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1 Introduction

Risk aversion and entry are both important considerations in real-world auction markets. Un-

fortunately, the interaction between these factors also raises a significant empirical challenge:

selection into entry may undermine the exclusion restrictions necessary for identification of

risk preferences. This paper provides a comprehensive analysis of identification in first price

auctions with risk averse bidders and selective entry, allowing for potentially non-binding

reserve prices. We then explore inference based on our identification results, applying and

extending some results of Chen, Christensen, and Tamer (2018) (henceforth CCT) to con-

struct valid confidence sets for identified sets for potentially set-identified model primitives.

Bidder risk attitudes are of fundamental importance in auction design—affecting, among

other things, the revenue ranking between first-price and ascending auctions (Maskin and

Riley (1984)), the structure of the optimal mechanism (Matthews (1987)), and whether the

seller should disclose reserve prices (Li and Tan (2017)). Motivated by this fact, a substantial

empirical literature has arisen on bidder risk preferences, finding evidence for risk aversion in

a variety of real-world contexts, including in settings where bidders are firms. For instance,

Athey and Levin (2001) find that bidding firms diversify risk across species in U.S. Forest Ser-

vice timber auctions; Ackerberg, Hirano, and Shahriar (2017) show that bidder risk aversion

rationalizes the use of buy-it-now options in eBay auctions; and Bajari and Hortacsu (2005)

find that risk aversion explains bidder behavior in experiments. Using structural approaches,

Lu and Perrigne (2008) and Campo, Guerre, Perrigne, and Vuong (2011) (henceforth CGPV)

find evidence for risk aversion in U.S. Forest Service timber auctions, while Kong (2020) finds

that risk aversion can explain observed revenue differences between first-price and ascending

auctions for oil and gas leases in New Mexico.1

A similarly substantial body of empirical research has also documented the prevalence of

endogenous entry in real-world auction markets,2 which has also motivated theoretical work

on selective entry in auction models.3 While this literature has evolved largely in parallel to

1Findings of risk aversion in timber, oil and gas auctions are of particular interest as the players in
both markets are firms. We view such findings as consistent with the hypothesis that, even within firms, all
bidding is ultimately done by individuals. Hence, as usual in principle-agent models, the risk preferences of
the bidding agents will typically be relevant even if one presumes that the firm itself is risk neutral.

2For instance, Hendricks, Pinkse, and Porter (2003) report that less than 25 percent of eligible bidders
actually participate in U.S. Minerals Management Service “wildcat auctions” held from 1954 to 1970. Li and
Zheng (2009) find that only about 28 percent of planholders in Texas Department of Transportation mowing
contracts actually submit bids. Similar patterns have been reported for timber auctions (Athey, Levin, and
Seira (2011), Li and Zhang (2010), Roberts and Sweeting (2013)), online auctions (Bajari and Hortacsu
(2003)), highway procurement (Krasnokutskaya and Seim (2011)) and corporate takeover markets (Gentry
and Stroup (2019)) among others.

3See, for example, Samuelson (1985), Ye (2007), Roberts and Sweeting (2013), Marmer, Shneyerov, and
Xu (2013), Gentry and Li (2014) and references therein.
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the literature on risk aversion, the conjunction between entry and risk aversion raises new,

important economic questions. For instance, Smith and Levin (1996) show that in settings

with both risk aversion and entry, second-price auctions can yield higher revenue than first-

price auctions, contradicting the usual revenue ranking under risk aversion (Maskin and Riley

(1984)). Answers to many other counterfactual questions of policy interest—such as what

reserve price maximizes revenue, whether to disclose the number of bidders, how revenue

varies with the number of potential bidders, and how sellers should regulate participation—

will similarly depend on the interaction between risk aversion and entry.

Econometrically, however, the interaction between risk aversion and entry also raises

substantial challenges for identification and inference, particularly in settings where entry

is potentially selective. Existing results on nonparametric point identification in auctions

with risk averse bidders assume that the latent distribution of bidder valuations is invariant

either to the seller’s choice of auction format (Lu and Perrigne (2008)), or to the set of

competitors faced (Guerre, Perrigne, and Vuong (2009), henceforth GPV). But, as shown

by Li, Lu, and Zhao (2015) (henceforth LLZ), if risk averse bidders select into entry, the

distribution of valuations among entrants will respond endogenously to both the auction

format and the set of competitors faced. Hence both invariance assumptions typically fail

in settings with selective entry, rendering identification of risk preferences—and therefore of

any counterfactual whose answer depends on risk preferences—correspondingly uncertain.

Motivated by these observations, we study identification and inference in first-price auc-

tions with risk averse bidders and selective entry, building on a flexible framework we label

the Affiliated Signal with Risk Aversion (AS-RA) model. This model considers N symmetric

potential bidders with wealth preferences described by a smooth concave Bernoulli utility

function U , who compete in a first-price auction with entry. Potential bidders have inde-

pendent private values, observe signals of their values prior to entry, and choose whether to

incur a common-knowledge entry cost, with entrants learning their values and submitting

bids subject to a weakly non-binding reserve price. The AS-RA framework nests many exist-

ing models as special cases, including the affiliated-signal models of Marmer, Shneyerov, and

Xu (2013) and Gentry and Li (2014) (henceforth GL); the mixed-strategy entry model of

Levin and Smith (1994); and the models of risk averse bidders with exogenous entry in GPV

and CGPV. It therefore provides a natural focal point for researchers seeking to understand

the policy implications of interactions between risk aversion and selective entry.

Our paper makes three main contributions. First, we generalize the results of LLZ on

existence, uniqueness, and properties of symmetric monotone equilibrium in the AS-RA

model to allow for potentially non-binding reserve prices (Theorem 4 in Appendix A). As

pointed out by a referee, this generalization is very important empirically, since reserve prices
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may or may not bind in practice. It is also novel theoretically, since it changes the boundary

conditions for equilibrium bidding: whereas with full participation the lowest-type bidder

will bid their value, when there is a positive probability that no rival enters, the lowest-

type bidder will bid the reserve price, which may be strictly below their value. If so, this

introduces a discontinuity in the minimum bid as rivals transition from partial to complete

entry. We show that equilibrium payoffs must nevertheless be pointwise continuous in rival

entry probabilities for all but the lowest bidder type. This in turn suffices to guarantee

existence of a symmetric monotone equilibrium, which also must be unique.

Second, we establish new results on nonparametric and semiparametric identification

in first-price auctions with both risk averse bidders and selective entry. Following GL, we

consider identification based on variation either in the number of potential competitors N

or in an instrument z influencing bidders’ opportunity costs of entry. Assuming that neither

potential bidders’ utility U nor the ex ante distribution of bidders’ private information de-

pends on realizations of N and z, we provide a sharp characterization of the set of AS-RA

primitives consistent with equilibrium bidding behavior (Theorem 1). We show that risk

neutrality is nonparametrically testable even with variation in N only (Corollary 1). More

generally, given sufficient variation in both N and z, model primitives are nonparametrically

identified up to a bounded constant (Theorem 2). In the process, we show that the difference

in boundary conditions noted above substantially changes the identification problem, requir-

ing our novel identification results even when (for example) entry is non-selective. Finally, we

explore semiparametric identification within the AS-RA model, showing that the CRRA and

CARA utility families imply semiparametric point identification of U (Corollary 3), and that

a parametric value-signal copula family yields conditional identification of model primitives

as functions of the copula parameters (Theorem 3).

Third, we adapt and extend the quasi-Bayes log-likelihood-ratio (LR) approach of CCT

to construct frequentist confidence sets (CSs) for the identified sets of AS-RA model primi-

tives. Likelihood based inference on (possibly) partially identified first-price auction models

like ours is particularly challenging because (i) the support of equilibrium bids is parameter

dependent; and (ii) the log-likelihood functions typically do not have closed-form expressions.

Problem (i) violates usual regularity conditions for the asymptotic normality of maximum-

likelihood estimator (MLE) even in point-identified parametric auction models; see, e.g.,

Donald and Paarsch (1993), Hirano and Porter (2003) and Chernozhukov and Hong (2004).

Luckily, CCT show in their Appendix C that their Procedure 1, which provides quasi-Bayes

LR based CSs for the identified sets in set-identified models, yields valid frequentist CSs even

when the support of observables depends on parameters. We further show in our Appendix

B that CCT’s Procedure 2, which constructs quasi-Bayes profiled LR based CSs for the
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identified sets for subvector parameters in set-identified models, also yields valid frequentist

CSs under parameter-dependent support. This result is of independent interest. To address

Problem (ii), we provide computationally efficient algorithms for implementing quasi-Bayes

profiled LR CSs in potentially set identified auction models without closed-form likelihood

expressions. We parameterize bidder utility and distributions of values among entrants flex-

ibly using Bernstein polynomial bases, and develop CSs for identified sets of parameters and

of parameter subvectors. We propose novel and fast algorithms for implementation, building

on Mathematical Programming with Equilibrium Constraints (MPEC) (see Su and Judd

(2012)) and Hamiltonian Monte Carlos. To our knowledge, our paper is the first to adapt

CCT’s Procedures 1 and 2 to the challenging problem of set inference in auction models. Re-

sults from large-scale, realistically complex simulations indicate that ours is a very promising

approach to inference problems in set identified equilibrium models with parameter depen-

dent support. Moreover, simulations show that, even for point-identified AS-RA models, our

CSs for a scalar parameter (e.g., a risk-attitude parameter) perform as well as, or even better

than, standard profiled LR CSs and percentile CSs for models.

The rest of the paper is organized as follows. Section 2 introduces the AS-RA model with

general boundary conditions, with further details in Appendix A. Section 3 characterizes

identified sets for model primitives. Section 4 presents quasi-Bayes LR based confidence sets

for model primitives, with further details in Appendix B. Section 5 conducts a non-trivial

simulation study in which bidders’ risk preferences and value distributions are approximated

by Bernstein polynomials. Online Appendix ?? presents computation details; and online

Appendix ?? contains mathematical proofs of all the technical results.

2 The symmetric AS-RA model

We consider a population of independent first-price auctions, each involving allocation of a

single indivisible good among N (≥ 2) potential bidders via a first-price auction with entry.

The number of potential bidders N varies on the set N ≡ {N1, ..., NK}, where elements are

ordered such that N1 < N2 < ... < NK , and the subscript k ∈ K ≡ {1, ..., K} indexes levels

of N . For each auction, the econometrician observes the number of potential bidders N , the

number of bidders (entrants) n, the vector of submitted bids b, and may also observe an

entry instrument z ∈ Z. We allow Z to be a singleton (corresponding to the case of no

instrument), a discrete finite set, or a closed interval with non-empty interior. We focus on a

symmetric environment with independent private information, although our main identifica-

tion insights extend to asymmetric bidders and unobserved auction heterogeneity as in GL.

Our identification results also extend immediately conditional on further auction covariates
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X, although for simplicity we suppress these in notation.

2.1 Model overview

We model entry and bidding as a two-stage game with the following timing. First, in Stage

1, each potential bidder i receives a private signal Si of her (unknown) private value Vi, and

all potential bidders simultaneously decide whether to enter at an opportunity cost c(z) > 0,

which potentially depends on an instrument z ∈ Z affecting the value of opportunities

foregone by entry. Then, in Stage 2, the n bidders who choose to enter in Stage 1 learn

the realizations vi of their private values Vi and submit bids. The Stage 2 mechanism is a

first-price auction with reserve price p0, where the highest bidder wins and pays her bid.

Value-signal pairs (Vi, Si) are drawn independently across bidders from a common joint

distribution Fvs(v, s), where the distribution of Vi given Si is at least weakly stochastically

increasing in Si. We assume that Vi has a continuous marginal distribution F with support

[v, v̄], where v ≥ 0 and v̄ ∈ (v,∞). We focus on settings where the reserve price p0 is weakly

non-binding, in the sense that p0 ≤ v; a binding reserve price p0 > v would induce well-

known truncation issues which are not our primary interest in this paper. Finally, without

loss of generality, we normalize Stage 1 signals to standard uniform: Si ∼ U [0, 1]. By Sklar’s

theorem (see, e.g., Nelsen (1999)), we then have Fvs(v, s) = C(F (v), s), where C(a, s) is the

unique bivariate copula describing dependence between Vi and Si.

Potential bidders are risk averse with risk preferences described by a symmetric, strictly

monotone, weakly concave Bernoulli utility function U(w), where w is post-auction wealth.

Without loss of generality, we normalize U such that U(0) = 0 and U(1) = 1. For simplicity,

we model bidders as having zero initial wealth and zero financial costs of entry, with c(z)

interpreted as a pure opportunity cost of entry following Lu (2009). As described in Appendix

A, however, these are in fact equivalent to normalizations in a more general setting with

nonzero initial wealth and both financial and opportunity costs of entry.

The number of potential competitors N , entry cost c(z), reserve price p0, utility function

U , ex ante value distribution F , and value-signal copula C are known to all potential bidders,

with value-signal realization (vi, si) being private information revealed to potential bidder i

with timing described above. Although N is common knowledge prior to entry, the number

of entrants (actual bidders) n is revealed to bidders only after the auction concludes. In

our view, this informational structure best reflects institutional practices typical in sealed-

bid markets, where auctioneer announcements or industry experience convey knowledge of

potential competition but bids are revealed only after the auction concludes.4

4For example, in US highway procurement markets, the auctioneer will typically publish a list of planhold-
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2.2 Structural assumptions

In what follows, we refer to (U, F,C, c) as the model primitives, and (U, F,C) as the bid-stage

primitives. We shall study identification of bid-stage primitives based on variation in N and

/ or z, assuming that both factors are excludable in the sense that true bid-stage primitives,

subsequently denoted (U0, F0, C0), are invariant to realizations of N and z.

Assumption 1. (U0, F0, C0) and c(·) satisfy the following conditions:

1. For all N ∈ N and z ∈ Z, Pr(Vi ≤ v|N, z) = F0(v) for any v ∈ [0,∞) and Pr(F0(Vi) ≤
a, Si ≤ s|N, z) = C0(a, s) for any (a, s) ∈ [0, 1]2, and U0(·) does not depend on N or z.

2. The entry cost function c(z) is strictly increasing in z when Z is not a singleton, and
is further continuous in z when Z is a closed interval with non-empty interior.

Exogenous variation in competition, either actual or potential, has been considered as a

source of variation for testing and identification by many prior studies, including Haile, Hong,

and Shum (2003) and GPV, among others. Exogenous variation in an entry instrument z

follows GL, among others. While we analyze identification allowing for variation in both N

and z, we expect that external instruments z may be challenging to find in practice.5 For this

reason, we will place particular emphasis on cases where only variation in N is available (or,

equivalently, where Z is a singleton). Importantly, however, our identification results extend

immediately to settings with asymmetric bidders, in which case types of i’s rivals are also

natural candidates for instruments affecting bidder i’s entry but excludable (in the sense of

Assumption 1) with respect to i’s primitives.

In addition to the key exclusion restrictions in Assumption 1, we assume that (U0, F0, C0)

belong to regularity classes defined as follows:

Assumption 2. U0 ∈ U , where U is the set of utility functions U(·) such that:

1. U : [0,∞) 7→ [0,∞), U(0) = 0, and U(1) = 1.

ers (potential entrants) on each contract prior to the letting date. But only a small fraction of planholders
actually submit bids (Li and Zheng (2009)), and the set of bids received is only disclosed after the letting
concludes. We view such auctions as naturally modeled by the assumption of known N but unknown n.
Empirical support for the assumption of unknown n is provided by Kong (2020), who shows in the context
of New Mexico oil and gas auctions that even when n = 1 the single bidder typically bids well above the
reserve. This finding is difficult to rationalize when n is known, but follows immediately when n is unknown.

5In Assumption 1, we make implicit use of the fact that z shifts opportunity, rather than financial, costs
of entry: if instead z shifted financial entry costs, then z would affect the normalization of U(·) and one
could not assume that U0(x) is invariant to z. This interpretation is consistent with the structural AS-RA
application of Kong (2017), in which z measures oil and gas auctions outside the specific region considered.
As pointed out by a referee, however, one may also be concerned that opportunities to bid in other auctions
could affect bidder wealth, in which case z would best be treated as a covariate rather than an instrument.
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2. U(·) is continuous on [0,∞) and admits three continuous derivatives on (0,∞), with
U ′(·) > 0 and U ′′(·) ≤ 0 on (0,∞).

3. Both limx↓0
d
dx

(
U(x)
U ′(x)

)
and limx↓0

d2

dx2

(
U(x)
U ′(x)

)
are finite.

Assumption 3. F0 ∈ F , where F is the set of probability distributions F (·) such that:

1. F (·) is supported on a compact interval [v, v̄], with v ≥ 0 and v̄ ∈ (v,∞).

2. F (·) is twice continuously differentiable with positive density on [v, v̄].

Assumption 4. C0 ∈ C, where C is the set of bivariate copula functions C(a, s) such that,
interpreted as a distribution over random variables (A, S) with uniform marginals:

1. C(a, s) is continuous on [0, 1]× [0, 1].

2. For all s ∈ [0, 1), the distribution of A given S ≥ s admits a continuous, bounded
density with infimum support a(s) continuous in s, and for all points in its support
except possibly the infimum a(s), this density is locally bounded away from zero,
differentiable in a, and differentiable in s.

3. For all a ∈ [0, 1], C(a, s) is concave in s.

Assumptions 2 and 3 impose standard regularity conditions on U0 and F0, following GPV

among others. Assumptions 4.1-4.2 ensure that regularity conditions on F0 pass through

to the distributions of Vi conditional on Si ≥ s which arise in equilibrium, while nesting

Samuelson (1985)’s model of perfectly selective entry within the class C.6 Finally, Assumption

4.3 implies that Vi is weakly increasing in Si in the sense of first-order stochastic dominance;

this can be seen most readily when C0(a, s) is differentiable, in which case F0(v|Si = s) ≡
∂C0(F0(v),s)

∂s
. We maintain Assumptions 1-4 throughout the analysis.

As in GPV, rather than working with U0, it will frequently prove more convenient to

consider the one-to-one transformation λ0(x) ≡ U0(x)
U ′
0(x)

. In view of the normalizations above,

U0(x) = exp(
∫ x
1
1/λ0(t) dt). Further, since U0(0) = 0, U ′

0 > 0, and U ′′
0 ≤ 0, we have both

λ0(0) = 0 and λ′0(x) = 1− U0(x)
U ′
0(x)

U ′′
0 (x)

U ′
0(x)

≥ 1. It follows that λ0(·) has a well-defined, monotone

inverse λ−1
0 (·) satisfying λ−1

0 (0) = 0 and λ−1,′
0 ≤ 1. We will work with U0, λ0, and λ−1

0

interchangeably. Let Λ be the set of functions λ(x) such that λ(x) ≡ [U(x)/U ′(x)] for some

U ∈ U , and Λ−1 be the set of functions λ−1 which are inverses of some function λ ∈ Λ.

6Formally, this model is nested by setting C(a, s) = min(a, s), in which case C(a, s) does not admit a
joint density but does satisfy the smoothness conditions in Assumption 4, which are sufficient for our results.
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2.3 Equilibrium behavior

We focus on the unique symmetric, monotone equilibrium of the AS-RA model with general

boundary conditions. See Appendix A for a complete derivation of this equilibrium, in a

more general setting additionally accommodating nonzero initial wealth and financial costs

of entry. We describe only its identification-relevant features here.

For each competition level k ∈ K and each instrument level z ∈ Z, there will be a

unique signal threshold sk(z) ∈ [0, 1] such that potential bidder j enters when Sj ≥ sk(z).

If sk(z) = 0, then all potential bidders enter with certainty. Meanwhile, if sk(z) = 1, then

no bidder enters and no bids are observed. We are primarily interested in interior entry

(sk(z) ∈ (0, 1)), although we also consider full entry (sk(z) = 0) for completeness.

Given a symmetric entry threshold sk(z) ∈ [0, 1), the distribution of valuations among

bidders choosing to enter conditional on observables (Nk, z) will be described by the c.d.f.

F 0
k (v|z) ≡ F0(v|Sj ≥ sk(z)) =

F0(v)− C0(F0(v), sk(z))

1− sk(z)
, k = 1, ..., K. (1)

Let v0(·) : [0, 1] 7→ [v, v̄] be the quantile function of the ex ante value distribution function

F0(·) : [v, v̄] 7→ [0, 1]. For any z ∈ Z, we let vk(·|z) be the quantile function of the post-entry

value distribution F 0
k (·|z). When Z is a singleton and the conditioning on z becomes trivial,

we will simply use F 0
k (v) and vk(α) (for α ∈ [0, 1]) to denote F 0

k (v|z) and vk(α|z) respectively.
Taking the entry threshold sk(z) ∈ [0, 1) as given, bidding at competition level k ∈ K will

be described by a symmetric, monotone strategy βk(·|z) such that entrant i drawing value

vi optimally submits bid βk(vi|z). In equilibrium, entrant i submitting bid βk(y|z) expects

to outbid any potential rival j in one of two events: either j does not enter (probability

sk(z)), or j does enter but draws a valuation below y (probability (1− sk(z))F 0
k (y|z)). When

potential rivals play equilibrium strategies, we may therefore write i’s bidding problem as

max
y

{
U0(vi − βk(y|z)) · [sk(z) + (1− sk(z))F

0
k (y|z)]Nk−1

}
.

Taking a first-order condition with respect to y and enforcing the equilibrium condition

y = vi, we obtain the following differential equation characterizing βk(·|z):

β′
k(v|z) = λ0(v − βk(v|z))

(Nk − 1)(1− sk(z))f
0
k (v|z)

sk(z) + (1− sk(z))F 0
k (v|z)

, (2)

where β′
k(v|z) and f 0

k (v|z) denote, respectively, the derivatives of βk(v|z) and F 0
k (v|z) with

respect to v. It only remains to specify appropriate boundary conditions for βk(v|z). These
will be determined by the bidder with the lowest type vi = vk(0|z), whose behavior will

depend crucially on whether sk(z) = 0 or sk(z) ∈ (0, 1).
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If sk(z) = 0, then the bidder with the lowest type wins with probability zero and thus

cannot do better than to bid their value. Thus, noting that sk(z) = 0 also implies vk(0|z) =
v0(0) = v, the relevant boundary condition when sk(z) = 0 is βk(v|z) = v. Meanwhile, if

sk(z) ∈ (0, 1), then an entrant with type vi = vk(0|z) will still win if they are the only

bidder, which occurs with probability sk(z)
Nk−1 > 0. Conditional on being the only bidder,

it is obviously optimal to bid the reserve price p0. Thus, when sk(z) ∈ (0, 1), the relevant

boundary condition is βk(vk(0|z)|z) = p0. In either case, Equation (2) together with the

relevant boundary condition will uniquely determine βk(·|z).
Finally, consider the threshold sk(z) characterizing equilibrium entry at (Nk, z). Note that

if p0 < v, the minimum equilibrium bid will in fact change discontinuously as sk(z) → 0+.

We show in Theorem 4 in Appendix A, however, that for every fixed type vi > v, the

bid submitted by type vi as sk(z) → 0+ will converge to that submitted by type vi at

sk(z) = 0. We further show that bid functions are increasing and continuous in sk(z) for all

sk(z) ∈ (0, 1). These properties ensure that pre-entry profits are increasing and continuous

in sk(z), which in turn implies existence of a unique equilibrium entry threshold sk(z) ∈ [0, 1]

which is increasing and continuous in c(z). In particular, if sk(z) ∈ (0, 1), then a potential

bidder with signal Si = sk(z) must be indifferent between entering and remaining out when

facing Nk − 1 potential rivals who play equilibrium strategies. Furthermore, for all k ∈ K,

if sk(z) ∈ (0, 1), then sk(z) is strictly increasing in both Nk and z, and is continuous in z

whenever z is a continuous instrument. Finally, if s1(z) < 1, then sk(z) < 1 for all k ∈ K.

2.4 Linking observables to unobservables

For each k ∈ K and z ∈ Z, let Gk(b|z) be the equilibrium distribution of bids submitted at

(Nk, z), gk(b|z) be the density associated with Gk(b|z), and bk(α|z) be the quantile function

associated with Gk(b|z). As usual, observing bids will (point) identify Gk(·|z) for each k ∈ K
and z ∈ Z. Similarly, recalling Si ∼ U [0, 1], we may (point) identify the equilibrium entry

threshold sk(z) for each (k, z) from observed probabilities of entry:

sk(z) = 1− E[n|Nk, z]

Nk

.

We next derive the key equilibrium inverse bidding function linking the directly identified

objects s1(z), ..., sK(z), G1(·|z), ..., GK(·|z) to latent bid-stage primitives. Toward this end,

consider any z ∈ Z such that s1(z) < 1 (and recall that this implies sk(z) < 1 for all

k ∈ K). Following GPV, we first apply the change of variables bi = βk(vi|z) to the first-order

condition (2), then exploit strict monotonicity of bi in vi to re-express both bids and values

in terms of their respective quantile functions bk(α|z) and vk(α|z). These transformations
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ultimately yield the following equilibrium quantile inverse bidding functions:

vk(α|z) = bk(α|z) + λ−1
0 (Rk(α|z)), for all α ∈ [0, 1], k ∈ K, z ∈ Z, (3)

where the argument Rk(α|z) to the unknown function λ−1
0 (·) is defined as

Rk(α|z) ≡
[
sk(z) + (1− sk(z))α

(Nk − 1)(1− sk(z))

]
b′k(α|z). (4)

For each z ∈ Z such that sk(z) ∈ (0, 1), properties of βk(·|z) imply that bk(0|z) = p0, that

bk(·|z) is differentiable on its domain with b′k(α|z) = [gk(bk(α|z)|z)]−1, and that Rk(·|z) is

continuous on [0, 1] and differentiable on at least (0, 1].7 Definition (4) also shows that when

either sk(z) > 0 or α > 0, Rk(α|z) is continuous in z ∈ Z when z is a continuous instrument.

Furthermore, (point) identification of sk(z), Gk(·|z) implies (point) identification of bk(·|z)
and Rk(·|z), and hence (point) identification of the right-hand side of (3) up to the unknown

λ−1
0 (·). Finally, note that (3) can substantively restrict λ−1

0 (·) on, at most, its equilibrium

domain [r, r̄], where r ≡ infk∈K,z∈Z minα∈[0,1]Rk(α|z) and r̄ ≡ supk∈K,z∈Z maxα∈[0,1]Rk(α|z).

3 Identification of bid-stage primitives

This section first provides a sharp nonparametric characterization of restrictions on bid-stage

primitives (λ−1
0 , F0, C0) generated by the bid distributions G1(·|z), ..., GK(·|z), taking entry

thresholds s1(z), ..., sK(z) as given (Theorem 1).8 We then present several important im-

plications of this sharp characterization. We show that risk aversion is nonparametrically

testable in the sense that, given variation in either N or z, risk neutrality is outside the

identified set when bidders are strictly risk averse. We also establish results on point identi-

fication based on variation in both N and a continuous z, identification with a parametric

utility, and conditional identification with a parametric copula.

3.1 Nonparametric bid-stage identified set for (λ−1
0 , F0, C0)

We begin by analyzing the nonparametric bid-stage identified set for (λ−1
0 , F0, C0), denoted

by I and defined formally as follows:

7If lima→0 v
′
k(a|z) <∞, then Rk(·|z) is differentiable on [0, 1].

8Our focus on bid-stage primitives is motivated by two findings of GL in their risk neutral (i.e., λ−1
0 (x) = x)

context. First, GL show how to map restrictions on (F0, C0) implied by bidding into identified sets for c(z);
Second, they find that entry-stage restrictions convey little additional information on bid-stage primitives.
In Appendix A.3 of our previous version SSRN-3681530 (May 28, 2023), we translate our sharp identified set
for bid-stage primitives (λ−1

0 , F0, C0) into bounds on conditional distributions and entry costs. But, in view
of GL’s second finding and due to the lack of space, we focus on restrictions on bid-stage primitives implied
by equilibrium bidding, taking observed entry patterns as given.
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Definition 1. The bid-stage identified set for (λ−1
0 , F0, C0), denoted by I ⊂ Λ−1 × F × C,

is the set of all (λ−1, F, C) ∈ Λ−1 × F × C that jointly satisfy equations (1) and (3) for all

k ∈ K and all z ∈ Z.

Equivalently, I is the subset of Λ−1 × F × C such that, for all k ∈ K and z ∈ Z, Gk(·|z) is
the equilibrium bid distribution implied by each (λ−1, F, C) ∈ I given sk(z).

We next provide a sharp characterization of I, emphasizing restrictions on λ−1 gener-

ated by equilibrium bidding. Toward this end, consider any candidate λ−1 ∈ Λ−1. Under the

hypothesis λ−1 = λ−1
0 , the quantile inverse bidding function (3) implies a unique set of candi-

dates ṽ1(·|z;λ−1), ..., ṽK(·|z;λ−1) for the unknown latent quantile functions v1(·|z), ..., vK(·|z):

ṽk(α|z;λ−1) ≡ bk(α|z) + λ−1(Rk(α|z)), for all α ∈ [0, 1], k ∈ K, z ∈ Z . (5)

By construction, these candidates ṽ1(·|z;λ−1), ..., ṽK(·|z;λ−1) are identified up to λ−1 and

well-defined for any λ−1 ∈ Λ−1. Furthermore, properties of bk(·|z) and Rk(·|z) imply that,

for all λ−1 ∈ Λ−1, ṽk(·|z;λ−1) is differentiable on the same domain as vk(·|z).
Next observe that taking λ−1

0 ∈ Λ−1 and entry behavior as given, primitives (F0, C0) ∈
F×C influence bidding behavior only through the latent quantile functions v1(·|z), ..., vK(·|z)
(see (1)). To determine whether any candidate λ−1 ∈ Λ−1 is consistent with bid-stage observ-

ables, it is therefore sufficient to determine whether there exists a structure (F,C) ∈ F × C
consistent with the candidate quantile functions ṽ1(·|z;λ−1), ..., ṽK(·|z;λ−1) generated by λ−1

through (5). This in turn reduces to a set of five restrictions on ṽ1(·|z;λ−1), ..., ṽK(·|z;λ−1),

yielding the following sharp characterization of the bid-stage identified set I:

Theorem 1. Let Λ−1
I be the set of λ−1 ∈ Λ−1 such that the candidate quantile functions

ṽk(·|z;λ−1) defined by (5) satisfy all of the following restrictions M, O, I, D and S:

M For all k ∈ K, z ∈ Z, and all a ∈ (0, 1], ṽ′k(a|z;λ−1) is bounded away from zero.

O For all k, l ∈ K and z, z′ ∈ Z such that sk(z) ≤ sl(z
′), ṽk(a|z;λ−1) ≤ ṽl(a|z′;λ−1) for all

a ∈ [0, 1], with equality if sk(z) = sl(z
′).

I For all k, l ∈ K and z, z′ ∈ Z, ṽk(1|z;λ−1) = ṽl(1|z′;λ−1).

D For all k, l ∈ K and z, z′ ∈ Z such that sk(z) ≤ sl(z
′), and all y, y′ ∈ R with y′ ≥ y,(

1−sk(z)
)[
ṽ−1
k (y′|z;λ−1)−ṽ−1

k (y|z;λ−1)
]
≥
(
1−sl(z′)

)[
ṽ−1
l (y′|z′;λ−1)−ṽ−1

l (y|z′;λ−1)
]
.

S For all k, l,m ∈ K and z, z′, z′′ ∈ Z such that sk(z) < sl(z
′) < sm(z

′′), and all y ∈ R,

(1− sk(z)) ṽ
−1
k (y|z;λ−1)− (1− sl(z

′)) ṽ−1
l (y|z′;λ−1)

sl(z′)− sk(z)

≥ (1− sl(z
′))ṽ−1

l (y|z′;λ−1)− (1− sm(z
′′))ṽ−1

m (y|z′′;λ−1)

sm(z′′)− sl(z′)
.
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Then for any λ−1 ∈ Λ−1, the following two statements are equivalent: (i) λ−1 ∈ Λ−1
I , (ii)

there exists (F,C) ∈ F × C such that (λ−1, F, C) ∈ I. Moreover, if (λ−1, F, C) ∈ I, then for
all k ∈ K and z ∈ Z,

ṽ−1
k (y|z;λ−1) =

F (y)− C(F (y), sk(z))

1− sk(z)
for all y ∈ [ṽk(0|z;λ−1), ṽk(1|z;λ−1)].

Note that Theorem 1 allows Λ−1
I = ∅, in which case there exists no symmetric AS-RA

model rationalizing bid-stage behavior.9 Restrictions M-S of Theorem 1 reflect properties of

F1(·|z), ..., FK(·|z) implied by (F,C) ∈ F × C. Restriction M (strict monotonicity) follows

since each density fk(·|z) is bounded. Restriction O (ordered quantile functions) reflects the

fact that entrant values are stochastically increasing in sk(z). Restriction I (invariant top

quantile) follows from stochastic ordering of Vi in Si, together with the fact that so long as

sk(z) < 1, the set of entering types will include the potential bidder drawing the highest

possible signal (Si = 1). Restriction D (positive conditional densities) can be understood by

noting that the c.d.f. of Vi given Si ∈ [sk(z), sl(z
′)] is proportional to (1 − sk(z))Fk(·|z) −

(1− sl(z
′))Fl(·|z′). Restriction S (stochastically increasing conditional distributions) follows

since, if Vi is stochastically increasing in Si, then any conditional c.d.f. of the form F (Vi|Si ∈
[s, s′]) must be decreasing in both s and s′. The final statement implies that the selected

distributions F1(·|z), ..., FK(·|z) are identified up to λ−1, although as in GL this typically

does not imply identification of (F,C) up to λ−1.10

The following subsections present several important implications of Theorem 1.

3.2 Nonparametric testability of risk neutrality

In this section, we show that risk neutrality is nonparametrically testable within the AS-RA

model based on variation in either N or z (Corollary 1). Moreover, with continuous variation

in z, restrictions on the form of risk preferences also become testable (Corollary 2). Both

corollaries follow from Restriction I (invariant top quantile) of Theorem 1, which substituted

into equation (5) implies for all λ−1 ∈ Λ−1
I :

bl(1|z′)− bk(1|z) = λ−1(Rk(1|z))− λ−1(Rl(1|z′)) ∀k, l ∈ K, z, z′ ∈ Z. (6)

Recall that weak risk aversion (U ′′
0 ≤ 0) implies λ′0 ≥ 1 and hence 0 ≤ λ−1,′

0 ≤ 1. Global

risk neutrality (U ′′
0 = 0) corresponds to the special case λ−1,′

0 (x) = 1 for all x. We say that

bidders are strictly risk averse at x if U ′′
0 (x) < 0, or equivalently if λ−1,′

0 (x) < 1.

9As in GPV (2000, 2009) and elsewhere, the simple IPV framework we take as our expositional focus also
implies symmetry and independence of entry and bidding choices across bidders conditional on Nk, z.

10Our sharp nonparametric identified set characterization contributes to a rapidly growing literature on
partial identification in structural models; see, for example, Manski and Tamer (2002), Haile and Tamer
(2003), Molinari (2020) and the references therein.
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First consider any k, l ∈ K and z, z′ ∈ Z such that Rl(1|z′) < Rk(1|z). If bidders are

strictly risk averse for some x ∈ [Rl(1|z′), Rk(1|z)], i.e. λ−1,′
0 (x) < 1, then (6) implies that

bl(1|z′) − bk(1|z) < Rk(1|z) − Rl(1|z′). Conversely, if bidders are globally risk neutral, then

any candidate λ−1 ∈ Λ−1
I must satisfy

∫ Rk(1|z)
Rl(1|z′)

λ−1,′(r) dr = Rk(1|z)−Rl(1|z′). Recalling that

λ−1,′
0 (x) ≤ 1, these facts imply that risk neutrality is testable in the following strong sense:

Corollary 1. Let R̄(1) ≡ supk∈K,z∈Z Rk(1|z) and R(1) ≡ infk∈K,z∈Z Rk(1|z). Then:

1. If bidders are risk neutral, then any λ−1 ∈ Λ−1
I must satisfy λ−1,′(x) = 1 for all

x ∈ [R(1), R̄(1)];

2. If, for any x ∈ [R(1), R̄(1)], bidders are strictly risk averse at x, then no risk neutral
model can rationalize bid-stage behavior.

Now further suppose that z ∈ Z is a continuous instrument. In this case, provided

that sk(z) > 0, variation in z will induce continuous variation in Rk(1|z). Extending the

arguments above, this allows us to point identify λ−1,′
0 (r) for at least some r:

Corollary 2. Suppose that Z = [z, z̄] with z̄ > z, and consider any k ∈ K such that
sk(z) ∈ (0, 1) for some z ∈ Z. Then Rk(1|z̄) > Rk(1|z), and λ−1,′

0 (r) is identified for all
r ∈ [Rk(1|z), Rk(1|z̄)].

Note that, differentiating the definition λ0(x) ≡ U0(x)/U
′
0(x), we can express the Arrow-Pratt

coefficient of absolute risk aversion as ARA(λ−1
0 (r)) = 1

rλ−1,′
0 (r)

− 1
r
. Thus, with a continuous

instrument z, restrictions on the form of risk aversion further become testable.

Corollaries 1 and 2 turn only on an invariant top quantile of values among entrants

(Restriction I of Theorem 1). Restriction I is here a consequence of the assumption that

valuations are stochastically increasing in signals, together with the fact that the set of

entering types (if nonempty) will always include the potential bidder with the highest possible

signal (Si = 1). Importantly, however, a similar insight applies in any first-price auction

where at least one quantile of values is invariant to either N or z. CGPV have considered

parametric quantile restrictions, including quantile invariance, as a basis for estimation with

parametric U0. To our knowledge, however, the fact that quantile invariance also implies

nonparametric testability of risk neutrality has not been previously observed.

3.3 Identification with both variation in N and a continuous z

Finally, suppose that we have both variation inN and a continuous instrument z. In this case,

we may be able to find Nk < Nl < Nm and zk, zl, zm ∈ Z such that sk(zk) = sl(zl) = sm(zm);

i.e., three competition levels such that potential bidders enter with the same probabilities

despite facing different numbers of rivals. As we show next, λ−1
0 is then identified on its
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Figure 1: Constructing a recursive sequence to identify λ−1
0 (r) based on three competition

structures (Nk, zk), (Nl, zl), (Nm, zm) such that sk(zk) = sl(zl) = sm(zm).
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0 (r)

relevant equilibrium domain, up to a constant representing the value of λ−1
0 at its minimum

equilibrium argument. In contrast to GPV, who show that without entry two competition

levels are both necessary and sufficient for identification, we also show that unless the reserve

price p0 is at least weakly binding, only two competition levels may not suffice.

Toward this end, consider any (Nk, zk), (Nl, zl), (Nm, zm) with Nk < Nl < Nm but

sk(zk) = sl(zl) = sm(zm) ∈ (0, 1). By Restriction O of Theorem 1, since sk(zk) = sl(zl) =

sm(zm), we must also have vk(·|zk) = vl(·|zl) = vm(·|zm). Consequently, similar to GPV, we

can substitute from (3) to obtain the following system of equations: for all a ∈ [0, 1],

bk(a|zk) + λ−1
0 (Rk(a|zk)) = bl(a|zl) + λ−1

0 (Rl(a|zl)) = bm(a|zm) + λ−1
0 (Rm(a|zm)). (7)

Since vk(·|zk) = vl(·|zl) = vm(·|zm), the functions Rk(·|zk), Rl(·|zl), Rm(·|zm) must satisfy

the following properties. First, since bidders with Vi > vk(0|zk) will bid more aggressively

against more expected competition, Rk(a|zk) > Rl(a|zl) > Rm(a|zl) > 0 for all a ∈ (0, 1].

Second, since when sk(zk) > 0 a bidder with vi = vk(0|zk) will bid p0, Rk(0|zk) = Rl(0|zl) =
Rm(0|zm) = λ0(vl(0|zl)−p0). In particular, letting R0 ≡ Rk(0|zk) = Rl(0|zl) = Rm(0|zm) and
assuming sk(zk) ∈ (0, 1), we will have R0 = 0 if p0 = vk(0|zk), but R0 > 0 if p0 < vk(0|zk).

Now let Rm(zm) = minaRm(a|zm) and R̄k(zk) = maxaRk(a|zk); these are the smallest

and largest arguments to λ−1
0 observed across (Nk, zk), (Nl, zl), (Nm, zm). Consider any r0 ∈

[Rm(zm), R̄k(zk)]. If Rl(α0|zl) ≥ R0, then since Rk(α0|zk) > Rl(α0|zl) and R0 ≡ Rk(0|zk)
we can find α1 ∈ [0, α0) such that Rk(α1|zk) = Rl(α0|zl). Meanwhile, if Rl(α0|zl) < R0,

then since Rl(α0|zl) > Rm(α0|zm) and R0 ≡ Rm(0|zm) we can find α1 ∈ (0, α0) such that
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Rm(α1|zm) = Rl(α0|zl). As illustrated in Figure 1, we can apply these cases recursively to

construct an identified sequence {αj}∞j=0 such that αj → 0 and at every step j, we have

either Rk(αj+1|zk) = Rl(αj|zl) or Rm(αj+1|zm) = Rl(αj|zl). Letting ιj ∈ {k,m} denote the

competition level used to define αj at each step j, we can then substitute recursively into

(7) to express λ−1
0 (r0) as an identified sum of bid differences plus a trailing constant:

λ−1
0 (r0) =

∞∑
j=0

[
bl(αj|zl)− bιj(αj|zιj)

]
+ λ−1

0 (R0).

When p0 < vk(0|zk) and thus R0 > 0, the trailing constant will not vanish (in contrast to

GPV). Re-normalizing terms, however, we can express this constant as identified up to the

value of λ−1
0 (r) at the minimum argument r = Rm(zm) observed across the competition

structures (Nk, zk), (Nl, zl), (Nm, zm). We thereby obtain the following result:

Theorem 2. Let k, l,m ∈ K be any three distinct competition levels, Nk < Nl < Nm, and
suppose that there exist zk, zl, zm ∈ Z such that sk(zk) = sl(zl) = sm(zm). Then for all
r ∈ [Rm(zm), R̄k(zk)], λ

−1
0 (r) = ϕ1(r) + ϕ2, where ϕ1(r) is an identified function such that

ϕ1(Rm(zm)) = 0, and ϕ2 ∈ [0, Rm(zm)] is an interval-identified constant.

Obviously, equilibrium bidding cannot restrict λ−1
0 (·) outside its equilibrium domain,

so this result is the strongest we can expect. We have also verified that for any R0 > 0,

there exist cases, such as that illustrated in Figure 1, where two competition levels in fact

do not suffice.11 On the other hand, if R0 = 0, then we trivially have both Rm(zm) = 0

and Rl(α0|zl) > R0 for all α0 > 0. Consequently, ϕ2 = 0, only the first case above is ever

employed, and two competition levels suffice for point identification as in GPV.

Importantly, even with a continuous instrument z, point identification of ϕ2 follows only

if there exists a sequence of observables such that Rm(zm) → 0. Even with R0 > 0, this is

possible in principle; for example, if for some sk(zk) > 0 there exists a sequence of (Nm, zm)

with Nm → ∞ and sm(zm) = sk(zk) for all m, then Rm(zm) → 0. In practice, however,

we expect that ϕ2 will typically be set identified unless R0 = 0 for some auctions in the

population. In the symmetric AS-RA model with incomplete entry (sk(zk) > 0) which is our

focus here, this in turn holds if and only if p0 = vk(0|zk) for some auctions in the population.

Such just-binding reserve prices could arise either through strategic choice by the auctioneer,

or through a stochastic public reserve price whose support includes vk(0|zk). R0 = 0 would

also hold in models where bidders are asymmetric and some bidder enters with certainty

(e.g., mills in Athey, Levin, and Seira (2011)), or where the auctioneer acts as a bidder of

last resort in the event of insufficient entry (e.g. Li and Zheng (2009)). Although we do not

model these extensions formally, our identification arguments apply to them directly.

11Indeed, if v′k(0|zk) <∞, then simply by additively shifting valuations we can always find examples where
for all α0 sufficiently close to zero, there is no α1 < α0 such that Rk(α1|zk) = Rl(α0|zl).
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3.4 Point identification of λ−1
0 with a parametric utility

In some applications, one may be willing to assume that U0 belongs to a parametric family:

i.e., that λ−1
0 = λ−1(·; γ0) for some γ0 ∈ Γ, with Γ being a compact subset of a finite

dimensional Euclidean space. Theorem 1 may then imply point identification of λ−1
0 , although

potentially only set identification of other bid-stage primitives.

To see this, recall from Restriction I (invariant top quantile) of Theorem 1 that γ = γ0

implies that ṽk(1|z; γ) is constant for all k and z. Taking v̄ ≡ ṽk(1|z; γ) as an auxiliary

parameter to be identified, we may equivalently express this restriction as

v̄ = bk(1|z) + λ−1(Rk(1|z); γ0), ∀ k ∈ K, z ∈ Z. (8)

This parallels the system of estimating restrictions considered by CGPV, here derived di-

rectly from AS entry. If the system (8) has a unique solution (γ0, v̄), then identification of

λ−1
0 = λ−1(·; γ0) is immediate, with identification of F 0

1 (·|z), ..., F 0
K(·|z) following through

(5). Uniqueness of (γ0, v̄) will depend on both the parametric family {λ−1(·; γ) : γ ∈ Γ} and

the scope of variation in (N, z). If, however, U0 belongs to either the Constant Relative Risk

Aversion (CRRA) or the Constant Absolute Risk Aversion (CARA) families, identification

based on (8) can be shown analytically:

Corollary 3. Assume that U0 belongs to either of the following parametric families:

CRRA U0(x) = x1−ρ0; ρ0 ∈ [0, ρ̄] for some ρ̄ < 1.

CARA U0(x) = x for γ0 = 0; U0(x) ∝ (1− e−γ0x) for γ0 ∈ (0, γ̄] with γ̄ <∞.

Further suppose that Rk(1|z) ̸= Rl(1|z′) for some k, l ∈ K and z, z′ ∈ Z. Then λ−1
0 and

F 0
1 (·|z), ..., F 0

K(·|z) are point identified.

Depending on the scope of variation in z, point identification of F 0
1 (·|z), ..., F 0

K(·|z) may

or may not be sufficient to point-identify F0 and C0. Given point identification of λ−1
0 and

F 0
1 (·|z), ..., F 0

K(·|z), however, we may construct identified sets for F0 and C0, as well as for

the entry cost function c(z), following GL.

3.5 Conditional identification with a parametric copula

In addition, or as an alternative, to parameterizing utility, one may assume that C0 belongs to

a known parametric family: i.e., C0(a, s) = C(a, s; θ0), with θ0 an element of a compact subset

Θ of some Euclidean space.12 We further assume that if (A, S) ∼ C(a, s; θ), the distribution

12Parametric copula assumptions have also been proposed to correct for selection in other contexts, see
e.g. Arellano and Bonhomme (2017).
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of A given S ≥ s has support [0, 1] for all s ∈ [0, 1); this ensures that vk(0|z) = v for all

k ∈ K, z ∈ Z. As we show next, (λ−1, F ) are then generically identified (up to a constant)

conditional on θ. In other words, I can be indexed (up to a constant) by θ.

For simplicity, we focus on variation in Nk only, assuming K ≥ 3. Let ΘI denote the bid-

stage identified set for θ0: i.e., the set of θ ∈ Θ for which there exist some (λ−1, F ) ∈ Λ−1×F
such that (λ−1, F, C(·, ·; θ)) ∈ I. For each k ∈ K, define hk : [0, 1]×Θ 7→ [0, 1] as follows:

hk(a; θ) ≡
a− C(a, sk; θ)

1− sk
. (9)

Note that each function hk(·; θ) is identified up to the unknown copula parameter θ. Fur-

thermore, at θ = θ0, we have from (1) that for each k ∈ K,

F 0
k (y) =

F0(y)− C(F0(y), sk; θ0)

1− sk
≡ hk(F0(y); θ0). (10)

Applying the change of variables y = v0(a) on both sides of (10), then inverting F 0
k (·) in the

resulting expression, we obtain the identity v0(a) ≡ vk(hk(a; θ0)).

In practice, of course, θ0 is unknown. For any conjectured θ ∈ Θ, however, we can apply

the change of variables α = hk(a; θ) in (3) to obtain

vk(hk(a; θ)) = bk(hk(a; θ)) + λ−1
0 (hk(a; θ)) ∀a ∈ [0, 1], k ∈ K. (11)

Moreover, if θ = θ0, then v0(a) = vk(hk(a; θ)). Under the hypothesis θ = θ0, we can thus

link the left-hand sides of (11) across competition levels to obtain a system of conjectured

compatibility conditions paralleling (7): if θ = θ0, then for all k, l ∈ K and a ∈ [0, 1],

bk(hk(a; θ)) + λ−1
0 (Rk(hk(a; θ))) = bl(hl(a; θ)) + λ−1

0 (Rl(hl(a; θ))). (12)

For θ ̸= θ0, the system (12) will misspecify the true bidding relationship, hence there may

exist no candidate λ−1 ∈ Λ−1 satisfying (12). By definition, however, θ ∈ ΘI only if there

exists at least one such candidate λ−1 ∈ Λ−1. Theorem 2 then further suggests that (12)

should determine this λ−1 uniquely up to a constant on its equilibrium domain [r, r̄].

To formalize this intuition, we require one additional regularity condition on C(a, s; θ).

Let H(a, s; θ) ≡ 1−∂C(a,s;θ)/∂a
s+a−C(a,s;θ)

, and define Akl(θ) =
{
a ∈ [0, 1] : H(a,sk;θ)

H(a,sl;θ)
= Nl−1

Nk−1

}
for each

k, l ∈ K and θ ∈ Θ. Each set Akl(θ) can be calculated a priori, and as we show in online

Appendix ??, so long as Akl(θ) is of measure zero, the bid functions βk(v), βl(v) can intersect

on at most a set of measure zero. This in turn allows us to establish the following result:

Theorem 3. Consider any θ ∈ ΘI for which there exist at least three distinct competition
levels k, l,m ∈ K such that the sets Akl(θ), Akm(θ), and Alm(θ) are all of measure zero. Then
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there exists a unique function ϕ1,θ : [r, r̄] → R+, identified up to θ, such that (i) ϕ1,θ(r) = 0,
and (ii) for all k, l ∈ K and a ∈ [0, 1],

bk(hk(a; θ)) + ϕ1,θ(Rk(hk(a; θ))) = bl(hl(a; θ)) + ϕ1,θ(Rl(hl(a; θ))).

Moreover, λ−1 ∈ Λ−1 rationalizes bidding at θ if and only if for some ϕ2 ∈ [0, r],

λ−1(r) = ϕ1,θ(r) + ϕ2 ∀r ∈ [r, r̄].

4 Set inference on bid-stage primitives

We now turn to likelihood-based inference within the AS-RA model. For the sake of practical

importance and concreteness, we focus on confidence set constructions for the identified sets

of bid-stage primitives (U0, F0, C0) ∈ U × F × C when no cost shifter z is available. We

parameterize bid-stage primitives flexibly in terms of Bernstein polynomials as described

below. We then extend results in Appendix C of CCT to develop confidence sets for bid-

stage primitives using the restrictions in Theorem 1. We note in particular that Theorem

C.1 in CCT’s Appendix C accommodates set-identified likelihood models with “parameter

dependent support” (i.e., support of the observed data depends on the unknown model

parameters). This is crucial for our application since, as pointed out by Donald and Paarsch

(1993), in first-price auctions every model parameter will typically influence at least one

predicted maximum bid. In implementing these methods, we also develop efficient MPEC

strategies for solving MLE and profile likelihood problems in first-price auctions, which

should be useful in estimation and inference for other complex equilibrium models.

4.1 Flexible parametric likelihood framework

Recall that the bid-stage primitives (U0, F0, C0) ∈ U × F × C consist of smooth functions

that also satisfy some shape restrictions and the additional restrictions imposed in Theorem

1. In what follows, we approximate the bid-stage primitives by flexible Bernstein polynomial

sieves with large (though fixed) sieve dimensions so that the approximation error (or sieve

bias) is of a smaller order and hence could be ignored in first order asymptotics (see, for

example, Chen (2007)). We can then interpret bid-stage primitives as belonging to flexible

parametric families so that Lemma C.1 and Theorem C.1 of CCT (2018) are applicable.

Since our identification analysis focuses on restrictions on (U0, F0, C0) generated by bid-

ding behavior, we treat entry thresholds s ≡ (s1, ..., sK) as auxiliary parameters to be esti-

mated. Let S denote the admissible set for s: i.e., the set of s ∈ [0, 1]K such that sk ≥ sk−1

for all k = 2, ..., K. Should one additionally wish to estimate entry costs, one could further

enforce the breakeven condition (25) for equilibrium entry described in Appendix A.
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We parameterize bid-stage primitives flexibly as follows. Without loss of generality, we

re-center bids and values so that p0 = 0. Let v̄ ∈ [0, V̄ ] and v ∈ [0, v̄], with V̄ <∞ a known

(but potentially large) upper bound on v̄. For any integer D > 0 and any d ∈ {0, ..., D}, let
Bd,D(u) denote the dth Bernstein basis polynomial of degree D:

Bd,D(u) ≡
(
D

d

)
ud(1− u)D−d, u ∈ [0, 1].

Let λ0(x) ≡ U0(x)/U
′
0(x). We parameterize λ(x) ≡ U(x)/U ′(x) as a scaled and shifted

Bernstein polynomial of degree Q ≥ 1 with free coefficients γ = (γj)
Q
j=1.

13 For x ∈ [0, v̄], we

set λ(x) = v̄λ̃(v̄−1x|γ), where λ̃(u|γ) is a shifted degree-Q Bernstein polynomial on [0, 1]:

λ̃(u|γ) ≡ u+

Q∑
j=1

γjBj,Q(u), u ∈ [0, 1]. (13)

We enforce λ′(x) ≥ 1 by requiring that γ1 ≥ 0 and γj ≥ γj−1 for j = 2, ..., Q. We further

assume γQ ≤ γ̄ for some constant γ̄ < ∞.14 We take γ as parameters to be estimated,

belonging to a compact set Γ defined by these inequalities. Recall that if U is CRRA with

relative risk aversion ρ, then λ(x) = x/(1 − ρ). Since Bernstein polynomials nest linearity

as a special case, our model thus nests the CRRA model for any Q ≥ 1. In particular, with

Q = 1, our model is equivalent to a CRRA model with ρ = γ1/(1 + γ1) ∈ [0, γ̄/(1 + γ̄)].

In applications, (F0, C0) could be respectively modeled using flexible parameterizations

for one- and two-dimensional distributions, such as F0 by a Bernstein polynomial and C0 by a

Bernstein copula. Recall, however, that conditional on s1, ..., sK , F0 and C0 affect equilibrium

bidding behavior only through F 0
1 , ..., F

0
K (see equation (1), which with no instruments z

becomes F 0
k (y) = [F0(y) − C0(F0(y), sk)]/[1 − sk] for all k). We thus instead parameterize

F 0
1 , ..., F

0
K directly, reinterpreting the conditions of Theorem 1 as constraints on F 0

1 , ..., F
0
K .

Specifically, for each k = 1, ..., K, we model Fk as a Bernstein polynomial of degree P ≥ 2

with free coefficients ϕk = (ϕk,1, ..., ϕk,P−1), scaled to the interval [v, v̄]:15

Fk(y) = F̃k

(
y − v

v̄ − v

∣∣∣ϕk) , F̃k(u|ϕk) ≡
P−1∑
j=1

ϕk,jBj,P (u) +BP,P (u), u ∈ [0, 1]. (14)

We constrain the coefficients ϕ ≡ (ϕ1, ..., ϕK) to ensure that the implied distributions

F1, ..., FK satisfy Conditions I-S of Theorem 1. For each s ∈ S, let the admissible set for

ϕ given s, denoted Φ(s), be the set of vectors ϕ satisfying the following linear inequalities:

13The restriction λ(0) = 0 implies γ0 = 0.
14This restriction serves to ensure a compact parameter space. A sufficient condition is RRA(x) < γ̄/(1+γ̄)

for all x ≥ 0, where RRA(x) = −xU ′′(x)/U ′(x) denotes the Arrow-Pratt coefficient of relative risk aversion.
15The restrictions Fk(v) = 0 and Fk(v̄) = 1 imply ϕk,0 = 0 and ϕk,P = 1 respectively.
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M’ For each k = 1, ..., K, ϕk satisfies 0 ≤ ϕk,1 ≤ ϕk,2 ≤ · · · ≤ ϕk,P−2 ≤ ϕk,P−1 ≤ 1.

O’ For all k = 1, ..., K − 1 and all u ∈ [0, 1],

P−1∑
j=1

ϕk,jBj,P (u) ≥
P−1∑
j=1

ϕk+1,jBj,P (u).

D’ For each k = 1, ..., K − 1 and all u ∈ [0, 1],

(1− sk)

(
P−1∑
j=1

ϕk,jB
′
j,P (u) +B′

P,P (u)

)
≥ (1− sk+1)

(
P−1∑
j=1

ϕk+1,jB
′
j,P (u) +B′

P,P (u)

)
.

S’ For each k = 1, ..., K − 2 and all u ∈ [0, 1],

P−1∑
j=1

ϕk,j

(
1− sk

sk+1 − sk

)
Bj,P (u) +

P−1∑
j=1

ϕk+2,j

(
1− sk+2

sk+2 − sk+1

)
Bj,P (u)

−
P−1∑
j=1

ϕk+1,j

(
1− sk+1

sk+1 − sk
− 1− sk+1

sk+2 − sk+1

)
Bj,P (u) ≥ 0.

Conditions O’, D’, and S’ translate Conditions O, D, and S of Theorem 1 into the space of

coefficients ϕ used in our parameterizations of F1, ..., FK ; in practice, we enforce these on a

fixed grid in [0, 1].16 Meanwhile, Condition M’ implies that each Fk is strictly monotone on

[v, v̄], which in turn implies Conditions I and M of Theorem 1.17

Let ψ ≡ (v̄, v, s, γ, ϕ) ∈ Rdψ , with dψ ≡ dim(ψ) = 2+K +Q+K(P − 1), denote the full

vector of parameters to be estimated. Given the constraints above, ψ will belong to a known

compact set Ψ ⊂ Rdψ defined by

Ψ ≡
{
ψ = (v̄, v, s, γ, ϕ) ∈ Rdψ | v̄ ∈ [0, V̄ ], v ∈ [0, v̄], s ∈ S, γ ∈ Γ, ϕ ∈ Φ(s)

}
.

For any candidate ψ ∈ Ψ and any competition level k ∈ K, we let β−1
k (·|ψ) denote the inverse

of the equilibrium bid function βk(·|ψ) defined in (2) (equivalently (22)), and β−1,′
k (b|ψ) be

its derivative (w.r.t. b). Then the model predicted CDF of equilibrium bids given ψ and k is

Gk(b|ψ) = Fk(β
−1
k (b|ψ)

∣∣v̄, v, ϕk) , for b ∈ [βk(v|ψ), βk(v̄|ψ)] ,
16For models with Q > 1 we enforce O’, D’, and S’ at u ∈ {0.0, 0.1, ..., 0.7, 0.8, 0.85, 0.9, 0.95, .99, 1.0}. This

spacing emphasizes restrictions for u close to 1, which in view of Theorem 1 we expect to be particularly
informative. For point-identified CRRA models with Q = 1, we found that enforcing O’, D’, and S’ only for
u ∈ {0.95, .99, 1.0} gives very similar results; we thus focus on this simpler grid. This is not surprising in view
of Corollary 3, which implies that for Q = 1 identification is based primarily on bids near the maximum.

17In principle, one could also estimate our model without the auxiliary restrictions M’, O’, D’, S’. A
significant improvement in model fit would indicate that the symmetric AS-RA model is misspecified.
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with βk(v|ψ) = p0 × 1{sk ∈ (0, 1)} + v × 1{sk = 0}. Letting fk(·|v̄, v, ϕk) be the density

implied by Fk(·|v̄, v, ϕk), the predicted density of equilibrium bids gk(·
∣∣ψ) is given by

gk(b
∣∣ψ) ≡ fk(β

−1
k (b|ψ)

∣∣v̄, v, ϕk)× β−1,′
k (b|ψ)× 1 {βk(v|ψ) ≤ b ≤ βk(v̄|ψ)} . (15)

Unfortunately, for any given parameter ψ ∈ Ψ, the function b 7→ β−1
k (b|ψ) does not have an

analytic form in general. We present another expression for the bid density gk(b
∣∣ψ) in (23)

below, which is what we use in likelihood evaluation in practice.

We consider an i.i.d. sample of L auctions with public reserve price p0, where Nk varies

exogenously on the set N = {N1, ..., NK} but no cost shifter z is available. For each auction

l = 1, ..., L, we observe the competition level kl ∈ K, the entry decision eil ∈ {0, 1} for each

potential bidder i = 1, ..., Nkl , and the bid bil submitted by each entrant. The conditional

log-likelihood of observing outcome (eil, bil) in auction l given Nkl and parameters ψ ∈ Ψ is

ℓil(ψ) = log
(
s
(1−eil)
kl

[(1− skl)gkl(bil|ψ)]eil
)

∀kl. (16)

Assuming skl ∈ (0, 1), (16) is well-defined and finite for all ψ ∈ Ψ satisfying the upper support

constraint βkl(v̄|ψ) ≥ ˆ̄bkl , where
ˆ̄bk denotes the maximum bid observed at competition level

k, which is the maximum order statistic of bids observed at competition level k. (This is a

super consistent estimator of the true upper support b̄0k of population equilibrium bids at

competition level k, which satisfies ˆ̄bk ≤ b̄0k in each finite sample.)

Finally, let L(ψ) denote the sample log-likelihood derived from (16), assuming a random

sample {(eil, bil)
Nkl
i=1}Ll=1 from L independent auctions:

L(ψ) ≡
L∑
l=1

Nkl∑
i=1

ℓil(ψ). (17)

Let ΨI ≡ argmaxψ∈Ψ E[ℓil(ψ)] be the identified set for the parameter vector ψ. We let

ψ0 ∈ ΨI wlog. Let ψ̂ ∈ Ψ be an approximate maximum likelihood estimator (MLE), i.e.,

L(ψ̂) = max
ψ∈Ψ

L(ψ) + op(1).

The log-likelihood ratio (LR) statistic is defined as Q(ψ) ≡ 2[L(ψ̂) − L(ψ)]. We aim to

conduct inference based on Q(ψ) without assuming point identification of ψ.

4.2 Confidence sets for the identified set of ψ

Let α ∈ (0, 1) be any target confidence level, say α = 0.95. We aim to construct a 100α%

confidence set (CS) Ψ̂α for the identified set ΨI , with asymptotically exact coverage in the

sense that limn Pr
(
ΨI ⊆ Ψ̂α

)
= α or conservative coverage limn Pr

(
ΨI ⊆ Ψ̂α

)
≥ α.
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Toward this end, let Π be a continuous prior that puts positive weight over Ψ. Given this

prior and the data {(eil, bil)Nli=1}Ll=1, the posterior distribution ΠL for ψ is

dΠL(ψ) ≡
exp[L(ψ)] dΠ(ψ)∫
Ψ
exp[L(ψ)] dΠ(ψ) =

exp[−0.5Q(ψ)] dΠ(ψ)∫
Ψ
exp[−0.5Q(ψ)] dΠ(ψ)

. (18)

Procedure 1 of CCT constructs a CS for ΨI as follows: first draw a sample of parameters

{ψb}B∗

b=1 from ΠL, then calculate a critical value ξα as the αth quantile of {Q(ψb)}B∗

b=1. The

set Ψ̂α = {ψ ∈ Ψ : Q(ψ) ≤ ξα} is then a 100α% CS for ΨI .

In their Lemma C.1, CCT establish a generalized Bernstein-von Mises theorem applica-

ble under set identification and with or without parameter dependent support. Under some

sufficient conditions that are restated in our Appendix B, this result implies that both the

distribution of Q(ψ) when ψ is sampled from the posterior ΠL and the distribution of the

frequentist LR statistic Q(ψ0) across samples will converge to a common asymptotic dis-

tribution of the form Gamma(r∗, 2), which is a Gamma distribution with shape parameter

r∗ > 0 and scale parameter 2, although r∗ is typically unknown for set-identified models.18

Consequently, the αth quantiles of posterior and frequentist LR statistics coincide asymptot-

ically. This in turn justifies our application of CCT’s Procedure 1 for asymptotically exact

frequentiest CSs for ΨI in point or set-identified auction models.

4.3 Confidence sets for identified sets of subvectors of ψ

Let η(ψ) be any subvector (or functional) of ψ ∈ Ψ, and MI := {η(ψ) : ψ ∈ ΨI} be the

bid-stage identified set for η(ψ). The projection CS M̂proj
α = {η(ψ) : ψ ∈ Ψ̂α} for MI is valid

whenever Ψ̂α is a valid 100α% CS for ΨI . However, the projection CS M̂proj
α is typically

very conservative in the sense of limn Pr
(
MI ⊆ M̂proj

α

)
>> α for η(ψ) when η(ψ) is a low

dimensional subvector (say a scalar) of ψ. We instead apply CCT’s Procedure 2 to construct

CSs for MI , extending their Lemma C.1 to show that their Procedure 2 remains valid for

subvector inference for models with parameter dependent support.

In generic likelihood models, Procedure 2 can be implemented as follows. For each value

η1 in the domain of η(ψ), let L̃(η1) = supψ∈Ψ{L(ψ) : η(ψ) = η1} denote the profiled log-

likelihood fixing η(ψ) = η1. For ψ, ψ
′ ∈ Ψ, let DKL(ψ||ψ′) be Kullback-Liebler (KL) diver-

18It is well-known that for a point-identified model ΨI = {ψ0} belonging to the interior of Ψ, the frequentist
LR statistic Q(ψ0) is asymptotically chi-square χ2

ν distributed with degree of freedom ν = dim(ψ0), which
is Gamma(ν/2, 2) if and only if r∗ = dim(ψ0)/2. For a point-identified AS-RA auction model with multi
competition levels (i.e., K > 1), the shape parameter r∗ will depend on difficult-to-characterize interactions

between parameters and support constraints βk(v̄0|ψ0) = b̄0k ≥ ˆ̄bk, especially when the equilibrium bid
functions βk(·|ψ), k = 1, ...,K, have no closed-form expressions.
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gence from ψ to ψ′, which for the log likelihood (16) can be expressed as

DKL(ψ||ψ′) =
K∑
k=1

[
sk log

(
sk
s′k

)
+ (1− sk)

∫
B

log

(
(1− sk)gk(B|ψ)
(1− s′k)gk(B|ψ′)

)
dGk(B|ψ)

]
.

Let {ψb}B∗

b=1 be a sample of parameters drawn from ΠL as in Procedure 1 above. For each

parameter draw ψb, define a profile criterion PL(ψb) as follows:

PL(ψb) = inf{L̃(η′) : η′ = η(ψ′) for ψ′ ∈ Ψ with DKL(ψ
b||ψ′) = 0}. (19)

Finally, let ζ1,α be the (1−α)th quantile of the sample {PL(ψb)}B∗

b=1. As we show in Theorem

5 in Appendix B, under some sufficient conditions, the set M̂α = {η : L̃(η) ≥ ζ1,α} is then a

100α% CS for MI .

We simplify this implementation by replacing the generic profile criterion (19) with the

following alternative, which leverages our analytic characterization of identified sets to speed

up computation substantially. By Theorem 1, fixing s = s′, we have Gk(·|ψ) = Gk(·|ψ′) if

and only if vk(a|ψ′) = bk(a|ψ) + λ−1(Rk(a|ψ)|ψ′) for all a ∈ [0, 1]. Motivated by this fact, we

define a L2-type directed distance function DL2(ψ||ψ′) as follows:

DL2(ψ||ψ′) =
K∑
k=1

∫ 1

0

[
Fk

(
bk(a|ψ) + λ−1

(
Rk(a|ψ)

∣∣ψ′)∣∣∣ψ′
)
− a
]2
da. (20)

Fixing s = s′, we can then have DKL(ψ||ψ′) = 0 if and only if DL2(ψ||ψ′) = 0. We thus

obtain an equivalent, but computationally more convenient, definition of PL(ψb):

PL(ψb) = inf{L̃(η′) : η′ = η(ψ′) for ψ′ ∈ Ψ with sb = s′ and DL2(ψb||ψ′) = 0}. (21)

To trace out DL2(ψ||ψ′) as a function of ψ′, one need only re-evaluate Fk(·|ψ′) and λ−1(·|ψ′)

holding bk(a|ψ) and Rk(a|ψ) fixed, whereas to trace out DKL(ψ||ψ′) one must re-solve equi-

librium bid functions anew at every guess of ψ′. In our simulations, evaluation of PL(ψb)

based on (21) is thus between one and two orders of magnitude faster than that based on

(19). This finding highlights how identified sets based on equilibrium conditions, such as

provided by our Theorem 1, can be applied to simplify finite-sample inference.

4.4 Inference for point identified bid-stage primitives

CCT’s Procedures 1 and 2 are valid regardless of whether a model is set identified or point

identified. Recall, however, that in our setting Q = 1 corresponds to CRRA utility, which

implies point identification of ψ0 by Corollary 3.19 Under point identification, although Pro-

cedure 1 is implemented the same way, Procedure 2 further simplifies to using the standard

19Note that ψ0 parameterizes λ0 and F 0
1 , ..., F

0
K , which are point identified under CRRA U0 by Corollary

3. If one instead flexibly parameterized (F0, C0), then ψ0 may not be point identified, but the simplifications
noted here would still apply to any functional which depends on ψ0 only through λ0 and / or F 0

1 , ..., F
0
K .
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profiled likelihood criterion PL(ψb) = L̃(η(ψb)), with no need to numerically evaluate the

infimum of L̃(η′) over an ex ante unknown equivalent set. This dramatically simplifies sub-

vector inference based on Procedure 2, even relative to (21). In practice, we recommend

starting with the point-identified CRRA model Q = 1, a specification of interest in its own

right which also nests risk neutrality as a special case. If estimates with Q = 1 indicate risk

aversion, one can then proceed to more flexible models with Q > 1.

4.5 Computational implementation

In implementing the methods above, we have developed fast and stable strategies for solving

MLE and profiled likelihood problems, which are particularly valuable when closed-form

equilibrium bid functions are not available. We briefly outline the main elements of our

novel strategies here; see Online Appendix ?? for details within our simulation study in

Section 5. First, for any given parameter ψ ∈ Ψ and any competition level k ∈ K, rather

than solving for equilibrium bid functions βk(·|ψ) directly using the differential equation

(DE) (2)

β′
k(v|ψ) = λ(v − βk(v|ψ)

∣∣v̄, γ)(Nk − 1)(1− sk)fk(v|v̄, v, ϕk)
sk + (1− sk)Fk(v|v̄, v, ϕk)

, (22)

with βk(v|ψ) = p0×1{sk ∈ (0, 1)}+ v×1{sk = 0}. We re-express this as a system of Cheby-

shev collocation equations and enforce these as constraints in MPEC optimization. Second,

rather than evaluate the bid density gk(bil|ψ) in (15) directly, we substitute from the DE

(22) to obtain a simpler and more stable expression valid on its support [βk(v|ψ), βk(v̄|ψ)]:

gk(bil
∣∣ψ) = fk(vil|v̄, v, ϕk)

β′
k(vil|ψ)

=
sk + (1− sk)Fk(vil|v̄, v, ϕk)

λ(vil − bil
∣∣v̄, γ)(Nk − 1)(1− sk)

, (23)

where vil is defined implicitly by bil ≡ βk(vil|ψ). Third, to further streamline computation, we

evaluate (23) exactly for bids on an interval near the maximum bid at each competition level

(which our theory suggests are pivotal for identification) while discretizing bids below this

interval on a fine grid. In our simulations, this partial discretization scheme substantially im-

proves both speed (requiring far fewer numerical bid inversions) and stability (by eliminating

potential numerical singularities induced by the fact that when p0 = v, log gk(b
∣∣ψ) → ∞ as

b→ p0), with minimal impact on precision.20 We thus obtain a fast and stable algorithm for

solving MLE problems in first-price auctions; in our simulations, the median such problem

is solved in between one and three seconds, even in models with more than 30 parameters.

20We experimented in detail with approximation grids and regions, finding that for the grids we consider,
which are much finer than the degree of our polynomial approximations, even large changes in the discretiza-
tion region had negligible impacts on profiled Kullback-Leibler loss and profiled likelihood estimates.
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5 A simulation exercise

Finally, we explore our proposed inference methods in a simulation study based on the fol-

lowing true data generating process (DGP). Bidders have CRRA utility: U0(x) = U(x; ρ0) =

x1−ρ0 or equivalently λ0(x) ≡ U0(x)/U
′
0(x) = x/(1− ρ0). Valuations are drawn from a trun-

cated logistic distribution F0 with mean 0.5 and scale 0.3, truncated on the interval [v0, v̄0]

with v0 = 0 and v̄0 = 1. The reserve price is p0 = 0. For simplicity, and for this section only,

we assume the econometrician knows the reserve price is just-binding, so that v0 = p0 = 0.21

Dependence between Vi and Si is parameterized by a Frank copula

C(F0, s; θ) = −1

θ
log

[
1 +

(exp(−θF0)− 1)(exp(−θs)− 1)

exp(−θ)− 1

]
for 0 < θ <∞,

with true parameter value θ0 = 2.0, corresponding to a Spearman’s rank correlation between

Vi and Si of approximately 0.32. The entry cost is c0 = 0.1. We consider K = 4 competition

levels, with N varying exogenously over the values Nk ∈ {2, 4, 6, 8}. We consider both risk

averse (ρ0 = 0.5) and risk neutral (ρ0 = 0) DGPs. Entry thresholds are approximately

sk ∈ {0.16, 0.52, 0.66, 0.74} for our main DGP with ρ0 = 0.5, and sk ∈ {0.00, 0.09, 0.28, 0.40}
for our risk-neutral DGP with ρ0 = 0. The true F 0

1 , ..., F
0
K can be solved from F0, C(F0, s; θ0)

through (1), i.e., F 0
k (y) = [F0(y) − C(F0(y), sk; θ0)]/[1 − sk] for all k. For each DGP, we

consider two sample scales M ∈ {1000, 2000}, where M represents the approximate average

number of bids observed per competition level k = 1, ..., 4. For each Monte Carlo replication,

we simulate Lk = ⌈ M
Nk(1−sk)

⌉ auctions at each k = 1, ..., 4, for a total of L =
∑4

k=1 Lk auctions.

We consider two econometric model specifications, which we label the Flexible copula

and Frank copula models respectively. For both models, we set v = 0 and parameterize the

unknown true λ0(x) as a Bernstein polynomial (with parameters γ) of either degree Q = 1

(the true CRRA model), Q = 4, or Q = 6.

• For the Flexible copula model, we leave the copula unspecified, and approximate true

F 0
1 , ..., F

0
K flexibly using Bernstein polynomials (with parameters ϕ) of degree P ∈

{4, 5, 6} as described in Section 4.1. The implied bid density gk(bil|ψ) is given in (23),

with unknown parameter ψ = (v̄, s, γ, ϕ) of dimension dψ = 1 + 4 +Q+ 4(P − 1).

• For the Frank copula model, we correctly specify the copula as a parametric Frank cop-

ula up to unknown θ ∈ R, and approximate the true F0 by a Bernstein polynomial (with

parameters ϕo) of degree P ∈ {4, 5, 6}. The corresponding bid density gk(bil|ψ) is given
21Our flexible parameterizations for F 0

1 , ..., F
0
K do, however, allow for densities which are close to zero near

v0 = 0, which although distinct in terms of identification closely approximate varying v in finite samples.
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in (23) except that (1−sk)Fk(vil|v̄, ϕk) is replaced by [F (vil|v̄, ϕo)− C(F (vil|v̄, ϕo), sk; θ)],
with unknown parameter ψ = (v̄, s, γ, θ, ϕo) of dimension dψ = 1+4+Q+1+(P − 1).

Note that, by design, both econometric models are only approximately correct in the sense

that the true DGPs F 0
1 , ..., F

0
K and F0 are not nested by our parametric Bernstein polynomials

of fixed finite degree P ∈ {4, 5, 6}, but (as we show in the next subsection) the Kullback-

Leibler divergence between the true DGPs and our econometric models are very small. We

have made such choices to illustrate that, although we do not study asymptotics with growing

numbers of parameters rigorously, our inference methods work well in practice even when

exact true parametric forms are not necessarily known.

For concreteness, we focus inference on the average slope λ̃(x|γ)/x of λ̃(x|γ) defined in

(13), which, for fixed x ∈ [0, 1], is a linear functional of γ (and thus ψ). The true value of

this average slope is λ̄0 = λ̃(x|γ0)/x = 1/(1− ρ0) for all x ∈ [0, 1], which is a measure of risk

attitudes, with larger values of λ̄0 indicating greater departures from risk neutrality.

5.1 Well-approximated likelihood, identified set, posterior LR

We first numerically explore approximation accuracy in our Flexible copula model. Let

D0
KL(ψ) denote KL divergence from a given true DGP to our model at parameters ψ ∈ Ψ,

normalizing units of D0
KL such that M · D0

KL(ψ) represents expected log-likelihood loss in

a sample of scale M .22 Let D̂0
KL = minψ∈ΨD

0
KL(ψ) be minimum KL divergence (model en-

tropy) relative to the true DGP. Comparing Flexible copula models with P ∈ {4, 5, 6}, we
find that D̂0

KL is on the order of 10−4 for P = 4, 10−5 for P = 5, and 10−7 for P = 6—the

latter sufficiently small that P = 6 can be taken “as if” the true DGP. Even at P = 4, how-

ever, losses due to approximation are small both absolutely and relative to penalties on P

under model selection rules such as the Akaike Information Criterion (AIC). Consequently,

with Q = 1 at scale M = 2000, AIC selects P = 4 among P ∈ {4, 5, 6} in 96.7 percent (87.6

percent) of simulations in our risk-averse DGP (risk-neutral DGP) respectively.23

Second, we numerically explore identification under CRRA (Q = 1) and flexible (Q > 1)

parameterizations of unknown true λ0(x) in our Flexible copula model, focusing on specifica-

tions with P = 6 where approximation error is negligible (D̂0
KL ≈ 10−7). For any functional

η of ψ and any conjectured value η1 of η, let pKL(η1) = minψ′∈Ψ{D0
KL(ψ

′) : η(ψ) = η1}
denote profiled KL divergence fixing η(ψ) = η1. Figure 2 plots, for models with P = 6 and

Q ∈ {1, 4, 6}, contours of pKL for λ̃(x|γ), interpreting λ̃(x|γ) pointwise for each x ∈ [0, 1] as

22To ensure internal consistency, we implement D0
KL and DKL(ψ||ψ′) using the same hybrid of grid and

exact evaluation as our numerical log-likelihood implementation, as described in online Appendix ??.
23Comparing models with Q ∈ {1, 4, 6} and P = 6 at M = 2000, we also find that Q = 1 is preferred in

all simulations, as expected since our DGP involves Q = 1.
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Figure 3: Profiled Kullback-Leibler divergence for λ̄0 = 1/(1 − ρ0) in risk-averse CRRA models

(ρ0 = 0.5, Q = 1) based on Frank copula versus Flexible copula specifications.

(a) Frank: F0 Bernstein-P , C Frank (b) Flexible: F1, ..., FK Bernstein-P

a functional of γ.24 For both DGPs, the CRRA model Q = 1 is clearly point identified. By

contrast, especially for our risk-averse DGP, contour sets for Q ∈ {4, 6} are numerically flat

around λ̃(x|γ0), consistent with set identification and fundamentally different from the point

identified model Q = 1. Both patterns are expected in view of Theorem 1 and Corollary 3.

Third, focusing on the point-identified CRRA case (Q = 1), we explore how our main

Flexible copula model compares to our benchmark Frank copula model. Specifically, Figure

3 compares pKL for λ̄0 = λ̃(x|γ0)/x in Frank copula models with Q = 1 and P ∈ {4, 5, 6}
(Panel (a)) to that in Flexible copula models with Q = 1 and P ∈ {4, 5, 6} (Panel (b)).

Contours of pKL in the Frank copula model are steep and nearly quadratic, whereas those

in the Flexible copula model are much flatter near λ̄0. These patterns reflect the fact that

identification is based on all bid quantiles in the Frank copula model, but primarily on bids

near the maximum bid at each k ∈ K in the Flexible copula model. They also lead us to

expect that profiled LR CSs for λ̄0 in the Flexible copula model will tend to be conservative

in finite samples, only approaching correct asymptotic size in very large samples.

Finally, we provide direct simulation evidence for the key property underpinning frequen-

tist validity of our CSs: both posterior and frequentist LR statistics converge to a common

Gamma(r∗, 2) distribution for some r∗ > 0. Toward this end, in Figure 4, we compare dis-

tributions of posterior and frequentist LR statistics for both risk-neutral (ρ0 = 0.5) and

risk-averse (ρ0 = 0.0) DGPs.25 We consider four models at M = 2000: a point-identified

24Even abstracting from approximation issues, it is not feasible to compute either the identified set or its
projections exactly when Q > 1, since to compute DKL(ψ0||ψ) we must first solve the functional equation
(2) defining equilibrium bidding functions βk(·|ψ). For ϵ of greater order than approximation error, contours
of D0

KL and their projections will represent outer bounds on true (or pseudo-true) identified sets.
25In field data, where true DGPs are unknown, one could conduct similar validation exercises using data

simulated from MLE parameter estimates or selected posterior sampling draws.
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Frank copula model with CRRA utility (Q = 1) and P = 5 (row 1), point-identified Flexible

copula models with CRRA utility (Q = 1) and P = 4 or P = 6 (rows 2 and 3), and a

partially identified Flexible copula model with Q = 4 and P = 6 (row 4). For each model

and DGP, we fit a Gamma(r∗, 2) distribution to the sample of posterior LR statistics Q(ψ)

obtained from a uniform prior (pooling draws {Q(ψb)}B∗

b=1 across simulations). We then plot

quantiles of this Gamma(r∗, 2) distribution against those of (i) the simulated distribution

of posterior LR statistics Q(ψ), and (ii) the simulated distribution of the frequentist LR

statistic Q(ψ0) across replications. Each resulting scatter plot lies on or very close to the

relevant diagonal, confirming that each pair of posterior and frequentist LR distributions

is indeed well approximated by a common Gamma(r∗, 2) distribution. As such, Figure 4

strongly supports frequentist validity of CCT’s CSs in our first-price auction setting.

5.2 Inference results

In implementing our CSs, we explore both flat and “boundary” priors Π over Ψ.26 Specifically,

for scalars ∆γ,∆ϕ > 0, our boundary priors set log Πγ(γ) ∝ −∑Q
j=1 log(γj − γj−1 +∆γ) and

log Πϕk(ϕk) ∝ −∑P
j=1 log(ϕk,j−ϕk,j−1+∆ϕ), with flat priors on other parameters. Since Ψ is

a compact set, this defines a proper prior for any ∆γ,∆ϕ > 0. As ∆γ,∆ϕ → 0, greater prior

weight is placed on parameter values near monotonicity constraints, while as ∆γ,∆ϕ → ∞,

the prior approaches a uniform distribution over Ψ. We draw parameters {ψb}B∗

b=1 from ΠL

using a hybrid of Hamiltonian Monte Carlo (HMC) and Metropolis-Hastings Markov Chain

Monte Carlo (MH-MCMC) algorithms described in Online Appendix ??.

5.2.1 Inference for point-identified models (Q = 1)

We first explore inference within the point-identified CRRA model (Q = 1), for which γ is a

scalar and λ̄0 = λ̃(x|γ0)/x = (1 + γ0) = 1/(1− ρ0) for all x ∈ [0, 1]. We compare CSs for λ̄0

based on CCT’s Procedure 2 with two alternative methods valid under point identification:

CSs based on percentiles of Monte Carlo (MC) parameter draws {γb}Bb=1, which are standard

in the Bayesian literature and valid for interior (but not boundary) scalar parameter that is

asymptotically root-L normally distributed, and CSs derived from inversion of the standard

profiled LR test statistic Q̃(γ) = 2(L(ψ̂)−L̃(γ)). For the standard profiled LR inference, we

26Especially when P and Q are large, flat priors may lead to poor exploration of “corners” of Ψ where
multiple monotonicity constraints bind. For example, a uniform prior over the feasible set Γ for γ implies
that λ̃(1|γ) has the same distribution as the highest of Q draws from a uniform distribution over [1, γ̄ + 1],
which for Q > 1 assigns probability approaching zero to values near the risk-neutral boundary λ̃(1|γ) = 1.
See Ghosal and van der Vaart (2017) for a textbook discussion of sieve priors in nonparametric Bayesian
inference.
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Figure 4: Q-Q plots of simulated posterior and frequentist LR quantiles.

(a) Frank C, ρ0 = 0.5, P = 5, Q = 1 (b) Frank C, ρ0 = 0.0, P = 5, Q = 1

(c) Flexible C, ρ0 = 0.5, P = 4, Q = 1 (d) Flexible C, ρ0 = 0.0, P = 4, Q = 1

(e) Flexible C, ρ0 = 0.5, P = 6, Q = 1 (f) Flexible C, ρ0 = 0.0, P = 6, Q = 1

(g) Flexible C, ρ0 = 0.5, P = 6, Q = 4 (h) Flexible C, ρ0 = 0.0, P = 6, Q = 4
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Figure 5: Frank copula, Q = 1: Coverage curves based on alternative CSs for λ̄0, parameterizing

λ0(·) as CRRA (Q = 1), C as Frank, and F0 as Bernstein of order P ∈ {4, 5}.

(a) Risk averse DGP: ρ0 = 0.5 (b) Risk neutral DGP: ρ0 = 0.0

Notes: Estimates based on 500 replications, MC CSs use B∗ = 400 draws.M is the average number

of bids observed per competition level. Vertical lines denote true λ̃(x|γ0)/x = λ̄0 = 1/(1− ρ0).

form 100α% CSs for λ̄0 by CSLRα = {λ̃(x|γ)/x : γ ∈ [0, γ̄], Q̃(γ) ≤ ξLRα }, where the critical

value ξLRα equals the αth quantile of the chi-square χ2
1 (respectively chi-bar χ̄2

1) distribution

for our interior ρ0 = 0.5 (respectively boundary ρ0 = 0.0) DGP.27

We begin with our benchmark Frank copula model, for which we implement MC CSs

(Procedure 2 and percentile CSs) using simple flat priors. In view of Figure 3, we expect that

results from Procedure 2, profiled LR, and percentile CSs should coincide for our risk-averse

DGP (when λ̄0 is interior), although they may diverge for our risk-neutral DGP (when λ̄0

is on the boundary). Figure 5 compares coverage (acceptance) curves for level α = 0.95 CSs

for λ̄0 derived from all three procedures. Coverage curves are indeed nearly identical across

procedures for our risk-averse DGP, further validating our approach. Meanwhile, Table 1

reports confidence bounds and medians for level α = 0.95 CSs for λ̄0. As expected, percentile

CSs exhibit strong boundary effects for our risk-neutral DGP (ρ0 = 0), but coverage rates

are otherwise very close to nominal levels for all methods and DGPs.

We next turn to our main Flexible copula model with Q = 1. In Table 2, we report

coverage rates and median CS bounds for level α = 0.95 CSs for λ̄0 derived from Procedure

2, profiled LR, and percentile CSs. We consider the AIC-preferred specification P = 4, as

well as P = 5 and P = 6. We implement MC CSs (Procedure 2 and percentile CSs) using

27As explained in Appendix B, profiled LR statistics for parameters in point-identified first-price auction
models can be divided into two groups: those with Gamma limiting distributions and the corresponding

parameters are estimable at rate-L due to maximal order statistics ˆ̄bk , k = 1, ...,K for support constraints;
and those with chi-square (or chi-bar) limiting distributions and the corresponding parameters, such as γ in
the point-identified CRRA model (Q = 1), are estimable at rate-

√
L.
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Table 1: Frank copula, Q = 1: Coverage rates and median bounds based on alternative CSs for

λ̄0 = 1/(1− ρ0), parameterizing λ0(·) as CRRA (Q = 1), C as Frank, and F0 as Bernstein-P .

Risk Averse DGP Risk Neutral DGP
ρ0 = 0.5, λ̄0 = 2.0 ρ0 = 0.0, λ̄0 = 1.0

Coverage Median Coverage Median
Method Prior M P of λ̄0 CS Bounds (see note) CS Bounds

Profiled LR — 1000 4 0.956 [1.588, 2.392] 0.918 [1.000, 1.061]
2000 4 0.938 [1.712, 2.277] 0.942 [1.000, 1.044]

5 0.948 [1.705, 2.266] 0.944 [1.000, 1.043]
Quantile CS Uniform 1000 4 0.952 [1.659, 2.388] 0.780 [1.002, 1.083]

2000 4 0.948 [1.739, 2.265] 0.875 [1.001, 1.056]
5 0.933 [1.734, 2.275] 0.882 [1.001, 1.057]

Procedure 2 Uniform 1000 4 0.957 [1.595, 2.383] 0.944 [1.000, 1.074]
2000 4 0.930 [1.714, 2.271] 0.959 [1.000, 1.050]

5 0.940 [1.703, 2.271] 0.969 [1.000, 1.050]

Notes: Results are based on 500 Monte Carlo replications. MC CSs are based on B∗ = 400 pa-

rameter draws {ψb}400b=1. For MC CSs in our risk-averse boundary DGP (ρ0 = 0.0), where percentile

CSs never cover λ̄0, “Coverage” reports the fraction of simulations covering λ̃(x|γ0)/x = 1.005.

flat priors on all parameters except ϕ, for which we compare both flat priors and boundary

priors with ∆ϕ = 0.01. As expected in view of Figure 3, profiled LR coverage rates for λ̄0

are conservative for our main sample scales M ∈ {1000, 2000}, but approach asymptotic

sizes at larger scales M ∈ {10000, 20000} (which we explored for this table only as a test

of our theory). Percentile CSs also demonstrate good coverage in our risk-averse DGP, but

(as expected) exhibit boundary effects for our risk-neutral DGP. CSs based on Procedure

2 yield coverage rates close to nominal confidence levels in all specifications, highlighting

the benefits of our robust procedure even in point-identified models. Coverage for MC CSs

is not strongly sensitive to priors, but appears slightly more reliable under our ∆ϕ = 0.01

boundary prior. Median CS bounds widen moving from P = 4 to P = {5, 6}, highlighting
the finite-sample gains associated with the AIC-preferred model P = 4.

5.2.2 Inference for set-identified models (Q ∈ {4, 6})

For our fully flexible set-identified models with Q ∈ {4, 6}, we compare CSs based on two

numerical implementations of Procedure 2. In the first, labeled Procedure 2-KL, we approx-

imate PL(ψb) with P̃LKL(ψ
b) obtained by slightly relaxing definition (19):

P̃LKL(ψ
b) = inf{L̃(η′) : η′ = η(ψ′) for ψ′ ∈ Ψ with DKL(ψ

b||ψ′) ≤ 10−6}.
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Table 2: Flexible copula, Q=1: Coverage rates and median bounds based on alternative CSs for

λ̄0 = 1/(1− ρ0), parameterizing λ0(·) as CRRA (Q = 1) and F 0
1 , ..., F

0
K as Bernstein-P .

Risk Averse DGP Risk Neutral DGP
ρ0 = 0.5, λ̄0 = 2.0 ρ0 = 0.0, λ̄0 = 1.0

Coverage Median Coverage Median
Method Prior M P of λ̄0 CS Bounds (see note) CS Bounds

Profiled LR — 1000 4 0.978 [1.440, 2.795] 0.988 [1.000, 1.119]
2000 4 0.986 [1.569, 2.640] 0.990 [1.000, 1.098]

5 0.990 [1.565, 2.820] 0.990 [1.000, 1.117]
6 0.980 [1.493, 2.841] 0.990 [1.000, 1.138]

10000 6 0.950 [1.708, 2.503] 0.968 [1.000, 1.063]
20000 6 0.956 [1.737, 2.355] 0.965 [1.000, 1.051]

Quantile CS Uniform 1000 4 0.962 [1.659, 2.659] 0.842 [1.002, 1.127]
2000 4 0.954 [1.727, 2.508] 0.907 [1.001, 1.097]

5 0.912 [1.767, 2.667] 0.854 [1.002, 1.129]
6 0.946 [1.733, 2.658] 0.858 [1.002, 1.139]

∆ϕ = 0.01 1000 4 0.962 [1.527, 2.481] 0.848 [1.002, 1.125]
2000 4 0.966 [1.616, 2.391] 0.912 [1.001, 1.094]

5 0.938 [1.687, 2.584] 0.827 [1.002, 1.139]
6 0.965 [1.633, 2.530] 0.819 [1.002, 1.142]

Procedure 2 Uniform 1000 4 0.948 [1.583, 2.642] 0.967 [1.000, 1.110]
2000 4 0.946 [1.689, 2.521] 0.960 [1.000, 1.085]

5 0.946 [1.681, 2.647] 0.960 [1.000, 1.112]
6 0.948 [1.657, 2.648] 0.957 [1.000, 1.120]

∆ϕ = 0.01 1000 4 0.970 [1.532, 2.668] 0.965 [1.000, 1.107]
2000 4 0.972 [1.629, 2.551] 0.964 [1.000, 1.083]

5 0.954 [1.661, 2.662] 0.975 [1.000, 1.120]
6 0.950 [1.636, 2.649] 0.961 [1.000, 1.127]

Notes: Results are based on 500 Monte Carlo replications. MC CSs are based on B∗ = 400 pa-

rameter draws {ψb}400b=1. For MC CSs in our risk-averse boundary DGP (ρ0 = 0.0), where percentile

CSs never cover λ̄0, “Coverage” reports the fraction of simulations covering λ̃(x|γ0)/x = 1.005.

In the second, which we label Procedure 2-L2, we approximate PL(ψb) with P̃LL2(ψb) ob-

tained by slightly relaxing the alternative definition (21) derived from Theorem 1:

P̃LL2(ψb) = inf{L̃(η′) : η′ = η(ψ′) for ψ′ ∈ Ψ with sb = s′ and DL2(ψb||ψ′) ≤ 10−7}.

In practice, we choose tolerances 10−6 for P̃LKL(ψ
b) and 10−7 for P̃LL2(ψb) to be small, but

not so small as to undermine numerical stability.28 By construction, both Procedure 2-KL

28Since DKL(ψ||ψ′) and DL2(ψ||ψ′) are measured in different units, there is no reason to choose the same

tolerances. We choose a smaller tolerance for P̃LL2(ψb) than for P̃LKL(ψ
b) since evaluation of DKL(ψ

b||ψ′)
requires re-solving equilibrium bid functions in an inner loop, while evaluation of DL2(ψb||ψ′) does not.
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Figure 6: Flexible copula, Q=4: Coverage (acceptance) rates based on level α = 0.95 CSs for

λ̃(x|γ0)/x via Procedure 2 at x = 0.2 and x = 0.3, parameterizing λ0(·) as Bernstein of order Q = 4

and F 0
1 , ..., F

0
K as Bernstein of order P = 6.

(a) ρ0 = 0.5, x = 0.2 (b) ρ0 = 0.0, x = 0.2

(c) ρ0 = 0.5, x = 0.3 (d) ρ0 = 0.0, x = 0.3

Notes: Results based on 200 replications for Procedure 2-KL and 500 for Procedure 2-L2, with

B∗ = 400 parameter draws {ψb}400b=1 per replication. Shaded areas are profiled D0
KL(ψ) ≤ 10−6.0

contour sets. The vertical line is true λ̃(x|γ0)/x = 1/(1− ρ0).

and Procedure 2-L2 will be conservative for true identified sets, and their exact numerical

results will differ. We hypothesize, however, that Procedure 2-KL will exhibit approximately

correct coverage for contour sets based on D0
KL(ψ) ≤ 10−6.

Figures 6 and 7 report estimated coverage (acceptance) curves based on level α = 0.95

CSs for λ̃(x|γ0)/x at x = 0.2 and x = 0.3 in Flexible copula models with Q = 4 and Q = 6

respectively.29 For Q = 4 andM = 2000, we implement both Procedure 2-KL and Procedure

2-L2, finding that both yield very similar coverage rates. We thus focus on the simpler

Procedure 2-L2 for Q = 6. We also compare results based on priors with more boundary

weight (∆ϕ = .01, ∆γ = 0.1) and less boundary weight (∆ϕ = .1, ∆γ = 0.9) respectively.

Coverage curves vary with choice of priors, but in all specifications the sets of points covered

with 95% probability correspond relatively closely to targeted D0
KL(ψ) ≤ 10−6.0 contour sets.

29We focus on x ∈ {0.2, 0.3} since the maximal argument to λ̃(x|γ0)/x when ρ0 = 0.5 is roughly x ≈ 0.38.
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Figure 7: Flexible copula, Q=6: Coverage (acceptance) rates based on level α = 0.95 CSs for

λ̃(x|γ0)/x via Procedure 2 at x = 0.2 and x = 0.3, parameterizing λ0(·) as Bernstein of order Q = 6

and F 0
1 , ..., F

0
K as Bernstein of order P = 6.

(a) ρ0 = 0.5, x = 0.2 (b) ρ0 = 0.0, x = 0.2

(c) ρ0 = 0.5, x = 0.3 (d) ρ0 = 0.0, x = 0.3

Notes: Estimates based on 100 Monte Carlo replications with B∗ = 400 parameter draws each.

Shaded areas are profiled D0
KL(ψ) ≤ 10−6.0 contour sets. The vertical line is λ̃(x|γ0)/x = 1/(1−ρ0).

Moreover, our CSs display very good power away from these sets.

We have conducted additional simulation studies, including another Monte Carlo design

with a Gumbel (rather than a Frank) value-signal copula DGP, and using even more flexible

Bernstein polynomial bases approximations for the utility function (up to Q = 7) and for

latent value distributions (up to P = 7). Patterns from these exercises are very similar to

those reported here and are not reported due to the lack of space. We view our simula-

tion evidence as highly promising, underscoring the attractive potential of our MPEC-based

implementation of CCT methods for inference in possibly set-identified auction models.

A Symmetric Monotone Equilibrium

For completeness, we first extend the simple AS-RA model presented in Section 2 to accom-

modate nonzero initial wealth for bidders and financial (in addition to opportunity) costs
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of entry. We then characterize equilibrium entry and bidding behavior within this extended

model, demonstrating in the process how the more general structure considered here collapses

in all economically relevant details to that in Section 2.

Potential bidders are risk averse with preferences over net post-auction wealth w described

by a symmetric concave Bernoulli utility function u(w). Net entry cost is given by c(z) =

c0 + c1(z), where c0 is the financial cost of entry, c1(z) is the opportunity cost of entry, and

c1(z) is strictly increasing and continuous in z. Bidders have common initial wealth w0 ≥ c0.

Following LLZ, we define a normalized utility function U(·) as a function of the change

in wealth x derived from bidding, normalized such that a bidder who enters the auction but

does not win receives zero normalized utility:

U(x) ≡ u(x+ w0 − c0)− u(w0 − c0).

For simplicity, and without loss of generality, we further normalize the scale of utility such

that U(1) = u(1 + w0 − c0)− u(w0 − c0) ≡ 1.

As noted by LLZ, centered utility U(·) belongs to the same category of Arrow-Pratt

absolute risk aversion (increasing, constant, or decreasing) as initial utility u(·). Furthermore,

as we show below, knowledge of normalized utility U is equivalent to joint knowledge of non-

normalized (u,w0, c0) with respect to characterizing equilibrium entry and bidding behavior.

In this sense, the simplified presentation in the text is without loss of generality.

A.1 Equilibrium bidding

First consider the Stage 2 bidding problem faced by an entrant with valuation vi bidding

against N − 1 potential rivals, each of whom enters when Sj ≥ s̄ ∈ (0, 1). We seek a strictly

increasing bidding strategy β(·|N, s̄) such that bidder i with valuation vi optimally bids

β(vi|N, s̄) when facing N − 1 rivals who enter according to s̄ and bid according to β(·|N, s̄).
Let F (·|Sj ≥ s̄) denote the c.d.f. of rival j’s valuation conditional on Sj ≥ s̄:

F (y|sj ≥ s̄) =
1

1− s̄

∫ 1

s̄

F (y|t) dt.

Under Assumptions 1-4, the support of F (·|Sj ≥ s̄) is a connected interval of the form

[v(s̄), v̄], where the infimum support v(s̄) is differentiable in s̄. Moreover, the density f(·|Sj ≥
s̄) is locally bounded away from zero for all v ∈ (v(s̄), v̄].

Let F ∗(·|N, s̄) (and f ∗(·|N, s̄)) be the c.d.f. (and the pdf) of the effective maximum

valuation among rival entrants when i’s N − 1 rivals enter according to threshold s̄:

F ∗(y|N, s̄) = [s̄+ (1− s̄)F (y|Sj ≥ s̄)]N−1,
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It is straightforward to show that F ∗(y|N, s̄) is increasing in s̄ (strictly for y such that

F (y|s̄) < 1) and decreasing in N (strictly if y < v̄).

Assuming that all potential rivals bid according to β(·|N, s̄), entrant i submitting bid

bi ≡ β(yi|N, s̄) will outbid all potential rivals with probability F ∗(yi|N, s̄). The expected

profit of entrant i with valuation vi who bids as if her type were yi is therefore:

πN(yi, vi; s̄) ≡ u(vi − β(yi|N, s̄) + w0 − c0)F
∗(yi|N, s̄) + u(w0 − c0)(1− F ∗(yi|N, s̄))

= [u(vi − β(yi|N, s̄) + w0 − c0)− u(w0 − c0)]F
∗(yi|N, s̄) + u(w0 − c0)

= U(vi − β(yi|N, s̄))F ∗(yi|N, s̄) + u(w0 − c0).

Taking a first-order condition of the final expression with respect to yi, enforcing the equi-

librium condition yi = vi, and solving for β′(·|N, s̄), we conclude that β(·|N, s̄) must satisfy

β′(vi|N, s̄) =
U(vi − β(vi|N, s̄))
U ′(vi − β(vi|N, s̄))

f ∗(vi|N, s̄)
F ∗(v|N, s̄) , (24)

subject to the boundary condition β(v(s̄)|N, s̄) = p0. LLZ show that (24) yields a unique

solution β(·|N, s̄) which is strictly increasing and differentiable in v, strictly increasing in N ,

and strictly decreasing and continuous in s̄ for s̄ ∈ (0, 1]. Since F ∗(y|N, s̄) is increasing in s̄

and decreasing in N , bidder i’s expected equilibrium Stage 2 profit

π∗
N(vi; s̄) ≡ U(vi − β(vi|N, s̄))F ∗(vi|N, s̄) + u(w0 − c0)

will therefore be strictly increasing and continuous in vi, strictly decreasing in N , and in-

creasing (strictly for vi > v(s̄)) and continuous in s̄ for s̄ ∈ (0, 1].

It remains to consider bidding when s̄ = 0. In this case, the bidder with the lowest

valuation can no longer win with positive probability by submitting a bid equal to the

reserve price. The boundary condition characterizing equilibrium bidding therefore changes

discontinuously from β(v(s̄)|N, s̄) = p0 for s̄ > 0 to β(v|N, 0) = v for s̄ = 0. β(·|N, 0) is still
given by the unique solution to the initial value problem (24), with the boundary condition

β(v|N, 0) = v replacing the boundary condition β(v(s̄)|N, s̄) = p0 above.

A.2 Equilibrium entry

Now consider the Stage 1 entry decision of potential bidder i with signal si facing N −
1 potential rivals who enter according to s̄ and bid according to β(·|N, s̄). Recall that i
must forego opportunity costs c1(z) from staying out. Holding the opportunity cost shifter
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z constant, the change in payoff i expects from entry is therefore:∫ v̄

v

π∗
N(v; s̄) dF (v|Si = si)− u(w0 + c1(z))

=

∫ v̄

v

U(v − β(v|N, s̄))F ∗(v|N, s̄) dF (v|Si = si) + u(w0 − c0)− u(w0 + c1(z)).

Noting that u(w0 + c1(z)) = u(c0 + c1(z) + w0 − c0), we may rewrite the final line as

πe(si, s̄, N)− U(c(z)),

where πe(si, s̄, N) denotes the expected normalized post-entry profit of a bidder with signal

Si = si, facing N − 1 potential rivals who enter according to threshold s̄:

πe(si, s̄, N) ≡
∫ v̄

v

U(v − β(v|N, s̄))F ∗(v|N, s̄) dF (v|Si = si).

Finally, consider the threshold sN(z) characterizing equilibrium entry at (N, z). If sN(z) ∈
(0, 1), then a potential bidder with signal si = sN(z) must be indifferent to entry, i.e.:

πe(sN(z), sN(z), N) ≡ U(c(z)). (25)

For s̄ > 0, the properties above imply that πe(si, s̄, N) is increasing and continuous in si,

strictly increasing and continuous in s̄, and decreasing in N . If, in addition, πe(s̄, s̄, N) is

continuous in s̄ as s̄→ 0+—a property we establish in the proof of Theorem 4 below—then

there will exist a unique, continuous function sN(z) satisfying the equilibrium conditions

above. Taken together, these properties together imply the following result:

Theorem 4. Suppose that U ∈ U , F ∈ F , and C ∈ C. Then there exists a unique sym-
metric monotone pure strategy Bayesian Nash Equilibrium for any N ∈ N and z ∈ Z. The
equilibrium entry threshold sN(z) is uniquely determined as follows: if πe(0, 0, N) > U(c(z)),
then sN(z) = 0 and all bidders enter; if πe(1, 1, N) < U(c(z)), then sN(z) = 1 and no bidder
enters; otherwise, sN(z) is the unique solution to πe(sN(z), sN(z), N) = U(c(z)). Moreover,
sN(z) is increasing in both N and c(z), strictly if sN(z) ∈ (0, 1), and if sN(z) < 1 for any
N , then sN(z) < 1 for all N .

The equilibrium bidding strategy β(·|N, sN(z)) is the unique solution to the initial value
problem (24) with s̄ = sN(z), subject to the boundary condition β(v(sN(z))|N, sN(z)) = p0 if
sN(z) > 0, or β(v|N, sN(z)) = v if sN(z) = 0.

B Profile LR subvector inference in set-identified mod-

els with parameter-dependent support

In this Appendix, we present a new Theorem 5 on the frequentist validity of CCT’s Procedure

2 for set identified subvectors in models with parameter dependent support. We also discuss

38



some sufficient conditions for frequentist validity of CCT’s CSs, and verify these analytically

in a simple set identified first-price auction example.

B.1: Subvector inference

Consider a parametric model P = {pψ : ψ ∈ Ψ} where pψ(·) is a probability density with

respect to a common dominating measure λ. Let DKL(p∥q) =
∫
p log(p/q)dλ denote the

Kullback-Leibler divergence, and po ∈ P be the true density of the data X. A natural

population criterion is L(ψ) = E[log pψ(X)] = E[log po(X)]−DKL(p
o∥pψ), where E[·] denotes

the expectation with respect to po. We assume that L(ψ) is an upper semicontinuous function

of ψ with supψ∈Ψ L(ψ) <∞. The identified set for ψ ≡ (µ, δ) ∈ Ψ is:

ΨI := {ψ ∈ Ψ : DKL(p
o∥pψ) = 0} =

{
ψ ∈ Ψ : L(ψ) = supφ∈Ψ L(φ)

}
. (26)

Let Xn = (X1, . . . , Xn) denote a random sample of size n from the joint density
∏n

i=1 p
o(Xi)

(recall that L is used to denote sample size in the main text). Let L(ψ) = ∑n
i=1 log pψ(Xi)

and ψ̂ ∈ Ψ be an approximate MLE, i.e., L(ψ̂) = supψ∈Ψ L(ψ) + op(1). The log-likelihood

ratio (LR) for ψ = (µ, δ) ∈ Ψ is Q(ψ) ≡ 2[L(ψ̂)− L(ψ)].
Let M = {µ : (µ, δ) ∈ Ψ for some δ} and Hµ = {δ : (µ, δ) ∈ Ψ}. The identified set for

the subvector µ ∈ M is MI := {µ : (µ, δ) ∈ ΨI for some δ ∈ Hµ}, or equivalently

MI = {µ : infδ∈Hµ DKL(p
o∥p(µ,δ)) = 0} = {µ : supδ∈Hµ L(µ, δ) = supφ∈Ψ L(φ)}. (27)

For any given ψ ∈ Ψ, we define a collection of µ ∈ M as follows:

M(ψ) := {µ ∈ M : DKL(pψ∥p(µ,δ)) = 0 for some δ ∈ Hµ}.

Define the (sample) profile LR for the set M(ψ) as

PQn(M(ψ)) ≡ sup
µ∈M(ψ)

inf
δ∈Hµ

Q(µ, δ) . (28)

Given L and a prior Π over Ψ, the posterior distribution Πn for ψ given Xn is

dΠn(ψ|Xn) =
exp[L(ψ)]dΠ(ψ)∫
Ψ
exp[L(ψ)]dΠ(ψ) =

exp[−0.5Q(ψ)]dΠ(ψ)∫
Ψ
exp[−0.5Q(ψ)]dΠ(ψ)

. (29)

We recall CCT’s Procedures 1 and 2 in terms of LR statistics as follows:

• Draw a sample {ψ1, . . . , ψB
∗} from the posterior distribution Πn in (29).

• Procedure 1. Let ξmcn,α be the α quantile of
{
Q(ψb)

}B∗

b=1
. Compute the 100α% confidence

set for ΨI as

Ψ̂α = {ψ ∈ Ψ : Q(ψ) ≤ ξmcn,α} . (30)
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• Procedure 2. Let ξmc,pn,α be the α quantile of
{
PQn(M(ψb))

}B∗

b=1
. Compute the 100α%

confidence set for MI as

M̂α =
{
µ ∈ M : inf

δ∈Hµ
Q(µ, δ) ≤ ξmc,pn,α

}
. (31)

The following is a list of assumptions from CCT that allows for set identified models with

parameter dependent support. See Appendix B.2 below for discussions.

Assumption 5. (CCT Assumption 4.1, posterior contraction)
(i) L(ψ̂) = supψ∈Ψosn L(ψ), with (Ψosn)n∈N a sequence of local neighborhoods of ΨI ;
(ii) Πn(Ψ

c
osn|Xn) = op(1), where Ψc

osn = Ψ\Ψosn.

We presume the existence of a fixed neighborhood ΨN
I of ΨI (with (Ψosn)n∈N ⊂ ΨN

I for all

n sufficiently large) upon which there is a local reduced-form reparameterization ψ 7→ ϖ(ψ)

from ΨN
I into Υ ⊆ Rd∗ for some d∗ ∈ [1,∞), such that ϖ(ψ) = 0 if and only if ψ ∈ ΨI . Let

ϖ̂ ≡ ϖ(ψ̂).

Assumption 6. (CCT Assumption C.2, local fan-shaped LR contour)
(i) There is a mapping h : Υ 7→ R+ and a sequence {an > 0}n∈N with an → 0 such that:

sup
ψ∈Ψosn

∣∣∣∣ an2 Q(ψ)− h(ϖ(ψ)− ϖ̂)

h(ϖ(ψ)− ϖ̂)

∣∣∣∣ = op(1)

with supψ∈Ψosn ∥ϖ(ψ)∥ → 0 and inf{h(ϖ) : ∥ϖ∥ = 1} > 0;
(ii) there exist r1, . . . , rd∗ > 0 such that th(ϖ) = h(tr1ϖ1, t

r2ϖ2, . . . , t
rd∗ϖd∗) for each t > 0;

(iii) the sets Kosn = {(c−r1n (ϖ1(ψ)− ϖ̂1), . . . , c
−rd∗
n (ϖd∗(ψ)− ϖ̂d∗))

′ : ψ ∈ Ψosn} cover Rd∗
+ for

any positive sequence (cn)n∈N with cn → 0 and an/cn → 1.

Let r∗ ≡ ∑d∗

i=1 ri. Let Gr∗ := Gamma(r∗, 2) denote a Gamma random variable that is

Gamma distributed with shape parameter r∗ and scale parameter 2. By slightly modifying

the arguments in Fan, Hung, and Wong (2000) one can show that, under Assumption 6,

sup
ψ∈ΨI

Q(ψ) = 2a−1
n h(−ϖ̂)× [1 + op(1)]⇝ Gr∗ .

Remark 1. Assumption 6 is typically satisfied with an = cn = n−1, d∗ = d∗1 + d∗2, ϖ(ψ)′ =
(r1(ψ)

′, r2(ψ)
′) with rj ∈ Rd∗j for j = 1, 2, and ϖ(ψ) = 0 iff ψ ∈ ΨI . The MLE ϖ̂ = (r̂1, r̂2)

is such that
√
nr̂1 = Op(1) is asymptotically d∗1-dimensional normal (provided d∗1 > 0),

nr̂2 = Op(1) is asymptotically d∗2-dimensional exponential (provided d∗2 > 0) and indepen-
dent of

√
nr̂1. There are two non-negative mappings h1, h2 such that 2nh(ϖ(ψ) − ϖ̂) =

2h1(
√
n[r1 − r̂1]) + 2h2(n[r2 − r̂2]), and 2h1(−

√
nr̂1)⇝ G0.5d∗1

and 2h2(−nr̂2])⇝ Gd∗2 . Hence
supψ∈ΨI Q(ψ)⇝ Gr∗ with r∗ = 0.5d∗1 + d∗2.
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Let ΠΥ be the image measure (under the map ψ 7→ ϖ(ψ)) of the prior Π on ΨN
I , namely

ΠΥ(A) = Π({ψ ∈ ΨN
I : ϖ(ψ) ∈ A}). Let Bϵ ⊂ Rd∗ be a closed ball of radius ϵ centered at

the origin.

Assumption 7. (CCT Assumption 4.3, prior)
(i)
∫
Ψ
eL(ψ) dΠ(ψ) <∞ almost surely;

(ii) ΠΥ has a continuous, strictly positive density πΥ on Bϵ ∩Υ for some ϵ > 0.

Let ξpostn,α denote the α-th quantile of Q(ψ) under the posterior distribution Πn.

Assumption 8. (CCT Assumption 4.4, MC convergence) ξmcn,α = ξpostn,α + op(1).

The next lemma collects CCT’s Lemma C.1 and Theorem C.1 for easy reference.

Lemma 1. (CCT’s Lemma C.1 and Theorem C.1) Let Assumptions 5, 6 and 7 hold. Then:
(1) supy |Πn({ψ : Q(ψ) ≤ y}|Xn)− Pr(Gr∗ ≤ y)| = op(1).

(2) In addition if Assumption 8 holds, then limn→∞ Pr(ΨI ⊆ Ψ̂α) = α.

The next assumption replaces CCT’s Assumption 4.5 for profile LR by a more general

fan-shaped likelihood contour set.

Assumption 9. There exists a quasi-convex function f : R+ 7→ R+ such that:

sup
ψ∈Ψosn

∣∣PQn(M(ψ))− f
(
2a−1

n h(ϖ(ψ)− ϖ̂n)
)∣∣ = op(1)

Assumption 9 implies that the profile LR for the set MI (for µ) satisfies

PQn(MI) ≡ sup
µ∈MI

inf
δ∈Hµ

Q(µ, δ)⇝ f(Gr∗) . (32)

Let ξpost,pn,α denote the α quantile of the profile LR PQn(M(ψ)) under the posterior dis-

tribution Πn.

Assumption 10. (CCT Assumption 4.6, MC convergence) ξmc,pn,α = ξpost,pn,α + op(1).

Theorem 5. Let Assumptions 5, 6, 7, 9 and 10 hold. Then:

lim
n→∞

Pr(MI ⊆ M̂α) ≥ α .
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B.2: Discussion and an auction example

Most assumptions above, including Assumptions 5 and 7, have been discussed in detail in

CCT. For point-identified models ΨI = {ψ0}, Assumption 6 or Remark 1 (for ϖ(ψ) = ψ−ψ0

or a one-to-one transformation) assumes that the log-likelihood ratio has a “local fan-shaped

contour” in the sense of Fan, Hung, and Wong (2000), which is a substantially weaker require-

ment than the classical condition of a local elliptical contour (i.e., quadratic expansion), and

accommodates, among other things, parameter dependent support. In particular, Remark

1 is satisfied by many parametric point identified first-price auction models including Don-

ald and Paarsch (1993), Hirano and Porter (2003) and Chernozhukov and Hong (2004). For

partially-identified models, as a proof device, CCT presume existence of a point-identified lo-

cal reduced-form parameter vector ϖ(ψ) for which the “local fan-shaped contour” condition

(Assumption 6) holds.30 Neither d∗, the effective dimension of the reduced-form parameters,

nor r∗ need to be known in the implementation of Procedures 1 and 2 CSs.

In complicated auction models such as ours, the point-identified reduced-form parameters

ϖ(ψ) = (r1(ψ), r2(ψ)) in Remark 1 (or Assumption 6) are the equilibrium bid distributions

and entry thresholds at each competition level (or one-to-one transformations thereof). For

the models in Section 5, we expect that Remark 1 is satisfied by letting r1(ψ) ∈ Rd∗1 relate

to the global shape of the predicted equilibrium bid density g(bi|ψ), and r2(ψ) ∈ Rd∗2 relate

to the support constraints βk(v̄|ψ) − βk(v̄0|ψ0) = 0, k = 1, ..., K. The MLE ϖ̂ = ϖ(ψ̂) =

(r̂1, r̂2) = argmax{L(ψ) : βk(v̄|ψ) ≥ ˆ̄bk, k = 1, ..., K}. Unfortunately, for both models

presented in Section 5, the equilibrium bid function βk(·|ψ), the bid density g(bi|ψ), and hence

the log-likelihood functions L(ψ) do not have analytic expressions, which renders analytic

verification of Remark 1 (or Assumption 6) and CCT’s regularity conditions challenging.

Crucially, however, the key prediction that posterior and frequentist LR statistics follow

Gamma(r∗, 2) distributions can be validated through simulation, as in Figure 4 of Section 5.

This is sufficient for CSs based on CCT’s Procedures 1 and 2 to have asymptotically valid

frequentist coverage for the relevant identified sets.

In some very simple first-price auction models in which the functions βk(·|ψ), g(bi|ψ) and
L(ψ) have closed-form solutions, Remark 1 (or Assumption 6) can be verified analytically. For

example, suppose that bidders have CRRA utility U(x) = x1−ρ for ρ ∈ [0, 1], with valuations

drawn i.i.d. from a power distribution F (v) = (v/v̄)ϕ on [0, v̄] with shape parameter ϕ > 0.

The auction model parameters are ψ = (ϕ, γ, v̄) with γ = 1 − ρ ∈ [0, 1]. We observe an

i.i.d. sample of bids generated with true parameters ψ0 = (ϕ0, γ0, v̄0) at one competition

30Importantly, whereas CCT’s Assumption 4.2 (local quadratic expansion), used in their main text, fails
to hold with parameter dependent support even in point-identified models, Assumption 6 allows for both
partially-identified models and parameter dependent support.
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level K = 1, with N ≥ 2 bidders who enter with certainty. Let N∗ = N − 1. For a given ψ,

the equilibrium bid function is β(v|ψ) = [ϕN∗/(γ + ϕN∗)]v, the predicted maximum bid is

b̄(ψ) ≡ β(v̄|ψ) with b̄0 ≡ β(v̄0|ψ0) as the population true maximum bid. The predicted bid

density is g(bi|ψ) = ϕ[b̄(ψ)]−ϕ(bi)
ϕ−1 × 1{0 ≤ bi ≤ b̄(ψ)}. The true bid density is po(bi) =

g(bi|ψ0). The true parameter ψ0 = (ϕ0, γ0, v̄0) is partially identified with the identified set

ΨI =
{
(ϕ, γ, v̄) ∈ (0, A)× [0, 1]× [0, V ] : ϕ = ϕ0 = (log(b̄0)− E[log(bi)])−1, b̄(ϕ, γ, v̄) = b̄0

}
.

The reduce-form parameter isϖ(ψ) = (ϕ−ϕ0, b̄(ψ)−b̄0) with its estimate ϖ̂ = (ϕ̂−ϕ0,
ˆ̄b−b̄0),

where ˆ̄b = max1≤i≤n bi is the MLE of b̄0 and ϕ̂ is the MLE of ϕ0:

ϕ̂ = argmax
ϕ

{
max

(γ,v̄):b̄(ϕ,γ,v̄)≥ˆ̄b

n∑
i=1

log(g(bi|ψ))
}

=

[
log(ˆ̄b)− 1

n

n∑
i=1

log(bi)

]−1

.

It is easy to check that
√
n(ϕ0)

−1(ϕ̂ − ϕ0) ⇝ N(0, 1) and that n(b̄0 − ˆ̄b) is asymptotically

shifted exponential with mean (b̄0/ϕ0) as its mean and standard derivation. Also

0.5Q(ψ) = n log(ϕ̂/ϕ) + nϕ/ϕ̂− n+ nϕ log(b̄(ψ)/ˆ̄b)× 1{b̄(ψ) ≥ ˆ̄b},

sup
ψ∈ΨI

Q(ψ) = n

(
ϕ̂− ϕ0

ϕ0

)2

× [1 + op(1)] + 2nϕ0 log(b̄
0/ˆ̄b)× 1{b̄0 ≥ ˆ̄b}⇝ Gr∗ , r∗ = 1.5 .

Remark 1 (or Assumption 6) is satisfied with an = cn = n−1. d∗ = 2, r1 = 0.5, r2 = 1,

r∗ = 1.5, and for all ψ ∈ Ψosn,

2nh(ϖ(ψ)− ϖ̂) =
(√

n[ϖ1(ψ)− ϖ̂1]/ϕ0

)2
+ 2ϕ0

n[ϖ2(ψ)− ϖ̂2]

b̄0
× 1{[ϖ2(ψ)− ϖ̂2] ≥ 0} .

The identified set for γ is MI =
[
0, min{((b̄0)−1V − 1)N∗ϕ0, 1}

]
provided that V ≥ b̄01.

Let γ̄ := ((b̄0)−1V − 1)N∗ϕ0 < 1 and ˆ̄γ = ((ˆ̄b)−1V − 1)N∗ϕ̂. Then
√
n[(γ̄/ˆ̄γ) − 1] = (1 +

o(1))
√
n[(ϕ0/ϕ̂)−1]. We can show that PQn(MI)⇝ W ≤ χ2

1, where χ
2
1 is a random variable

whose distribution is standard chi squared one. Thus CCT’s Procedure 3 CS is also valid.

Data Availability Statement The data and code underlying this article are available on

Zenodo at https://doi.org/10.5281/zenodo.14278621.
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