2019): “The Wald problem and the relation of sequential

sampling and ex-ante information costs,” Available at SSRN 2991567.

Øksendal, B. (2003): Stochastic differential equations: Springer.

30



Qin, C., D. Klabjan, and D. Russo (2017): “Improving the expected improvement

algorithm,” Advances in Neural Information Processing Systems, 30.

Qin, C., and D. Russo (2022): “Adaptivity and confounding in multi-armed bandit

experiments,” arXiv preprint arXiv:2202.09036.

Ratcliff, R., and G. McKoon (2008): “The diffusion decision model: theory and

data for two-choice decision tasks,” Neural Computation, 20, 873–922.

Reikvam, K. (1998): “Viscosity solutions of optimal stopping problems,” Stochastics

and Stochastic Reports, 62, 285–301.

Shiryaev, A. N. (2007): Optimal stopping rules: Springer Science & Business Media.

Sims, C. A. (2003): “Implications of rational inattention,” Journal of Monetary Eco-

nomics, 50, 665–690.

Sion, M. (1958): “On general minimax theorems.,” Pacific Journal of Mathematics, 8,

171–176.

US Food and Drug Admin. (2018): “FDA In Brief: FDA launches new pi-

lot to advance innovative clinical trial designs as part agency’s broader pro-

gram to modernize drug development and promote innovation in drugs tar-

geted to unmet needs,” "https://www.fda.gov/news-events/fda-brief/

fda-brief-fda-modernizes-clinical-trial-designs-and-approaches-drug-development-proposing-new".

(2019): “Guidance document: Adaptive Design Clin-

ical Trials for Drugs and Biologics,” "https://www.fda.

gov/regulatory-information/search-fda-guidance-documents/

adaptive-design-clinical-trials-drugs-and-biologics-guidance-industry".

van der Vaart, A. W. (2000): Asymptotic statistics: Cambridge university press.

van der Vaart, A. W., and J. Wellner (1996): Weak convergence and empirical

processes: with applications to statistics: Springer Science & Business Media.

Wald, A. (1945): “Statistical decision functions which minimize the maximum risk,”

Annals of Mathematics, 265–280.

(1947): “Sequential analysis,”Technical report.

31

"https://www.fda.gov/news-events/fda-brief/fda-brief-fda-modernizes-clinical-trial-designs-and-approaches-drug-development-proposing-new"
"https://www.fda.gov/news-events/fda-brief/fda-brief-fda-modernizes-clinical-trial-designs-and-approaches-drug-development-proposing-new"
"https://www.fda.gov/regulatory-information/search-fda-guidance-documents/adaptive-design-clinical-trials-drugs-and-biologics-guidance-industry"
"https://www.fda.gov/regulatory-information/search-fda-guidance-documents/adaptive-design-clinical-trials-drugs-and-biologics-guidance-industry"
"https://www.fda.gov/regulatory-information/search-fda-guidance-documents/adaptive-design-clinical-trials-drugs-and-biologics-guidance-industry"


Appendix A. Proofs

A.1. Proof of Theorem 1. The proof makes use of the following lemmas:

Lemma 1. Suppose nature sets p0 to be a symmetric two-point prior supported on

(σ1∆/2,−σ0∆/2), (−σ1∆/2, σ0∆/2). Then the decision d(∆) = (π∗, τγ(∆), δ
∗), where

γ(∆) is defined in (A.5), is a best response by the DM.

Proof. The prior is an indifference-inducing one, so by the argument given in Section

3.1, the DM is indifferent between any sampling rule π. Thus, π∗
a(t) = σa/(σ1 + σ0) is a

best-response to this prior. Also, the prior is symmetric with m0 = 1/2, so by (2.7) and

(3.4), the Bayes optimal implementation rule, for any given given stopping time τ , is

δτ = I
{
lnφπ∗(τ) ≥ 0

}
= I

{
x1(τ)
σ1

− x0(τ)
σ0

≥ 0
}
.

It remains to compute the Bayes optimal stopping time. Let λ = 1 denote the event

µ = (σ1∆/2,−σ0∆/2), with λ = 0 otherwise. The discussion in Section 3.1 implies that,

conditional on λ, the distribution of the likelihood ratio process φπ(t) does not depend

on π and evolves as

d lnφ(t) = (2λ− 1)∆2

2 dt+ ∆dW̃ (t), (A.1)

where W̃ (·) is a one-dimensional Wiener process. By a similar argument as in Shiryaev

(2007, Section 4.2.1), this in turn implies that the posterior probability mπ(t) := Pπ(λ =

1|Ft) is also independent of π and evolves as11

dm(t) = ∆m(t)(1 −m(t))dW̃ (t). (A.2)

Therefore, by (2.9) the optimal stopping time also does not depend on π and is given by

τ(∆) = inf
τ∈T

E [ϖ(m(τ)) + cτ ] , where (A.3)

ϖ(m) := (σ1 + σ0)
2 ∆ min {m, 1 −m} . (A.4)

Inspection of the objective function in (A.3) shows that this is exactly the same objec-

tive as in the Bayesian hypothesis testing problem, analyzed previously by Arrow et al.

(1949) and Morris and Strack (2019). We follow the analysis of the latter paper. Morris
11Shiryaev (2007, Section 4.2.1) analyzes Bayesian updating under binary states, but the setup and
notation are slightly different from here. However, the likelihood ratio (LR) processes are the same in
both cases, making the problems, and the derivation of (A.2), equivalent. Specifically, in Shiryaev (2007,
Equation 4.53), the LR process evolves as d ln φ(t) = r

σ2 (dξ(t) − r
2 dt) where dξ(t) := rθdt + σdW̃ (t).

Here, r, σ ∈ R+ are known, and θ ∈ {0, 1} denotes the unknown binary state of the world. Equating
r, σ, θ with ∆, 1, λ then gives the same LR process as (A.1).
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and Strack (2019) show that instead of choosing the stopping time τ , it is equivalent to

imagine that the DM chooses a probability distribution G over the posterior beliefs m(τ)

at an ‘ex-ante’ cost

c(G) = 2c
∆2

∫
(1 − 2m) ln 1 −m

m
dG(m),

subject to the constraint
∫
mdG(m) = m0 = 1/2. The precise form of c(G) is due to

Morris and Strack (2019, Proposition 3). Under the distribution G, the expected regret,

exclusive of sampling costs, for the DM is∫
ϖ(m)dG(m) = (σ1 + σ0)

2 ∆
∫

min{m, 1 −m}dG(m).

Hence, the stopping time, τ , that solves (A.3) is the one that induces the distribution

G∗, defined as

G∗ = arg min
G:
∫

mdG(m)= 1
2

{
c(G) +

∫
ϖ(m)dG(m)

}

= arg min
G:
∫

mdG(m)= 1
2

∫
f(m)dG(m),

where

f(m) := 2c
∆2 (1 − 2m) ln 1 −m

m
+ (σ1 + σ0)

2 ∆ min{m, 1 −m}.

Clearly, f(·) is strictly convex on [0, 1/2] and f(m) = f(1 −m). Hence, setting

α(∆) := arg min
α∈[0, 1

2 ]

{
(σ1 + σ0)

2 ∆α + 2c
∆2 (1 − 2α) ln 1 − α

α

}
,

it is easy to see that G∗ is a two-point distribution, supported on α(∆), 1 − α(∆) with

equal probability 1/2.

We now claim that this distribution is induced by the stopping time τγ(∆), where

γ(∆) := 1
∆ ln 1 − α(∆)

α(∆) . (A.5)

To this end, observe that by (2.6) and (3.5),

m(t) =
exp

{
∆
(

x1(t)
σ1

− x0(t)
σ0

)}
1 + exp

{
∆
(

x1(t)
σ1

− x0(t)
σ0

)} .
We can then write τγ(∆) in terms of m(t) as

τγ(∆) = inf {t : m(t) /∈ [α(∆), 1 − α(∆)]} .
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This immediately implies that the support points of m(τγ(∆)) are α(∆), 1 − α(∆); also,

E[m(τγ(∆))] = (1 − α(∆))P
(
m(τγ(∆)) = 1 − α(∆)

)
+ α(∆)P

(
m(τγ(∆)) = α(∆)

)
.

But m(·) is a martingale, so Doob’s optional stopping theorem implies E[m(τγ(∆))] =

E[m(0)] = 1/2. Equating the two expressions for E[m(τγ(∆))] gives

P
(
m(τγ(∆)) = 1 − α(∆)

)
= P

(
m(τγ(∆)) = α(∆)

)
= 1/2.

Thus, m(τγ(∆)) is distributed as G∗, and the stopping time τγ(∆) is therefore the best

response to nature’s prior. □

Lemma 2. Suppose µ is such that |µ1 − µ0| = σ1+σ0
2 ∆. Then, for any γ,∆ > 0,

V
(
d̃γ,µ

)
= (σ1 + σ0)

2 ∆ 1 − e−∆γ

e∆γ − e−∆γ
+ 2cγ

∆
e∆γ + e−∆γ − 2
e∆γ − e−∆γ

.

Thus, the frequentist regret of d̃γ depends on µ only through |µ1 − µ0|.

Proof. Suppose that µ1 > µ0. Define

ξ(t) :=
(
x1(t)
σ1

− x0(t)
σ0

)
· ∆.

Note that under d̃γ and µ,

x1(t)
σ1

− x0(t)
σ0

= ∆
2 t+ W̃ (t),

where W̃ (·) is one-dimensional Brownian motion. Hence ξ(t) = ∆2

2 t + ∆W̃ (t). We can

write the stopping time τγ in terms of ξ(t) as

τγ = inf
{
t :
∣∣∣∣∣x1(t)
σ1

− x0(t)
σ0

∣∣∣∣∣ ≥ γ

}
= inf {t : |ξ(t)| ≥ ∆γ} ,

and the implementation rule as δτγ = I {ξ(τγ) ≥ 0} = I {ξ(τγ) = ∆γ} .

Now, noting the form of ξ(t), we can apply similar arguments as in Shiryaev (2007,

Section 4.2, Lemma 5), to show that

E [τγ|µ] = 2
∆2

∆γ
(
e∆γ + e−∆γ − 2

)
e∆γ − e−∆γ

.

Furthermore, following Shiryaev (2007, Section 4.2, Lemma 4), we also have

P(δτγ = 0|µ) = P(ξ(τγ) = −∆γ|µ) = 1 − e−∆γ

e∆γ − e−∆γ
.
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Hence, the frequentist regret is given by

V
(
d̃γ,µ

)
= σ1 + σ0

2 ∆P(δτγ = 0|µ) + cE [τγ|µ]

= (σ1 + σ0)
2 ∆ 1 − e−∆γ

e∆γ − e−∆γ
+ 2cγ

∆
e∆γ + e−∆γ − 2
e∆γ − e−∆γ

.

While the above was shown under µ1 > µ0, an analogous argument under µ1 < µ0

gives the same expression for V
(
d̃γ,µ

)
. □

Lemma 3. Consider a two-player zero-sum game in which nature chooses ∆ ∈ R+

indexing the indifference prior p∆ and the DM chooses γ ∈ R+ indexing the decision rule

dγ = (π∗, τγ, δ
τγ ). There exists a unique Nash equilibrium to this game at ∆∗ = η∆∗

0 and

γ∗ = η−1γ∗
0 , where η,∆∗

0, γ
∗
0 are defined in Section 3.

Proof. By Lemma 2, the frequentist regret under a given choice of ∆ := 2|µ1−µ0|/(σ1+σ0)

and γ is given by (σ1+σ0)
2 R(γ,∆), where

R(γ,∆) := ∆ 1 − e−∆γ

e∆γ − e−∆γ
+ 2η3γ

∆
e∆γ + e−∆γ − 2
e∆γ − e−∆γ

.

Lemma 2 further implies that the frequentist regret V (d∗,µ) depends on µ only through

∆. Therefore, the frequentist regret under both support points of p∆ must be the same.

Hence, the Bayes regret, V (dγ, p∆), is the same as the frequentist regret at each support

point, i.e.,

V (dγ, p∆) = (σ1 + σ0)
2 R(γ,∆). (A.6)

We aim to find a Nash equilibrium in a two-player game in which natures chooses p∆,

equivalently ∆, to maximize R(γ,∆), while the DM chooses dγ, equivalently γ, to mini-

mize R(γ,∆).

For η = 1, the unique Nash equilibrium to this game is given by ∆ = ∆∗
0 and γ = γ∗

0 .

We start by first demonstrating the existence of a Nash equilibrium. This is guaranteed by

Sion’s minimax theorem (Sion, 1958) as long as R(γ,∆) is continuous in both arguments

(which is easily verified), and ‘convex quasi-concave’ on R+×R+\{0}.12 To show convexity

in the first argument, write R(·,∆) = R1(α(·,∆),∆) where

R1(α,∆) := ∆α + 2
∆2 (1 − 2α) ln 1 − α

α
; and

α(γ,∆) := 1 − e−∆γ

e∆γ − e−∆γ
.

12In fact, convexity can be replaced with quasi-convexity for the theorem.
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Now, for any fixed ∆ > 0, it is easy to verify that R1(·,∆) and α(·,∆) are convex over

the domain R+. Since the composition of convex functions is also convex, this proves

convexity of R(·,∆). To prove R(γ, ·) is quasi-concave, write R(γ, ·) = R2(γ, α(γ, ·)),

where

R2(γ, α) := 1
γ
α ln 1 − α

α
+ 2γ2 (1 − 2α)

ln 1−α
α

.

Now, α ln 1−α
α

and (1 − 2α)/ ln 1−α
α

are concave over R+\{0}, so R2(γ, ·) is also concave

over R+\{0} for any fixed γ > 0. Concavity implies the level set {α : R2(γ, α) ≥ ν} is a

closed interval in R+\{0} for any ν ∈ R. But α(γ, ·) is positive and strictly decreasing,

so for a fixed γ > 0,

{∆ : R(γ,∆) ≥ ν} ≡ {∆ : R2(γ, α(γ,∆)) ≥ ν}

is also a closed interval in R+\{0}, and therefore, convex, for any ν ∈ R. This proves

quasi-concavity of R(γ, ·) whenever γ > 0. At the same time, R(γ,∆) = ∆/2 when

γ = 0; hence, R(γ, ·) is in fact quasi-concave for any γ ≥ 0. We thus conclude by

Sion’s theorem that a Nash equilibrium exists. It is then routine to numerically compute

∆∗
0, γ

∗
0 through first-order conditions and show that these values are unique; we skip these

calculations, which are straightforward. Figure A.1 provides a graphical illustration of

the Nash equilibrium.

It remains to determine the Nash equilibrium under general η. By the form of R(γ,∆),

if γ∗
0 is a best response to ∆∗

0 for η = 1, then η−1γ∗
0 is a best response to η∆∗

0 for general

η. Similarly, if ∆∗
0 is a best response to γ∗

0 for η = 1, then η∆∗
0 is a best response to

η−1γ∗
0 for general η. This proves ∆∗ := η∆∗

0 and γ∗ := η−1γ∗
0 is a Nash equilibrium in the

general case. □

We now complete the proof of Theorem 1: By Lemmas 1 and 3, d∗ is the optimal

Bayes decision corresponding to p∗
0. We now show

sup
µ
V (d∗,µ) = V (d∗, p∗

0), (A.7)

which implies d∗ is minimax optimal according to the verification theorem in Berger

(2013, Theorem 17). To this end, recall from Lemma 2 that the frequentist regret V (d∗,µ)

depends on µ only through ∆ := 2|µ1 − µ0|/(σ1 + σ0). Furthermore, by Lemma 3, ∆∗ is

the best response of nature to d∗. These results imply

sup
µ
V (d∗,µ) = (σ1 + σ0)

2 sup
∆
R(γ∗,∆) = (σ1 + σ0)

2 R(γ∗,∆∗).
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Note: The upward-sloping curve describes the best response of ∆ to a given γ, while the downward sloping
curve describes the best response of γ to a given ∆. The point of intersection is the Nash equilibrium. This is
for η = 1.

Figure A.1. Best responses and Nash equilibrium

But by (A.6), we also have V (d∗, p∗
0) = (σ1+σ0)

2 R(γ∗,∆∗). This proves (A.7).

A.2. Proof of Corollary 1. We employ the same strategy as in the proof of Theorem

1. Suppose nature employs the indifference prior p∆, for any ∆ > 0. Then by similar

arguments as earlier, the DM is indifferent between any sampling rule π, and the optimal

implementation rule is δ∗ = I
{

x1(1)
σ1

− x0(1)
σ0

≥ 0
}
.

We now determine Nature’s best response to the DM choosing d∗ = (π∗, δ∗), where π∗ is

the Neyman allocation. Consider an arbitrary µ = (µ1, µ0) such that |µ1 −µ0| = σ1+σ0
2 ∆.

Suppose µ1 > µ0. Under π∗,

dx1(t)
σ1

− dx0(t)
σ0

= ∆
2 dt+ dW̃ (t),

where W̃ (·) is the standard Wiener process, so the expected regret under d∗,µ is

V (d∗,µ) = (µ1 − µ0)P
(
x1(1)
σ1

− x0(1)
σ0

≤ 0
)

= σ1 + σ0

2 ∆Φ
(

−∆
2

)
. (A.8)

An analogous argument shows that the same expression holds when µ0 > µ1 as well.

Consequently, nature’s optimal choice of µ is to set ∆ to ∆̄∗ = 2 arg maxδ δΦ (−δ), but is

otherwise indifferent between any µ such that |µ1 − µ0| = σ1+σ0
2 ∆̄∗. Thus, p∆̄∗ is a best

response by nature to the DM’s choice of d∗ = (π∗, δ∗).

We have thereby shown p∆̄∗ ,d∗ form a Nash equilibrium. That d∗ is minimax optimal

then follows by similar arguments as in the proof of Theorem 1.
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A.3. Proof of Theorem 2. Our aim is to show (4.4). The outline of the proof is as

follows: First, as in Adusumilli (2021), we replace the true marginal and posterior distri-

butions with suitable approximations. Next, we apply dynamic programming arguments

and viscosity solution techniques to obtain a HJB-variational inequality (HJB-VI) for the

value function in the experiment. Finally, the HJB-VI is connected to the problem of

determining the optimal stopping time under diffusion asymptotics.

Step 0 (Definitions and preliminary observations). Under m∗
0, let γ = 1 denote the event

h = (h∗
1,−h∗

0) and γ = 0 the event h = (−h∗
1, h

∗
0). Also, let y(a)

nq := {Y (a)
i }⌊nq⌋

i=1 denote the

stacked representation of outcomes Y (a)
i from the first nq observations corresponding to

treatment a, and for any h := (h1, h0), take Pnq1,nq0,h to be the distribution corresponding

to the joint density pnq1,h1(y(1)
nq1) · pnq0,h1(y(0)

nq0), where

pnq,ha(y(a)
nq1) :=

nq∏
i=1

pn,ha(Y (a)
i ).

Also, define P̄n as the marginal distribution of
(
y(1)

nT ,y
(0)
nT

)
, i.e., it is the probability mea-

sure whose density, with respect to the dominating measure ν(y(1)
nT ,y

(0)
nT ) := ∏

a∈{0,1} ν(Y (a)
1 )×

· · · × ν(Y (a)
nT ), is

p̄n

(
y(1)

nT ,y
(0)
nT

)
=
∫
pnT,h1(y(1)

nT ) · pnT,h1(y(0)
nT )dm∗

0(h).

Due to the two-point support of m∗
0, the posterior density pn(·|ξt) can be associated

with a scalar,

mn(ξt) := mn

(
y(1)

nq1(t),y
(0)
nq0(t)

)
:= Pn

(
γ = 1|y(1)

nq1(t),y
(0)
nq0(t)

)
.

That the posterior depends on ξt only via y(1)
nq1(t),y

(0)
nq0(t) is an immediate consequence

of Adusumilli (2021, Lemma 1). Recalling the definition of ϖn(·) in (4.3), we have

ϖn(ξt) = ϖn(mn(ξt)), where, for any m ∈ [0, 1],

ϖn(m) := min {{µn,0(h∗
0) − µn,1(−h∗

1)} (1 −m), {µn,1(h∗
1) − µn,0(−h∗

0)}m}

= (µn,1(h∗
1) − µn,0(−h∗

0)) min{m, 1 −m}.

The first equation above always holds, while the second holds under the simplification

µn,a(h) = −µn,a(−h) described in Section 4.

Let

za,nqa := I−1/2
a√
n

⌊nqa⌋∑
i=1

ψa(Y (a)
i ), (A.9)
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denote the (standardized) score process. Under quadratic mean differentiability - As-

sumption 1(i) - the following SLAN property holds for both treatments:

⌊nqa⌋∑
i=1

ln
dp

(a)
θ0+h/

√
n

dp
(a)
θ0

(Y (a)
i ) = h⊺I1/2

a za,nqa − qa

2 h
⊺Iah+ o

P
(a)
nT,θ0

(1), uniformly over bounded qa.

(A.10)

See Adusumilli (2021, Lemma 2) for the proof.13

As in Adusumilli (2021), we now define approximate versions of the true marginal and

posterior by replacing the actual likelihood ∏a p
(a)
nqa,ha

(y(a)
nT ) with

∏
a

λ
(a)
nq,ha

(y(a)
nq ) :=

∏
a

dΛ(a)
nq,ha

(y(a)
nq )

dν
, where

λ
(a)
nq,h(y(a)

nq ) := exp
{
h⊺I1/2

a za,nq − q

2h
⊺Iah

}
p

(a)
nq,θ0(y(a)

nq ) ∀ q ∈ [0, T ]. (A.11)

In other words, we approximate the true likelihood with the first two terms in the SLAN

expansion (A.10). The construction of the approximate marginal and posterior is de-

scribed below.

(Approximate marginal:) Denote by P̃nq1,nq0,h the measure whose density is λ(1)
nq1,h1(y(1)

nq1)·

λ
(0)
nq0,h0(y(0)

nq0), and take ˜̄Pnq1,nq0 to be its marginal over y(1)
nq1 ,y

(0)
nq0 given the prior m∗

0(h).

Note that the density (wrt ν) of ˜̄Pnq1,nq0 is

˜̄pnq1,nq0

(
y(1)

nq1 ,y
(0)
nq0

)
=
∫
λ

(1)
nq1,h(1)

(
y(1)

nq1

)
· λ(0)

nq0,h(0)

(
y(0)

nq0

)
dm∗

0(h). (A.12)

Also, define ˜̄pn

(
y(1)

nT ,y
(0)
nT

)
:= ˜̄pnT,nT

(
y(1)

nT ,y
(0)
nT

)
. Then, ˜̄pn

(
y(1)

nT ,y
(0)
nT

)
approximates the

true marginal p̄n

(
y(1)

nT ,y
(0)
nT

)
.

(Approximate posterior:) Next, let φ̃(t) be the approximate likelihood ratio

φ̃(t) =
λ

(1)
nq1,h∗

1

(
y(1)

nq1(t)

)
· λ(0)

nq0,−h∗
0

(
y(0)

nq0(t)

)
λ

(1)
nq1,−h∗

1

(
y(1)

nq1(t)

)
· λ(0)

nq0,h∗
0

(
y(0)

nq0(t)

) = exp {∆∗ρn(t)} ,

where

ρn(t) := µ̇⊺
1z1,nq1(t)

σ1
−
µ̇⊺

0z0,nq0(t)

σ0
. (A.13)

Based on the above, we can approximate the true posterior, mn(ξt), by

φ̃(t)
1 + φ̃(t) = exp {∆∗ρn(t)}

1 + exp {∆∗ρn(t)} := m̃(ρn(t)), (A.14)

13It should be noted that the score process in that paper is defined slightly differently, as I
−1/2
a za,nqa

under the present notation.
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where m̃(ρ) := exp(∆∗ρ)/(1 + exp(∆∗ρ)) for ρ ∈ R. When ρn(t) = ρ, the approximate

posterior m̃(ρ) in turn implies an approximate posterior, p̃n(h|ρ), over h that takes the

value (h∗
1,−h∗

0) with probability m̃(ρ) and (−h∗
1, h

∗
0) with probability 1 − m̃(ρ).

Step 1 (Posterior and probability approximations). Set V ∗
n,T = infd∈Dn,T

V ∗
n (d,m∗

0). Using

dynamic programming arguments, it is straightforward to show that there exists a non-

randomized sampling rule and stopping time that minimizes V ∗
n (d,m0) for any prior m0.

We therefore restrict Dn,T to the set of all deterministic rules, D̄n,T . Under determinis-

tic policies, the sampling rules πnt, states ξt and stopping times τ are all deterministic

functions of y(1)
nT ,y

(0)
nT . Recall that y(1)

nT ,y
(0)
nT are the stacked vector of outcomes under nT

observations of each treatment. It is useful to think of {πnt}T
t=1/n, τ as quantities mapping

(y(1)
nT ,y

(0)
nT ) to realizations of regret.14 Taking Ēn[·] to be the expectation under P̄n, we

then have

V ∗
n (d,m∗

0) = Ēn

[√
nϖn (mn (ξτ )) + cτ

]
,

for any deterministic d ∈ D̄n,T .

Now, take ˜̄En[·] to be the expectation under ˜̄Pn, and define

Ṽn(d,m∗
0) = ˜̄En

[√
nϖn (m̃ (ρn(τ))) + cτ

]
. (A.15)

By Lemma 7 in Appendix F,

lim
n→∞

sup
d∈D̄n,T

∣∣∣V ∗
n (d,m∗

0) − Ṽn(d,m∗
0)
∣∣∣ = 0.

This in turn implies limn→∞

∣∣∣V ∗
n,T − Ṽ ∗

n,T

∣∣∣ = 0, where Ṽ ∗
n,T := infd∈D̄n,T

Ṽ ∗
n (d,m∗

0).

Step 2 (Recursive formula for Ṽ ∗
n,T ). We now employ dynamic programming arguments

to obtain a recursion for Ṽ ∗
n,T . This requires a bit of care since ˜̄Pn is not a probability,

even though it does integrate to 1 asymptotically.

14Note that π, τ still need to satisfy the measurability restrictions, and some components of y(a)
nT may

not be observed as both treatments cannot be sampled nT times.
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Recall that p̃n(h|ρ) is the probability measure on h that assigns probability m̃(ρ) to

(h∗
1,−h∗

0) and probability 1 − m̃(ρ) to (−h∗
1, h

∗
0). Define

p̃n(Y (a)|ρ) = p
(a)
θ0 (Y (a)) ·

∫
exp

{
1√
n
h⊺aψa(Y (a)) − 1

2nh
⊺
aIaha

}
dp̃n(h|ρ),

˜̄pn(y(1)
−nq1 ,y

(0)
−nq0|ρ, q1, q0) =

∫ λ
(1)
nT,h1

(
y(1)

nT

)
· λ(0)

nT,h0

(
y(0)

nT

)
λ

(1)
nq1,h1

(
y(1)

nq1

)
· λ(0)

nq0,h0

(
y(0)

nq0

)dp̃n(h|ρ), and

η(ρ, q1, q0) =
∫
d ˜̄pn

(
y(1)

−nq1 ,y
(0)
−nq0|ρ, q1, q0

)
, (A.16)

where y(a)
−nq := {Y (a)

nq+1, . . . , Y
(a)

nT }. In words, ˜̄pn(y(1)
−nq1 ,y

(0)
−nq0|ρ, q1, q0) is the approxi-

mate probability density over the future values of the stacked rewards {Y (a)
i }nT

i=nqa+1

given the current state ρ, q1, q0. Note that η(ρ, q1, q0) is the normalization constant of
˜̄pn(y(1)

−nq1 ,y
(0)
−nq0|ρ, q1, q0).

By Lemma 8 in Appendix F, Ṽ ∗
n,T = Ṽ ∗

n,T (0, 0, 0, 0), where Ṽ ∗
n,T (·) solves the recursion

Ṽ ∗
n,T (ρ, q1, q0, t) = min

{
√
nη(ρ, q1, q0)ϖn(m̃(ρ)),

η(ρ, q1, q0)c
n

+ min
a∈{0,1}

∫
Ṽ ∗

n,T

(
ρ+ (2a− 1)µ̇⊺

aI
−1
a ψa(Y (a))√
nσa

, q1 + a

n
, q0 + 1 − a

n
, t+ 1

n

)
dp̃n(Y (a)|ρ)

}
,

(A.17)

for t ≤ T , and

Ṽ ∗
n,T (ρ, q1, q0, T ) =

√
nη(ρ, q1, q0)ϖn(m̃(ρ)).

The function η(·) accounts for the fact ˜̄Pn is not a probability.

Now, Lemma 9 in Appendix F shows that

sup
ρ,q1,q0

|η(ρ, q1, q0) − 1| ≤ Mn−ϑ (A.18)

for some M < ∞ and any ϑ ∈ (0, 1/2). Furthermore, by Assumption 1(iii),

lim
n→∞

sup
m∈[0,1]

∣∣∣√nϖn(m) −ϖ(m)
∣∣∣ = 0, (A.19)

where ϖ(m) := σ1+σ0
2 ∆∗ min{m, 1−m}. Since ϖ(·) is uniformly bounded, it follows from

(A.19) that
√
nϖn(·) is also uniformly bounded. Then, (A.18) and (A.19) imply

lim
n→∞

∣∣∣Ṽ ∗
n,T (0) − V̆ ∗

n,T (0)
∣∣∣ = 0,
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where V̆n,T (ρ, t) is defined as the solution to the recursion

V̆ ∗
n,T (ρ, t) = min

{
ϖ(m̃(ρ)), c

n
+ min

a∈{0,1}

∫
V̆ ∗

n,T

(
ρ+ (2a− 1)µ̇⊺

aI
−1
a ψa(Y (a))√
nσa

, t+ 1
n

)
dp̃n(Y (a)|ρ)

}

for t ≤ T, (A.20)

V̆ ∗
n,T (ρ, T ) = ϖ(m̃(ρ)).

We can drop the state variables q1, q0 in V̆ ∗
n,T (·) as they enter the definition of Ṽ ∗

n,T (ρ, q1, q0, t)

only via η(ρ, q1, q0), which was shown in (A.18) to be uniformly close to 1.

Step 3 (PDE approximation and relationship to optimal stopping). For any ρ ∈ R, let

ϖ(ρ) := ϖ(m̃(ρ)) = (σ1 + σ0)∆∗

2 min
{

exp(∆∗ρ)
1 + exp(∆∗ρ) ,

1
1 + exp(∆∗ρ)

}
.

Lemma 10 in Appendix F shows that V̆ ∗
n,T (·) converges locally uniformly to V ∗

T (·), the

unique viscosity solution of the HJB-VI

min
{
ϖ(ρ) − V ∗

T (ρ, t), c+ ∂tV
∗

T + ∆∗

2 (2m̃(ρ) − 1)∂ρV
∗

T + 1
2∂

2
ρV

∗
T

}
= 0 for t ≤ T,

V ∗
T (ρ, T ) = ϖ(ρ). (A.21)

Note that the sampling rule does not enter the HJB-VI. This is a consequence of the

choice of the prior, m∗
0.

There is a well known connection between HJB-VIs and the problem of optimal stop-

ping that goes by the name of smooth-pasting or the high contact principle, see Øksendal

(2003, Chapter 10) for an overview. In the present context, letting W (t) denote one-

dimensional Brownian motion, it follows by Reikvam (1998) that

V ∗
T (0, 0) = inf

τ≤T
E [ϖ(ρτ ) + cτ ] , where

dρt = ∆∗

2 (2m̃(ρt) − 1)dt+ dW (t); ρ0 = 0,

and τ is the set of all stopping times adapted to the filtration Ft generated by ρt.

Step 4 (Taking T → ∞). Through steps 1-3, we have shown

lim
n→∞

inf
d∈Dn,T

sup
h
Vn(d,h) ≥ lim

n→∞
inf

d∈Dn,T

Vn(d,m∗
0) = V ∗

T (0, 0).

We now argue that

lim
T →∞

V ∗
T (0, 0) = V ∗

∞ := inf
τ
E [ϖ(ρτ ) + cτ ] .

42



Suppose not: Then, there exists ϵ > 0, a sequence {Tj}j with Tj ↑ ∞, and some stopping

time τ̄ such that V (τ̄) := E [ϖ(ρτ̄ ) + cτ̄ ] < V ∗
Tj

(0, 0) − ϵ for all j (note that we always

have V ∗
T (0, 0) ≥ V ∗

∞ by definition). Now, ϖ(·) is uniformly bounded, so by the dominated

convergence theorem, limj→∞ E
[
ϖ(ρτ̄∧Tj

)
]

= E [ϖ(ρτ̄ )]. Hence,

lim
j→∞

V ∗
Tj

(0, 0) ≤ lim
j→∞

E
[
ϖ(ρτ̄∧Tj

) + c (τ̄ ∧ Tj)
]

= E [ϖ(ρτ̄ )] + lim
j→∞

cE [τ̄ ∧ Tj] ≤ V (τ̄).

This is a contradiction.

It remains to show V ∗
∞ is the same as V ∗, the value of the two-player game in Theorem

1. Define

mt = exp(∆∗ρt)
1 + exp(∆∗ρt)

.

By a change of variables from ρt to mt, we can write V ∗
∞ := infτ E [ϖ(mt) + cτ ], where

dmt = ∆∗mt(1−mt)dWt by Ito’s lemma. But by way of the proof of Lemma 1, see (A.3),

this is just V ∗. The theorem can therefore be considered proved.

A.4. Proof of Theorem 3. For any h = (h1, h0), let Pn,h denote the joint distribution

with density p
(1)
nT,θ0+h1/

√
n(y(1)

nT ) · p(0)
nT,θ0+h0/

√
n(y(0)

nT ). Take En,h[·] to be the corresponding

expectation. We can write Vn(dn,T ,h) as

Vn(dn,T ,h) = En,h

[√
n (µn,1(h1) − µn,0(h0)) I{δn,T ≥ 0} + cτn,T

]
.

Define µ(h) = (µ̇⊺
1h1, µ̇

⊺
0h0), ∆µ(h) = µ̇⊺

1h1 − µ̇⊺
0h0 and ∆nµ(h) = µn,1(h1) − µn,0(h0). In

addition, we also define q̃a(t) := σat/(σ1 + σ0).

Step 1 (Weak convergence of ρn(t)). Denote Pn,0 = Pn,(0,0). By the SLAN property (A.10),

independence of y(1)
nT ,y

(0)
n,T given h, and the central limit theorem,

ln dPn,h

dPn,0

(
y(1)

nT ,y
(0)
n,T

)
=

∑
a∈{0,1}

{
h⊺aI

1/2
a za,nT − T

2 h
⊺
aIaha

}
+ oP n,0(1) (A.22)

d−−→
Pn,0

N

−T
2

∑
a∈{0,1}

h⊺aIaha, T
∑

a∈{0,1}
h⊺aIaha

 . (A.23)

Therefore, by Le Cam’s first lemma, Pn,h and Pn,0 are mutually contiguous.

We now determine the distribution of ρn(t). We start by showing∣∣∣∣∣∣ µ̇
⊺
aI

−1
a

σa

√
n

⌊nqa(t)⌋∑
i=1

ψa(Y (a)
i ) − µ̇⊺

aI
−1
a

σa

√
n

⌊nq̃a(t)⌋∑
i=1

ψa(Y (a)
i )

∣∣∣∣∣∣ = oPn,0(1), (A.24)
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uniformly over t ≤ T . Choose any b ∈ (1/2, 1). For t ≤ n−b, we must have qa(t), q̃a(t) ≤

n−b, so (A.24) follows from Assumption 1(ii), which implies

sup
1≤i≤nT

|ψa(Y (a)
i )| = OPn,0(n1/r), for any r > 0. (A.25)

As for the other values of t, by (4.5) and (A.25),

µ̇⊺
aI

−1
a

σa

√
n


⌊nqa(t)⌋∑

i=1
ψa(Y (a)

i ) −
⌊nq̃a(t)⌋∑

i=1
ψa(Y (a)

i )

 ≲
√
n |qa(t) − q̃a(t)| sup

1≤i≤nT
|ψa(Y (a)

i )| = oPn,0(1),

uniformly over t ∈ (n−b, T ].

Now, (A.24) implies

ρn(t) = µ̇⊺
1I

−1
1

σ1
√
n

⌊nq̃1(t)⌋∑
i=1

ψ1(Y (1)
i ) − µ̇⊺

0I
−1
0

σ0
√
n

⌊nq̃0(t)⌋∑
i=1

ψ0(Y (0)
i ) + oPn,0(1) uniformly over t ≤ T.

(A.26)

By Donsker’s theorem, and recalling that q̃a(t) = σat/(σ1 + σ0),

µ̇⊺
aI

−1
a

σa

√
n

⌊nq̃a(·)⌋∑
i=1

ψa(Y (a)
i ) d−−→

Pn,0

√
σa

σ1 + σ0
Wa(·),

where W1(·),W0(·) can be taken to be independent Wiener processes due to the indepen-

dence of y(1)
nT ,y

(0)
n,T under Pn,0. Combined with (A.26), we conclude

ρn(·) d−−→
Pn,0

W̃ (·), (A.27)

where W̃ (·) =
√

σ1
σ1+σ0

W1(·) −
√

σ0
σ1+σ0

W0(·) is another Wiener process.

Let Z denote the normal random variable in (A.23). Equations (A.23) and (A.27) imply

that ρn(·), ln (dPn,h/dPn,0) are asymptotically tight, and therefore, the joint (ρn(·), ln (dPn,h/dPn,0))

is also asymptotically tight under Pn,0. Furthermore, for any t ∈ [0, T ], it can be shown

using (A.26) and (A.22) that ρn(t)

ln dPn,h

dPn,0

 d−−→
Pn,0

 W̃ (t)

Z

 ∼ N


 0

−T
2
∑

a h
⊺
aIaha

 ,
 t ∆µ(h)

σ1+σ0
t

∆µ(h)
σ1+σ0

t T
∑

a h
⊺
aIaha


 .

Based on the above, an application of Le Cam’s third lemma as in van der Vaart and

Wellner (1996, Theorem 3.10.12) then gives

ρn(·) d−−→
Pn,h

ρ(·) where ρ(t) := ∆µ(h)
σ1 + σ0

t+ W̃ (t). (A.28)
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Step 2 (Weak convergence of δn,T , τn,T ). Let D[0, T ] denote the metric space of all func-

tions from [0, T ] to R equipped with the sup norm. For any element z(·) ∈ D[0, T ], define

τT (z) = T ∧ inf{t : |z(t)| ≥ γ} and δT (z) = I{z(τT (z)) > 0}.

Now, under h = (0, 0), ρ(·) is the Wiener process, whose sample paths take values

(with probability 1) in C̄[0, T ], the set of all continuous functions such that γ,−γ are

regular points (i.e., if z(t) = γ, z(·) − γ changes sign infinitely often in any time interval

[t, t + ϵ], ϵ > 0; a similar property holds under z(t) = −γ). The latter is a well known

property of Brownian motion, see Karatzas and Shreve (2012, Problem 2.7.18), and it

implies z(·) ∈ C̄[0, T ] must ‘cross’ the boundary within an arbitrarily small time interval

after hitting γ or −γ. It is then easy to verify that if zn → z with zn ∈ D[0, T ] for all n

and z ∈ C̄[0, T ], then τT (zn) → τT (z) and δT (zn) → δT (z). By construction, τn,T = τT (ρn)

and δn,T = δT (ρn), so by (A.27) and the extended continuous mapping theorem (van der

Vaart and Wellner, 1996, Theorem 1.11.1)

(τn,T , δn,T ) d−−→
Pn,0

(τ ∗
T , δ

∗
T ),

where τ ∗
T := τT (ρ) and δ∗

T := δT (ρ).

For general h, ρ(·) is distributed as in (A.28). By the Girsanov theorem, the probability

law induced on D[0, T ] by the process ∆µ(h)
σ1+σ0

t+W̃ (t) is absolutely continuous with respect

to the probability law induced by W̃ (t). Hence, with probability 1, the sample paths of

ρ(·) again lie in C̄[0, T ]. Then, by similar arguments as in the case with h = (0, 0), but

now using (A.28), we conclude

(τn,T , δn,T ) d−−→
Pn,h

(τ ∗
T , δ

∗
T ). (A.29)

Step 3 (Convergence of Vn(dn,T ,h)). From (3.8) and the discussion in Section 3.1, it is

clear that the distribution of ρ(t) is the same as that of σ−1
1 x1(t)−σ−1

0 x0(t) in the diffusion

regime. Thus, the joint distribution, P, of (τ ∗
T , δ

∗
T ), defined in Step 2, is the same as the

joint distribution of(
τ ∗

T := τ ∗ ∧ T, δ∗
T := I

{
x1(τ ∗ ∧ T )

σ1
− x0(τ ∗ ∧ T )

σ0
≥ 0

})

in the diffusion regime, when the optimal sampling rule π∗ is used. Therefore, defining

d∗
T ≡ (π∗, τ ∗

T , δ
∗
T ) and E[·] to be the expectation under P, we obtain

V (d∗
T , µ(h)) = E [∆µ(h)δ∗

T + cτ ∗
T ] ,
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where V (d,µ) denotes the frequentist regret of d in the diffusion regime. Now, recall

that by the definitions stated early on in this proof,

Vn(dn,T ,h) = En,h

[√
n∆nµ(h)δn,T + cτn,T

]
.

Since δn, τn are bounded and
√
n∆nµ(h) → ∆µ(h) by Assumption 1(iii), it follows from

(A.29) that for each h,

lim
n→∞

Vn(dn,T ,h) = V (d∗
T , µ(h)). (A.30)

For any given h and ϵ > 0, a dominated convergence argument as in Step 4 of the

proof of Theorem 2 shows that there exists T̄h large enough such that

V (d∗
T , µ(h)) ≤ V (d∗, µ(h)) + ϵ (A.31)

for all T ≥ T̄h. Fix a finite subset J of R and define T̄J = suph∈J Th. Then, (A.30) and

(A.31) imply

lim inf
n→∞

sup
h∈J

Vn(dn,T ,h) ≤ sup
h∈J

V (d∗
T , µ(h)) ≤ sup

h∈J
V (d∗, µ(h)) + ϵ,

for all T ≥ T̄J . Since the above is true for any J and ϵ > 0,

sup
J

lim
T →∞

lim inf
n→∞

sup
h∈J

Vn(dn,T ,h) ≤ sup
J

sup
h∈J

V (d∗, µ(h))

≤ sup
µ
V (d∗,µ) = V ∗.

The inequality can be made an equality due to Theorem 2. We have thereby proved

Theorem 3.
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