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Abstract. We develop a new class of random graph models for the statistical estimation of
network formation—subgraph generated models (SUGMs). Various subgraphs—e.g., links,
triangles, cliques, stars—are generated and their union results in a network. We show that
SUGMs are identified and establish the consistency and asymptotic distribution of parameter
estimators in empirically relevant cases. We show that a simple four-parameter SUGM
matches basic patterns in empirical networks more closely than four standard models (with
many more dimensions): (i) stochastic block models; (ii) models with node-level unobserved
heterogeneity; (iii) latent space models; (iv) exponential random graphs. We illustrate
the framework’s value via several applications using networks from rural India. We study
whether network structure helps enforce risk-sharing and whether cross-caste interactions
are more likely to be private. We also develop a new central limit theorem for correlated
random variables, which is required to prove our results and is of independent interest.
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1. Introduction

Networks of interactions impact many economic behaviors including insuring one’s self
(e.g., Cai, deJanvry, and Sadoulet (2015)), participating in microfinance (e.g., Banerjee et al.
(2013)), educating one’s self (e.g., Calvo-Armengol, Patacchini, and Zenou (2009); Carrell,
Sacerdote, and West (2013)), and engaging in criminal behavior (e.g., Glaeser, Sacerdote,
and Scheinkman (1996); Patacchini and Zenou (2008)). Networks of interactions are also
essential to understanding financial contagions (e.g., Gai and Kapadia (2010); Elliott, Golub,
and Jackson (2014); Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015)), as well as world trade
(e.g., Chaney (2016)), inter-state war (e.g., Jackson and Nei (2015); König, Rohner, Thoenig,
and Zilibotti (2017)), and a host of other economic phenomena. As such, the structure
that a network takes has profound consequences—changing the possibility of contagions,
the decisions that people make, and the beliefs that people hold—and so it essential to
understand and estimate network formation. Moreover, networks are of interest precisely
because there are externalities—one agent’s behavior impacts the welfare and behaviors of
others.1 This feature means that connections between agents are not independent, and so
appropriate models of network formation must admit correlations in connections.

Despite the importance of network formation, general, flexible, and tractable econometric
models for the estimation of network formation are lacking. This stems from two challenges:
the aforementioned dependence in connections and the fact that many studies involve one
(large) network. Thus, one is often confronted with estimating a model of formation by taking
advantage of the large number of connections, but having them all be dependent observations.
Despite the dependence, it is possible that the many relationships in a network still provide
rich enough information to consistently estimate the parameters of a network model and test
hypotheses from a single observed network, at least hypothetically. Here we develop a class
of models that admit correlations in links and also provide practical techniques of estimating
the models, showing that they are estimable, even with just a single network.

Before describing our model, it is useful to discuss some of the alternative approaches.

1.1. Alternative Models of Network Formation. The most basic models are what are
known as ‘stochastic block models’, in which links may depend on node characteristics but are
(conditionally) independent of each other. That approach requires correlation between links
to be well-approximated by observable characteristics, and may not be sufficient for most
applications.2 In particular, stochastic block models are not a good option for estimation in
applications in which there is substantial clustering (triangles) or other cliques in the network.
In fact, in Section 5 we show that our model (even with only four parameters) models the
graph structure of real-world data better than a stochastic block model even when the block
model admits a rich set of covariates and unobserved node level heterogeneity (fixed effects)

1For detailed discussions see Jackson, Rogers, and Zenou (2016) and Jackson (2019).
2A variation on this is community detection where nodes are estimated to belong to certain groups,

though this calculation is NP-hard. See Bickel et al. (2011) for a “non-parametric view” of network formation,
and Jackson and Storms (2017) for an approach to estimating the blocks even if they are latent.
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(Chatterjee et al., 2010; Graham, 2017).3 Although there are challenges in taking such
models to data, they are useful if link correlation is not a concern.

Given the importance of clustering and other local network architectures in many applica-
tions, a literature spanning several disciplines (sociology, statistics, economics, and computer
science) turned to using exponential random graph models—henceforth “ERGMs”. ERGMs
admit link interdependencies and have become the workhorse models for estimating network
formation.4 However, from the onset of the use of ERGMs, researchers realized that the pa-
rameter estimators could be unstable on all except excessively small networks. It has been
shown that maximum likelihood and Bayesian estimators are not computationally tractable
(the required Gibbs sampler will take exponential time to mix) nor consistent for important
classes of such models—and in particular for the ERGMs that include many link dependen-
cies of interest (and neither parameter estimators nor standard errors can be trusted). For
details see Bhamidi, Bresler, and Sly (2008); Shalizi and Rinaldo (2012); Chandrasekhar and
Jackson (2012).5

A set of models that allow for link dependencies and are estimable is the class of models
based on explicit link formation algorithms (e.g., Barabasi and Albert (1999); Jackson and
Watts (2001); Jackson and Rogers (2007); Currarini, Jackson, and Pin (2009, 2010); Chris-
takis, Fowler, Imbens, and Kalyanaraman (2020); Bramoullé, Currarini, Jackson, Pin, and
Rogers (2012)). These models can be estimated since the algorithms are particular enough
so that one can directly derive how parameters in the model translate into aggregate network
statistics, such as the degree distribution or homophily levels. The advantage of such models
is that a specific algorithm allows for estimation. The disadvantage is that the specificity of
the algorithms also necessarily results in highly-structured models. Thus, these approaches
are useful in some contexts, but they are not designed, nor intended, for general statistical
testing of a wide variety of network formation models and hypotheses. For instance, such
models cannot generate considerable triadic closure (where links correlated across triples of
nodes—so if two people have a friend in common, are they more likely to be friends with
each other than if link formation were independent).6

Another approach has roots in the spatial statistics literature. Such models organize nodes
such that pairs can be evaluated in terms of distance, with linking probabilities decaying
in distance. The distance may be latent (unobserved) or in observed characteristic space

3In fact, correlations can be viewed as driven by unobserved heterogeneity (Chatterjee, Diaconis, and
Sly, 2010), which has links be uncorrelated conditional on all (observed and unobserved) characteristics (as
extended by Graham (2017)). See also Charbonneau (2017) for related work that is a directed networks
version of Graham (2017). Such models have been studied in the mathematics and statistics literatures (e.g.,
Holland and Leinhardt (1981); Park and Newman (2004); Blitzstein and Diaconis (2011)).

4These grew from work on what were known as Markov models (e.g., Frank and Strauss (1986)) or p∗
models (e.g., Wasserman and Pattison (1996)). An alternative is to work with regression models at the link
level, but to allow for dependent error terms, as in the “MRQAP” approach (e.g., Krackhardt (1988)).

5Recent work has made progress on both the speed of convergence of estimation algorithms as well
as characterizing the asymptotic distribution of sufficient statistics in some classes of ERGMs that avoid
extensive link dependencies (see e.g., Mele (2017, 2022); Mele and Zhu (2023)).

6The Jackson and Rogers (2007) model does have a parameter that affects triadic closure, but in that
model closure cannot be separated from the shape of the degree distribution. So, it is best suited for growing
random networks where new nodes are born over time.
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(such as geography or demographics). Such models have foundations in the mathematics
literature on random geometric graphs (Penrose, 2003)—where nodes are distributed in a
latent space according to some Poisson point process and linking is much more likely among
proximate nodes—and have been analyzed in the statistics literature in work on latent space
models such as in Hoff et al. (2002). Links between distant-enough pairs of nodes are
asymptotically independent and such models have been developed in more detail in the
econometrics literature (e.g., Boucher and Mourifié (2017); Leung (2014)). This approach
holds promise for some enormous networks with appropriate spatial structures—in which
the graph can almost be decomposed into independent pieces.7 However, there are many
applications for which these latent space (and generally spatial) models—particularly the
geometry of the space the nodes—overly dictates and limits the structure of link correlation.
Using these models may in fact require estimating an unobserved manifold, which presents
its own challenges.8 Our model dispenses with these problems in a straightforward way,
allowing correlations across nodes but not forcing correlations generated through distances
in unobserved or characteristic space.

Finally, there is a large literature on the theory of network formation from a strategic
perspective (for references, see Jackson (2005, 2008)). Since the first writing of this paper,
researchers have started to derive versions of such models that can be taken to data. One
approach builds upon the relationship between certain classes of strategic network formation
models and potential games; some of which leverage subgraphs, but in a rather different
way from us (Butts (2009); Mele (2017); Badev (2021)). Another derives restrictions on
parameters of an observed network under the presumption that it is in equilibrium (pairwise
stable) (De Paula, Richards-Shubik, and Tamer (2018); Sheng (2020)). The latter makes the
observation that by using pairwise stability restrictions of Jackson and Wolinsky (1996) on
subnetworks, one can partially identify preference parameters in the model, whereas doing so
on the full graph can be computationally infeasible.9,10 Although the progress to date requires
strong restrictions on how links can enter agent’s payoffs, they provide important first steps
in deriving implications of the arsenal of strategic network formation models. Below, we
also provide ways to incorporate strategic formation in SUGMs, thus in part bridging our
approach here and the strategic formation approach.

1.2. Our Subgraph Model Approach. Our approach is distinct from all of the above,
both in terms of the approach (working with subgraphs as the basic building blocks) and
the technicalities of allowing nontrivial conditional correlations. Our contribution is to de-
velop models of network formation that admit considerable interdependency without spatial
restrictions, and still prove consistency and asymptotic normality of parameter estimators.
As part of this, we develop a new central limit theorem for non-trivially correlated random

7McCormick and Zheng (2015) merge the insights from the unobserved heterogeneity and the latent space
distance models, and Breza, Chandrasekhar, McCormick, and Pan (2020) evaluate its empirical performance.

8Estimating the latent geometry by using the network data to identify the underlying metric signature
is the subject of one of the authors’ related work in (Lubold et al., 2023).

9For a recent overview of the recent literature, see De Paula (2017).
10In both the potential games and the partial identification literatures, subgraphs play very different roles

from their role here.
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variables that moves away from relying on spatial-style mixing arguments that force decaying
dependence in distance.

The paucity of flexible models that are computable and can be used across many appli-
cations for hypothesis testing and inference is what motivates our work here. Although our
models are simple conceptually, we provide different applications that illustrate how such
models admit strategic network formation, general covariates, and generate rich network
features.

In Section 2 we introduce subgraph generated models—henceforth SUGMs. In these mod-
els, various subgraphs (e.g., links, triangles, cliques, and stars) are generated directly. For
instance, students may form friendships with their roommate(s), members of a study group,
teammates, band members, etc.; researchers may form collaborations on writing papers in
pairs, or triples, or quadruples, etc; villagers may form specific bilateral or multilateral
agreements independently, each to sustain some collection of favors between those individ-
uals involved in the agreement. This results in links and those links are then naturally
correlated since they are formed in combinations. The union of all these subgraphs results in
a network. In this section, we also introduce three motivating applications to demonstrate
how this model could be used: (i) descriptively modeling network structure, (ii) motives for
risk-sharing, and (iii) incentives to link across social boundaries.

The statistical challenge is that often only the final network is observed: a survey may ask
people to list their friends or acquaintances, or links may be observed on a social platform,
or emails or phone calls are observed, etc., but the original formation process is often not
observed. Subgraphs may overlap and may incidentally generate new subgraphs: e.g., three
links may form and result in a triangle. Thus, the true rate of formation of the subgraphs
cannot generally be inferred just by counting their presence in the resulting network.11

Despite this, in Section 3 we prove that every subgraph generated model is identified. That
is, if we consider a SUGM—a collection of subgraphs that can potentially form together
with a set of parameters governing the probabilities of each subgraph forming—then any
two distinct set of parameters necessarily has two distinct set of distributions over the set of
possible networks. Furthermore, we explore specific cases that are of empirical relevance—for
instance, links and triangles models—and demonstrate that not only are the distributions
generally distinct, but that simple statistics (such as the share of links or triangles that form)
allow us to identify the parameters of interest.

Next we turn to estimation of the underlying parameters describing subgraph formation
rates in Section 4. We show that we can consistently estimate the parameters and we derive
the asymptotic distribution of the estimators so we can conduct inference. There are two
situations that a researcher may face.

In the first case, the researcher has access to “many networks”. This could be because
they have collected network data from numerous schools, many villages, or so on. Here

11The closest work to ours is a Bollobás et al. (2011) piece on random graph theory, which looks at
percolation processes, giant component structure, and degree distributions in a model where the observed
graph is generated by a set of atoms (subgraphs in our language). That paper focuses on a specific rate of
arrival of subgraphs (to maintain a sparsity where a core problem we study is ruled out) and is not interested
in statistical estimation.
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we demonstrate (using standard results) that the parameters governing the SUGM can be
estimated consistently with maximum likelihood estimators that are asymptotically normally
distributed. For some empirically relevant classes of models, we demonstrate that there
are computationally simple, minimum distance estimators which satisfy consistency and
asymptotic normality.

The second case is where the researcher has one (or just a few) “large network”. This could
be because they have collected very rich network data with resource constraints in just a few
communities, or because they are looking at a single market, or because they are looking at
one social media platform, etc. In this case, the asymptotics are more technically challenging
for two reasons. First, the network cannot be too sparse, as enough subgraphs must form to
make estimation possible, nor too dense because it becomes impossible to distinguish which
subgraph likely generated a candidate link. So formally, we have “rate requirements” on the
parameters governing the probabilities of subgraphs forming, although these turn out to be
quite accomodating. Second, existing central limit theorems from the spatial and time-series
econometrics literatures do not apply to our setting, as we need to allow subgraphs to form
on arbitrary groups of nodes, which then results in correlation patterns across all links in
the network. We overcome this problem by developing a new central limit theorem and use
it to characterize when certain classes of SUGMs have estimators that are consistent and
asymptotically normally distributed.12

With the statistical properties established, we turn to our empirical applications in Section
5. In each application we use the detailed network data we collected in 75 villages in Kar-
nataka, India (Banerjee et al., 2019). We begin by comparing SUGMs to four archetypical
models from the literature in terms of how well they model real-world data. Specifically, we
fit each model to the data and then draw from the distribution at the estimated parameters
for each model. We are interested in a variety of economically relevant network features
(none of which are directly used to estimate any of the models). We find that across the
board a four parameter SUGM outperforms a stochastic block model with flexible covari-
ates; a model of unobserved heterogeneity at the node level as well as rich covariates; a
latent space model with unobserved locations and heterogeneity as well as observed covari-
ates; and an exponential random graph model with rich covariates. Only the SUGM comes
close to capturing the average path length, homophily, maximal eigenvalue, size of the giant
component, isolates, and clustering. Having established this, the second example turns to
whether the structure of the networks is consistent with the idea that there are stronger
incentives to have supported relationships for risk sharing links rather than informational
links (Jackson et al., 2012) and we find evidence consistent with this. The third example
explores whether linking across social boundaries—here links between upper caste and lower
caste (Dalit communities)—is more likely to form in private (bilateral) rather than group
(triadic) settings and we find exactly this. Together, these examples demonstrate the utility
of our general framework.

12An interesting consideration for future work is to employ the techniques in Bhattacharyya et al. (2015),
who develop a bootstrapping method to estimate the distribution of empirical counts of different subgraphs
in enormous networks.
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In Section 6 we return to state our Central Limit Theorem, which is of independent
interest. We provide covariance conditions that are high-level but also straightforward to
interpret, check, and micro-found. We use a powerful lemma from Stein (1986) in our proof.
Many CLTs build upon Stein’s method,13 but we allow for much richer dependence—all
random variables can have non-zero correlation—which admits the correlations in subgraph
counts that can arise due to the incidental generation discussed above; and we also allow for
triangular arrays. We discuss the relationship of our Central Limit Theorem and its proof
to precursors in Section 6.

2. A Model of Network Formation via Subgraphs

2.1. Networks. n ≥ 3 is the number of nodes on which a network is formed. Nodes may
have characteristics, such as age, profession, gender, race, caste, etc., that we denote by the
vector Xi for a generic i ∈ {1, . . . , n}. The Xi have finite support.14 As such nodes can be
classified by a finite set of observable types.15

We denote a network by g, the collection of subsets of {1, . . . , n} of size 2 that lists the
edges or links that are present in its graph. So, g = {{1, 3}, {2, 5}} indicates the network
that has links between nodes 1 and 3 and between nodes 2 and 5. For notational ease, we
simply write g = {13, 25}, and write ij ∈ g to denote that link ij is present in network
g. Our model easily accommodates directed graphs, and all of the definitions below extend
directly, in which case instead of pairs of nodes, these would be ordered pairs so that ij
and ji would differ. However, for ease of exposition, most of the examples and discussion
refer to the undirected case. Gn denotes the set of all networks on n nodes (which given
our definition of a network above, is the set of all labeled (undirected) graphs on the set
{1, . . . , n}).

2.2. Subgraphs and SUGMs. In a subgraph generation model, subgraphs are each di-
rectly generated, and then the resulting network is the union of all of the links in all of the
subgraphs. Degenerate examples of this are Erdos-Renyi random networks, and the general-
ization of that model, stochastic-block models, in which links are formed with probabilities
based on nodes’ attributes. The more interesting classes of SUGMs include richer subgraphs,
and hence involve dependencies in link formation. It might be that people of the same caste
meet more frequently or are more likely to form a relationship when they do meet, as in a
stochastic block model, but it could also be that groups of three (or more) meet and can

13For instance, Bolthausen (1982) uses a pre-cursor lemma from Stein (1972) to derive CLTs from some
mixing conditions. In time-series and spatial econometrics, a non-exhaustive but illustrative list of papers
using Bolthausen (1982) include Conley (1999), Jenish and Prucha (2009), Bester, Conley, and Hansen
(2011), among others.

14This is a limitation since there are network models that do not require discrete covariates. While
continuous variables can be discretized, this is a trade-off.

15We conjecture that our results extend to allow for continuous covariates as well, though that requires
specifying parametric functions for the probability of subgraphs as a function of covariates and so remains
beyond the scope of this paper. If one expands the set of covariates, the number of parameters to fit increases.
In the limit, if one allows continuous covariates, one then has to fit functions for every type of subgraph
(e.g., probability of a triangle as a function of the covariates of the three nodes). That is only simplified if
one imposes restrictions on those functions (e.g., some form of linearity).
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decide whether to form a triangle, with the meeting probability and decision potentially
driven by their castes and/or other characteristics. The model can then be described by a
list of probabilities, one for each type of subgraph, where subgraphs can be based on the
subgraph shape as well as the nodes’ characteristics.

A SUGM is formally defined as follows.
• There are finitely many types of nonempty subgraphs, indexed by ` ∈ {1, . . . , k}.
• Each of the k subgraph types corresponds to a set (G`)`∈{1,...,k}, where each G` ⊂ Gn

is a set of possible subgraphs on m` ≤ n nodes.
• For each ` and pair of subgraphs g′ ∈ G` and g′′ ∈ G` there exists a bijection π on
{1, . . . , n} such that ij ∈ g′ if and only if π(i)π(j) ∈ g′′.
• No subgraph is contained in two different sets: if ` 6= `′ then g ∈ G` implies that
g /∈ G`′ .

This definition does not admit isolates since we define subgraphs to be nonempty and
connected, but isolates are easily admitted with notational complications, and are illustrated
in some of our examples below as well as the supplementary appendix. As an example, in
the links and triangles case ` ∈ {L, T}. Then, for n = 4 and ` = T , GT is the set of triangles,
where m` = 3 and GT = {{12, 23, 31}, {12, 24, 41}, {13, 34, 41}, {23, 34, 42}}.

Note, however, that the definition does not require that G` contain all triangles. In
examples in which node characteristics matter, different triangles could be categorized into
different G`s. In particular, definitions of the subgraph types can have restrictions based
on node characteristics, for instance, requiring that the characteristics Xi and Xπ(i) be the
same—e.g., G` for some ` could be the set of “triangles that involve one child and two adult
nodes”. As another example, the set G` for some ` could be all stars with one central node
and four other nodes, and another G`′ could be all the links that involve people of different
castes, and so forth.

A few examples are pictured in Figure 1.
The probability that various subgraphs form is described by a vector of parameters, de-

noted β = (β1, . . . β`, . . . , βk) ∈ Bk, where B is (unless otherwise noted) a compact subset of
[0, 1)k.16 For instance, β = (βL, βT ) ∈ B ⊂ [0, 1)2 in a links and triangles example.17

A network g on n nodes is randomly formed as follows:
(1) Each of the possible subgraphs g` ∈ G` forms with probability β` independently of

all other subgraphs (including others in G`).
(2) The resulting network, g, is the union of all the links that appear in any of the

generated subgraphs.

2.3. An Example with Node Characteristics. Suppose that nodes come in two col-
ors: blue and red (for instance different genders, age groups, religions, etc., and clearly
this extends directly to more than two colors). In our example of links and triangles, there

16We treat vectors as row or columns as is convenient in what follows.
17In some examples below, we expand this demonstrating how β can have entries that are monotone

functions of preference parameters (or equilibrium behavior), which allows us to study certain economic
questions. Estimating β allows us to either recover the parameters or behavior of interest in some cases or
conduct loose hypothesis testing using our estimates of β.
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(a) Isolate

b r

(b) Link with two
types

(c) Triangle with a multiplexed link

b b

r

b b

(d) 4-star with differing
types

(e) Tree of all blues

b g

r y

(f) 4-clique with differ-
ing types

Figure 1. Examples of subgraphs. Links could be directed or undirected or
even multiplexed (take on multiple edge types) and nodes can have different
characteristic combinations (denoted by node colors and labels).

are now three types of links: (blue, blue), (blue, red), (red, red); and four types of trian-
gles (blue,blue,blue), (blue,blue,red), (blue,red,red), (red,red,red) which comprise the set of
subgraphs indexed by `.

b b b r r r

(a) All Links

b b

b

b r

b

b r

r

r r

r

(b) All Triangles

Figure 2. Panel (A) shows all possible links and Panel (B) shows all possible
triangles when a node has characteristic Xi ∈ {red, blue}.

Thus, in this example the sets of subgraphs are

G(blue,blue) = {ij : Xi = blue,Xj = blue}

and
G(blue,blue,red) = {ijk : Xi = blue,Xj = blue,Xk = red},

and so forth, as depicted in Figure 2. The parameters

{β(blue,blue), β(blue,red), β(red,red), β(blue,blue,blue), β(blue,blue,red), β(blue,red,red), β(red,red,red)},

are the probabilities that the corresponding subgraphs form.
One could restrict or enrich the model by having simpler or more complex sets of param-

eters – for instance requiring that β(blue,blue) = β(red,red), or by having preference parameters
that govern the probabilities of various subgraphs forming, as we discuss below.

2.4. Links and Triangles as Our Leading Example. The bulk of our illustrations and
applications are based on link and triangle SUGMs, though other subgraphs can be included
and are covered by our general results (e.g., Theorems 1, 2, and 3). Our illustrations focus
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on links and triangles for two reasons: first, this case is simple to understand and illustrates
the main points since it exhibits correlated links and incidental generation; second, the
link and triangle model already matches the moments that are of interest in many research
projects (larger cliques are rare). In fact, as we show below, simply looking at a links and
triangle SUGM tagged with whether the nodes involved are homogenous or heterogeneous
in demographics (e.g., just a 4 parameter model), replicates real-world network features
better than far-richer models. Still, we leave further specification to the researcher as it will
depend on their context and the phenomenon being modeled. If there are other the types of
subgraphs that are hypothesized to arise in some particular context, then that model can be
constructed and estimated in the ways we outline and are covered by our general results.18

3. Identification

3.1. The Challenge of Identification. The researcher’s goal is to use the observed data—
from one or more networks—to recover the parameters of interest, for example, the (βL, βT )
in a SUGM of links and triangles. If the researcher observed the links and triangles that
were formed directly, then estimation would be straightforward. Indeed, in some instances
a researcher has direct information on all the various groups a given individual is involved
in: for instance in the case of a co-authorship network, the researcher may observe all the
papers a researcher has written and thus observes papers with two authors, three authors,
and so forth. Instead, for instance, it may be that there are groups of three people who
commonly share favors and risks together—who really form a triangle, but the researcher
only has information from a survey asking with which alters a given person interacts (as in
networks derived from the Add Health data set as in Currarini et al. (2009)), or who borrows
from whom and who lends kerosene and rice to whom and other bilateral nominations (as in
our Indian village data Banerjee et al. (2013)), or from observing that who are friends on a
social platform (as in Facebook network data as in Bailey et al. (2016); Chetty et al. (2022)),
or from observing that two people phone each other or remit payments to each other (as in
Blumenstock et al. (2011)).

Thus, the general problem is that the formation of the subgraphs is not directly observed,
and so must be inferred in order to estimate the parameters of interest. For example, if
three links are observed between i, j, and k, is it the case that ijk formed as a triangle, or
that ij, jk and ik formed as links, or that ij and jk formed as links and ik formed as part
of a different triangle ikm, or some combination of these or other combinations? Figure 3
provides an illustration.

The overlap and incidental generation present a challenge for estimating a parameter
related to triangle formation since some of the observed triangles were “directly generated”
in the formation process, and others were “incidentally generated;” and similarly, it presents
a challenge to estimating a parameter for link formation since some truly generated links

18One could also have a list of subgraphs as a possible basis for the SUGM with only a subset of them
actually forming the true SUGM; allowing the data to tell the researcher which to include. Some of that can
be done here, including the various subgraphs that might be involved and then seeing which have nontrivial
parameter estimates. This marries SUGMs with model selection, a topic which could be explored further in
future research.
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(a) n nodes (b) Triangles form

(c) Links form (d) Resulting network

Figure 3. The network that is formed and eventually observed is shown
in panel D. The process comes from forming triangles with probability βT as
in (B) in red; and forming links, in grey, with probability βL as in (C)—all
independently. New links are dashed while links that overlap with some link
also formed in a triangle are in solid and bold. We see that there is both
(i) overlap as some links coincide with links already in triangles, as well as
(ii) extra triangles that were generated “incidentally.” Given that we only
observe the resulting network in panel D, we need to infer the formation of
the different subgraphs carefully and not simply by directly counting observed
links and triangles.

end up as parts of triangles. We show that despite this difficulty, the parameters can be
recovered by careful study of the observed patterns. In particular, we show that a SUGM is
always identified, and also provide techniques for recovering the parameters.

3.2. A General Identification Result. We first show that as the parameters of any SUGM
change, so does the distribution over networks, and hence SUGMs are identified models.

Let Pβ denote the probability distribution over a network g on n nodes under a vector of
parameters β describing the probabilities of subgraph types (G`)`∈{1,...,k}.

Theorem 1. Every SUGM is identified. That is, for any finite collection of distinct types
of subgraphs (G`)`∈{1,...,k} on n nodes, β 6= β′ =⇒ Pβ 6= Pβ′ .

Recalling the general definition of the SUGM, this means that for every SUGM (even
one comprised of subgraphs that could have nodes with varying (discrete) covariates and
allowing for multiplexing, etc.) is identified.

To understand why this holds, for instance in the case of links and triangles, note that
as one varies (βL, βT ), the relative rates of overall observed links and triangles change, as
do the number of triangles that overlap with each other. One can calculate the relative
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rates at which incidental links and triangles are expected to be generated, and there is an
invertible relationship between observed counts of links and triangles, and the underlying
rates at which they were expected to be directly formed. Theorem 1 shows that this is true
not only for links and triangles, but for any collection of distinct subgraphs.

We emphasize, of course, that identification does not imply that the parameters are easily
estimated, especially on a very small number of nodes. We provide results on consistency
below, which require observation of a sufficiently large network and/or sufficiently many
networks.

3.2.1. Identification from Link and Triangle Counts. Although Theorem 1 shows that SUGMs
are always identified—i.e., distinct parameters yield distinct distributions—it is often conve-
nient to use minimum distance based estimators based on simple moments of the network.
Thus, it is useful to show that identification can be achieved from simple statistics. We illus-
trate that this can be done with direct counts of the relative frequency of appearances of the
subgraphs. In particular, in Proposition 1 we show that a links and triangles SUGM can be
identified directly from the counts of links and triangles: S(g) = (SL(g), ST (g)). This does
not mean that one can ignore incidental generation, but it does mean that the information
one has to use can be simple counts.

Further below, in Theorem 3, we show conditions under which such direct counts not only
identify the parameters for general subgraphs, but can also be used to derive consistent and
normally distributed estimators of the parameters.

To understand the identification, consider Figure 4. Each configuration involves two tri-
angles, but the graph in Panel B with only five links is relatively more easily incidentally
formed than the one in Panel A. Thus, by looking at the combination of how many triangles
and how likely links there are, we can sort out relative rates of the two parameters.

(a) Node adjacent triangles (b) Edge adjacent tri-
angles

Figure 4. Two different configurations of two triangles; one has a count
of 6 total links and the other has a count of 5 links. (A) is more relatively
more likely to come directly from the formation of two triangles, and (B) is
relatively more likely to come from a combination of links and triangles. The
likelihoods of links and triangles can thus be deduced via careful deductions
from the combination of the counts of links and triangles.

Proposition 1. A SUGM of links and triangles is identified from moments S(g) = (SL(g), ST (g))
for any β = (βL, βT ) ∈ [0, 1)2. That is, if (β′L, β′T ) 6= (βL, βT ) then Eβ′ [S (g)] 6= Eβ [S (g)].

Let us outline the basic ideas behind the proof, with the full proof appearing in the
appendix. Let q̃L (βL, βT ) denote the probability that any given link forms conditional upon
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exactly one particular triangle that it could be a part of not forming, which depends on the
βs. For instance, for nodes ij it is the probability that ij is formed either as a link or as
part of a triangle that is not triangle hij for some other node h. Although this is not an
immediately obvious parameter to define, it allows us to write the probability that a given
link forms as βT + (1 − βT )q̃L (βL, βT ). This expression turns to be useful as it helps us to
compare the rate at which links form to the rate at which triangles form in a way that shows
how they are identified. In particular:

(3.1) EβL,βT [SL(g), ST (g)] =
[
βT + (1− βT )q̃L (βL, βT ) , βT + (1− βT ) (q̃L (βL, βT ))3

]
.

For instance, note that the term βT +(1−βT ) (q̃L (βL, βT ))3 is the probability that a triangle
forms, either directly (βT ), or does not form directly (1−βT ) but then each of the links then
forms on its own (q̃L (βL, βT ))3.19 This is helpful in showing how different parameters lead
to different rates of formation of links and triangles since we can isolate the difference via
the q̃L (βL, βT ) versus (q̃L (βL, βT ))3 expressions.

Analogs of this proposition extend to cases with covariates and multiplexing, simply with
more complicated extensions of (3.1) accounting for the specific types of triangles or links.
Also, a general version of asymptotic identification is a by-product of Theorem 3, below.

4. Estimation and Asymptotics

We now provide conditions under which various estimators of the parameters are consistent
and describe their asymptotic distributions. We consider two asymptotic frames, in which at
least one of either the size of the network or the number of networks becomes large enough
for consistent estimation. We discuss two different estimators for each frame for a total of
four estimators.

4.1. Data and Asymptotic Frames. Suppose that the researcher observes R ≥ 1 inde-
pendently, and identically drawn graphs (g1, . . . , gR), on at least n nodes each, drawn from
a SUGM with a list of k subgraphs and parameters β ∈ [0, 1)k. Each of the k subgraphs
involves no more than n nodes. For simplicity in notation, we work with each network having
exactly n nodes, but one can directly extend the results by simply selecting n nodes for each
network and applying all of our estimation to those subgraphs.

The first asymptotic frame, studied in Section 4.2, covers situations in which the number
of different realizations of networks R tends to infinity. Here researchers have access to many
networks and the empirical moments of interest converge to their expectations via observation
of independent networks. This applies when a researcher is studying, for instance a number
of schools, classrooms, villages, etc. In this case estimation and inference is straightforward.
There are a growing number of independent draws from the distribution and we have already
proven identification in Theorem 1. Our Theorem 2 shows that the maximum likelihood
estimator from R networks—which we denote by β̂ML

R —is consistent and asymptotically
normally distributed as R grows.

19Conditional upon the triangle not forming directly, the links are then independent.
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Given the difficulty in calculating the likelihoods for networks, also consider a second
computationally-simpler minimum-distance estimator (presented for the case of links and
triangles), denoted by β̂MD

R . We show in Proposition 2 that this minimum distance estimator
is consistent and asymptotically normally distributed.

The second asymptotic frame is studied in Section 4.3 and it holds the number of networks
observed R fixed, without loss of generality at R = 1, and then lets the number of nodes
grow: n→∞. Examples include when the researcher has detailed information about a large
community, friendships on social media platform, citation networks, etc. Clearly, this extends
to cases with large n and more than one network, but we consider R = 1 for ease of notation.
This is the more challenging perspective as the observations of various parts of a network
are not independent. Also, the identification result from Theorem 1 does not guarantee that
the empirical moments converge to their expectations in a single large network.

There are two cases of interest with a single large network. The first is what we call the
sparse case (which we explicitly characterize), and this is a situation in which certain types
of incidental generation of subgraphs become asymptotically negligible. For the sparse case,
we prove that identification and asymptotic consistency and normality is possible from an
easy variation on direct counts of observed subgraphs. Namely, one begins with the largest
subgraph in the model, count how many of them are present, then remove links associated
with them and step down to the next largest and so on. The estimator corresponding to
this procedure is what we call a direct count estimator—denoted by β̆DC

n —as it is essentially
directly calculating the linking rate for each subgraph type. We prove the consistency and
asymptotic normality of the direct count estimator under suitable sparsity conditions in
Theorem 3.

It is possible to verify whether a network is sparse enough to permit the direct estimator
in the following way. One can take relevant parameter values for the SUGM (which one
can find by a first crude estimation from the data) and then generate a network with those
parameter values and then check to see if the direct estimators recover these parameters. If
there is too much incidental generation, then the parameters will not be recovered and then
our fourth estimator is needed, as is our new central limit theorem.

In particular, Theorem 3 requires a level of sparsity that makes certain kinds of incidental
generations rare. For denser graphs (which can still be sparse, but permitting nontrivial in-
cidental generation) we work with a minimum distance estimator that matches the moments
of the shares of the subgraphs—which we denote by β̆MD

n . In Proposition 3, we show the
consistency and asymptotic normality of this minimum distance estimator. We focus on the
links and triangles model since the calculations are idiosyncratic based on the specific SUGM
the researcher wants to employ, but the logic extends. The proof of asymptotic normality
in this case of potentially dense SUGMs requires using our new central limit theorem for
correlated random variables, Theorem 4, which is the focus of Section 6.

Appendix Dprovides simulations verifying consistency, asymptotic normality, and con-
vergence. We also show how β̆DC

n and β̆MD
n both perform well when incidental generation

is sufficiently small but that as the networks become denser β̆DC
n is biased while β̆MD

n is
consistent.
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We let β possibly depend on n and/or R as described below. We take the list of the types
of subgraphs to be analyzed to be fixed.

4.2. The Many Networks Case. We keep the presentation of this first frame brief since
it follows standard statistical arguments (e.g., Newey and McFadden (1994)).

One has a collection of R networks, each drawn independently according to the same
SUGM with the same parameter vector β0. We hold the set of nodes {1, . . . , n} (and their
covariates) fixed. Theorem 2 states that a maximum likelihood estimator of the parameters
is consistent and asymptotically normally distributed.

Theorem 2. Consider a SUGM of k distinct types of subgraphs with β0 ∈ int(B), for B
a compact subset of [0, 1)k. Let gr for r = 1, . . . , R denote i.i.d. draws from this distribu-
tion. Let β̂ML

R denote the maximum likelihood estimator β̂ML
R = argmaxβ∈B 1

R

∑
r log Pβ(gr).

Then β̂ML
R

P−→ β0. If in addition J := E[∇β log Pβ0(gr)∇β log Pβ0(gr)′] is non-singular, then√
R
(
β̂ML
R − β0

)
 N (0, J−1) .

Although Theorem 2 demonstrates that a consistent and asymptotically normally dis-
tributed estimator exists, calculating the likelihood function of arbitrary networks as a func-
tion of the parameters can be computationally intensive for large networks. Thus, we also
present a result on a minimum distance estimator which is computationally straightforward
since it simply involves calculating frequencies of certain subgraphs. We present it based on
links and triangles as the typical case that researchers will need, but the technique extends
as a researcher requires. As before, let SL(g) and ST (g) denote the fraction of links and
triangles in the network g, with S = (SL, ST )′.

Let
h(gr, β) = S(gr)− Eβ [S (gr)] ,

be a moment function comparing observed subgraph statistics to expected ones for a given
β.

Let β̂MD
R denote the minimum distance estimator,

β̂MD
R := argmin

β∈B

(
1
R

∑
r

h(gr, β)
)′ ( 1

R

∑
r

h(gr, β)
)
.

Proposition 2. Consider a SUGM of links and triangles with parameters β0 ∈ int(B), a
compact subset of [0, 1)2. Let gr for r = 1, . . . , R denote i.i.d. draws from this distribution.
Then,

β̂MD
R

P−→ β0 and
√
R
(
β̂MD
R − β0

)
 N

(
0, (H ′Ω−1H)−1

)
where H := E[∇βh(gr, β0)] and Ω = E [h(gr, β0)h(gr, β0)′].

4.3. The Large Network Case. Next we turn to the case where researchers have access
to at least one large network (modeled as n → ∞). For the exposition, we let R = 1, but
clearly this extends directly to having observations of more than one network.

This case is considerably more challenging as it involves correlated observations generated
within a network. Network data tend to be sparse, but still have local patterns such as
clustering, so that people have relatively few connections compared to the potential number
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of links, but where a person’s neighbors tend to be linked to each other with much higher than
an independent probability (e.g., see the background in Newman (2003); Jackson (2008)).
Such clustering is the challenging aspect of the asymptotics since subgraphs are not only
directly generated but also incidentally generated. Thus, we need new techniques for our
asymptotic results.

4.3.1. Sequences of Large Random Networks. To describe how parameter estimators behave
as a function of the number of nodes n, it is useful to allow the parameters to also be indexed
by n. This approach is standard in the random graphs literature (e.g., see the classic book of
Bollobas (2001)) as it is needed to accommodate most applications. Specifically, research on
social networks has long observed that parameters need to adjust with the number of nodes.
For example, friendship networks among a small set of agents (say 50 or 100) and large set
of agents (thousands or much more) often have comparable average degrees.20 As a concrete
example, consider friendships among high school students in the U.S. based on the Add
Health data set (e.g., see (Currarini, Jackson, and Pin, 2009, 2010)). There are some high
schools with only 30 students and others with around 3000 students. The average degree
ranges between 6 and 8 over the high schools, but this means that the link probability must
shrink dramatically with n: average degree d corresponds to a link probability of roughly
d/30 in the small schools, but only d/3000 in the large schools. Thus, irrespective of the size
of their school, students have numbers of friends of the same order of magnitude; and so the
true underlying parameters describing friendship formation must decrease with n to match
the data.

Thus, we consider a sequence of SUGMs with subgraphs (Gn
1 , ..., G

n
k) that form on n nodes

that are generated with probabilities βn = (βn1 , ..., βnk ). The superscript on the βn indicates
the dependence on n to allow for true subgraph formation rates to vary along the sequence.

4.3.2. Direct-Count Estimators for Negligible Incidental Generation. It is convenient to ex-
press the βn` s in the form

βn` = b`
nh`

for some b` > 0 and h` > 0 fixed in n. This allows us to encode the rates at which the
parameters vary with n, and is a general way of encoding the rates that could come from
meeting, time budgets, costs, or any other constraints that gives rise to sparse networks.

We consider the case in which m` > h` (where recall that m` is the number of nodes in
the subgraph of type ` and is fixed along the sequence), as otherwise the expected number
of subgraphs in the whole network could be bounded as n grows, precluding estimation.

The researcher can make assumptions on h`, either its value or the possible range of values
that are admissible for their model. In fact, the magnitude may be straightforward to observe
with simple subgraph counts. For example, if across networks of varying size, one sees some
growing function of links, triangles, and so on, one can infer what values of h` are needed

20See Chandrasekhar (2016) for examples networks of varying size ranging from village network data
in sub-saharan Africa or India to university dorm friendship network data which all exhibit somewhat
comparable number of links per node.
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to be consistent with data. In fact, in most models of network formation, such assumptions
are implicitly made, knowingly or not.

We show that even without knowing the b` or h`, the parameters βn` can be well-estimated,
provided the network model is not so sparse that subgraphs are never observed, nor so dense
so that they scale linearly in n.

To develop the estimator, first we need some definitions and notation.
Consider a SUGM and order the classes of the subgraphs, Gn

1 , . . . , G
n
` , . . . , G

n
k , from

‘largest’ to ‘smallest’. In particular, pick an ordering of 1, . . . , k so that a subgraph in
Gn
` cannot be a subnetwork of the subnetworks in Gn

`′ for k ≥ `′ > ` ≥ 1:

g` ∈ Gn
` and g`′ ∈ Gn

`′ implies that g` 6⊂ g`′ .

There exists at least one such ordering - for instance, any ordering in which subgraphs with
more links are counted before subgraphs with fewer links. In an example with links, 2-stars
and triangles: triangles precede 2-stars which precede links. Note that this is a partial order:
for instance, a ‘three link line’ ij, jk, kl is neither a subgraph nor a supergraph of a ‘3-star’
ij, ik, il, which is also a three link subgraph on four nodes. It is irrelevant in which order
subgraphs with the same number of links are counted.

We count subgraphs in this order after having removed links associated with all of the
subgraphs already counted. The resulting counts are denoted S̃n` :21

S̃n` (g) = |{g` ∈ Gn
` : g` ⊂ g and g` 6 ∩g`′′ for any g`′′ ∈ Gn

`′′ such that g`′′ ⊂ g for some `′′ < `}|.

The logic of this is that incidental generation is more often in one direction than another:
a triangle incidentally generates three links, while it can be much rarer that three links
happen to independently form to make a triangle. This manner of counting motivates a
simple estimator that we call the direct-count estimator. We then divide by the number of
possible subgraphs of that variety.

For the direct count estimator β̆DC
n we presume that, for each `, Gn

` includes all subgraphs
that are relabellings of each other. Thus, we work without demographics on the subgraphs,
but these counts can easily be adjusted accordingly by normalizing by |Gn

` |. Let κn` denote
the (finite number) of relabelings to count different subgraphs in Gn

` on a given set of m`

nodes.22 Then κn`
(
n
m`

)
is the number of possible subgraphs of type `.

The direct-count estimator β̆DC
n is

(4.1) β̆DC
n,` = S̃n` (g)

κ`
(
n
m`

) .
As we prove in Section 4.3.2, under suitable conditions, incidental generation is low and the
direct estimators are consistent estimators of the true parameters and are asymptotically
normally distributed.

21Note that counting in order from ‘largest’ to ‘smallest’ subnetworks means that we count things from
smallest to largest index ` since the specification of how we ordered labels moves in the opposite direction
of the size of the subgraphs.

22For example, note that κn` = 1 for a triangle but for a K-star it is K since each star is different when a
different member of the K nodes is the center.
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As an illustration, consider Figure 5 in which links and triangles are formed on 41 nodes.
There are 9 truly generated triangles, but 10 observed overall. So, the frequency of triangles,
S̃nT (g), is overestimated by using 10 instead of 9. The true frequency was 9/10660 but is
estimated as 10/10660. With respect to links, there were actually 25 truly directly generated,
but one becomes part of an incidentally generated triangle and two others overlap on existing
triangles, and so S̃nL(g) becomes 22 instead. So we estimate 22/820 while the true frequency
was 25/820. These errors are already small on a network on just 41 nodes, and as we prove
below, the errors disappear completely as n grows.

(a) n nodes (b) Trian-
gles form

(c) Links
form

(d) Result-
ing network

Figure 5. A network is formed on 41 nodes and is shown in panel D. The
process can be thought of as first forming triangles as in (B), and links as
in (C). Note that two links form on triangles, and a third link incidentally
generates an extra triangle. In this network we would count S̃nT (g) = 10, and
S̃nL(g) = 22 from (D), while the true process generated 9 triangles and 23 links
directly. The estimated parameters are β̂DCn,T = 10

10660 , and β̂DCn,L = 22
820 , while the

true frequencies were 9
10660 and 25

820 .

To understand when the direct-count estimator is appropriate, we need to characterize the
rate of incidental subgraph formation. To do this we track how many ways a subnetwork
g′ ∈ Gn

` could be incidentally generated.
We first provide a precise specification of what it means to be incidentally generated. We

say that a subgraph g′ ∈ Gn
` for some ` can be incidentally generated by the subgraphs

{gj}j∈J , indexed by J , if g′ ⊂ ∪j∈Jgj. For instance a triangle g′ = 123 can be incidentally
generated by links g1 = 12, g2 = 23, and triangle g3 = 134; or by link 12 and triangles 234
and 135, etc. Some of these incidental generations are equivalent to each other (e.g., involve
two links and one triangle) and so it is useful to define equivalence classes of generators.

Consider any potential subgraph g′ ∈ Gn
` that can be incidentally generated by a set of

subnetworks {gj}j∈J with associated indices `j and also by another set {gj′}j′∈J ′ . We say
that {gj}j∈J and {gj′}j′∈J ′ are equivalent generators of g′ if there exists a bijection π from J

to J ′ such that `j = `π(j) and |gj∩g′| = |gπ(j)∩g′|. So the equivalent generating sets have the
same configurations in terms of numbers and types of subgraphs, and in terms of how many
nodes each of those subgraphs intersects the given network. For instance a triangle 123 is
not only incidentally generated by links 12, 23, and triangle 134; but also by an equivalent
generator of links 12, 23, and triangle 135, or links 23, 13; and triangle 128, and so forth.
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Given this equivalence relation, we simplify by ignoring the specific labels of subgraphs
and defining generating classes for any type of subgraph G`. We just track the number and
type of subgraphs needed, as well as how many nodes each subgraph has intersecting with
the given incidentally generated subgraph.

In particular, each generating class C of some Gn
` is a list C = (`1, c1, . . . , `C , cC) consisting

of a list of types of subgraphs used for the incidental generation and how many nodes each has
intersecting with the given incidentally generated subgraph. Thus, C = (`1, c1, . . . , `C , cC)
is such that there ∃g′ ∈ Gn

` generated by some {gj}j∈J for which |J | = C and for each j:
gj ∈ Gn

`j
and cj = |gj ∩ g′|. For example, if we consider a triangle, then it can be incidentally

generated by two other triangles and a link; and we represent that as (T, 2;T, 2;L, 2), where
this indicates that two triangles were involved and each intersected the subgraph in question
in two nodes and then L, 2 indicates that a link was involved intersecting the subgraph in
two nodes.

We order generating classes so that the indices are ordered: `j ≤ `j+1, and lexicographically
cj ≤ cj+1 whenever `j = `j+1. This ensures that we avoid counting the same class twice.23

We only need to work with a small set of generating classes, so we restrict attention to
the following:

• generating classes that only involve smaller subgraphs: `j ≥ ` for all j ∈ J , and
• generating classes that are minimal: in the above J there cannot be j′ such that
g′ ⊂ ∪j∈J,j 6=j′gj.

The first condition states that we can ignore many generating classes because of our
counting convention: when counting any given subgraph type, we only have to worry about
incidental generation by the remaining (weakly smaller) subgraphs. We do it this way, since
we first count the largest subgraphs, and having accounted for them, we worry about the
remaining subgraphs, and so forth. The second condition restricts attention to the smallest
generators. For instance a triangle could be generated by two links and two triangles.
However, in that case either one of the links or one of the triangles can be dropped. The
minimal classes for the triangle only involve three subgraphs: three links, two links and one
triangle, one link and two triangles, or three triangles. Under the first condition, there are
no generating classes for links to worry about, since they cannot be incidentally generated
by themselves and we only count them after removing all triangles.

The following conditions ensure that the direct estimation parameters are arbitrarily ac-
curate for large enough networks.

First, for each ` let

(4.2) h` > m` − 2.

This condition ensures that the overall degree of any node grows more slowly than the size of
the graph. This comes from the fact that any given node can be a part of

(
n

m`−1

)
subgraphs

of type `, each of which forms with probability b`
nh`

. Expecting over these gives an upper

23However, a generating class of two links and a triangle is a different generating class than one link and
two triangles - this numbering just avoids the double counting of two links and a triangle separately from a
triangle and two links.
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bound on the number of links (up to a proportional constant) that a given node is part of
from graphs of type `, and the condition is that this be smaller than n. The average degree
can still grow with n, but sublinearly. In particular, this condition ensures that the chance
that any given link is part of multiple subgraphs is vanishing.

Next, for each ` consider any (minimal)24 generating class with index J of subgraphs no
larger than `. Let

(4.3) h` <
∑
j∈J

h`j + c`j −m`j

and

(4.4) h`j′ +m` −m`j′
<
∑
j∈J

h`j + c`j −m`j

for each j′ ∈ J .
(4.3) is the requirement that a given subgraph is more likely to form directly than indi-

rectly. h` governs the direct formation, and ∑j∈J h`j +c`j−m`j governs the rate of incidental
generation, and so the exponent on the direction formation must be less than the sum of the
exponents of the graphs needed for incidental generation, subtracting off how many varia-
tions on each of these there are (captured by the −(m`j − c`j) coming from how many nodes
are free to be chosen for each incidentally generating subgraph). (4.4) is the requirement
that a given subgraph of some type `j′ that is part of a generating class of some ` appear
at a fast enough rate to ensure that it is not always becoming part of incidentally generated
`s, but can be distinguished. This is a similar calculation of rates.

Under these conditions, we prove identification in addition to consistency and asymptotic
normality on a single large network.

Define the variance-covariance matrix

Vn = diag

n2h` β
n
0,`(1− βn0,`)
κ`
(
n
m`

)
 .

We say that a sequence of SUGMs with k types of subgraphs is complete and growing if
for each ` ∈ {1, . . . , k}, Gn

` includes all subgraphs that are relabellings of each other and
Gn
` ⊂ Gn+1

` . So, this implies that ` has the same meaning (e.g., triangles or k−stars) across
n.

Theorem 3. Consider a growing and complete sequence of SUGMs of k distinct types of
subgraphs. If they have associated true parameters 0 < b0,` such that βn0,` = b0,`

nh`
and (4.2)-

(4.4) hold for each ` and associated (minimal) generating classes, then |b̆DC
n − b0|

P−→ 0 and
V −1/2
n

(
b̆DC
n − b0

)
 N (0, I).

Although the conditions may appear hard to understand, they are actually fairly straight-
forward, and it is easy to see sufficient conditions that ensure them.

24If the condition is satisfied by minimal classes, it is automatically satisfied by larger classes.
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For example, suppose that each h` = m` − x for some same x ∈ (0, 2), so that each node
has the same order probability of being a part of different sorts of subgraphs. This is the
natural case, as otherwise some subgraphs become infinitely more likely than others.

In that case, all three conditions are automatically satisfied whenever the subgraphs are
all cyclic (cliques, or other subgraphs in which all nodes are parts of cycles). If some of the
subgraphs are not cyclic (e.g., lines or stars), then all three conditions hold if x ∈ (0, 1).

Corollary 1. Consider a growing and complete sequence of SUGMs of k. If they have
associated true parameters 0 < b0,`, n

h` such that βn0,` = b0,`
nh`

, and such that m` − h` = x

for each ` and some x ∈ (0, 2) and either all subgraphs are cyclic or else x < 1, then
|b̆DC
n − b0|

P−→ 0 and V −1/2
n

(
b̆DC
n − b0

)
 N (0, I).

In both results, although we state them in terms of bs, it is also true that the ratio
of β̆DC

n,` to β0.`, tends to one. Furthermore, as we show in the proof, if we normalize the
difference between the estimated probability and the truth by the standard deviation, this
is asymptotically normally distributed. This is an equivalent representation of the above
result, but is helpful to note as it does not require knowledge of h`s but rather just that they
satisfy the relevant bounds, which is true of many human networks.

4.3.3. Minimum Distance Estimator for Non-Negligible Incidental Generation. Theorem 3
holds for parameter values for which incidental generation becomes small as a function of
the overall counts of the subgraphs, and works for arbitrary subgraph varieties. However,
we may want an estimator that works when incidental generation is not ignorable, even in
the limit.

For SUGMs with specific subgraph types, we can explicitly calculate all the incidental
rates and account for them, and develop an estimator that is more accurate in small samples
where there can be nontrivial incidental generation and also works asymptotically even when
there is incidental generation. In particular, in this section we consider a links and triangles
SUGM based and provide an estimator that fully accounts for incidental generation (with
extensive details in Appendix C.We prove identification as well as consistency and asymptotic
normality of a minimum distance estimator.

In order to show the properties of the minimum distance estimator, we show that the
following moments converge:

SnL(g)− Eβn0
[SL(g)]

σnL
 N (0, 1), and

SnT (g)− Eβn0
[ST (g)]

σnT
 N (0, 1),

and jointly as well, where (σnL)2 := var (SnL(g)) and (σnT )2 := var (SnT (g)). Since

SnL(g) =
∑
i<j gij(
n
2

) and SnT (g) =
∑
i<j<k gijgikgjk(

n
3

)
and gnij and gnik are correlated for any k, SnL involves correlated random variables, and since
any two triples in SnT that involve a common link are correlated, we need to prove a central
limit theorem that shows that such correlation does not cause problems.
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Let Sn(g) = (SnL(g), SnT (g))′ be the stacked vector of both shares. It is useful to define the
variance-covariance matrix of the moments

Vn =
(

var(nhLSL) cov(nhLSL, nhTST )
cov(nhLSL, nhTST ) var(nhTST )

)
.

Finally, let Rn = diag
{
nhL , nhT

}
. With this defined we can state our result.

Define the minimum distance estimator for a single large network by

β̆MD
n := argmin

β
(Sn(g)− Eβn0

[Sn(g)])′R2
n(Sn(g)− Eβ [Sn(g)]).

Proposition 3. Consider a links and triangles SUGM with associated parameters βn0,L, βn0,T =(
b0,L
nhL

,
b0,T
nhT

)
with 0 ≤ D < b0,L, b0,T < D such that hL ∈ (2/3, 2) and hT ∈ [hL+1, 3hL], with hT <

3. Then the minimum distance estimator is consistent, |b̆MD
n − b0|

P−→ 0, and 25 and asymp-
totically normal, V −1/2

n

(
b̆MD
n − b0

)
 N (0, I).

The proof makes use of Theorem 4, below. The proof is in Appendix C.
Proposition 3 covers a wide range of link and triangle densities, ranging from average

degree on the order n1/3−δ to n−1+δ for any δ > 0. This covers the order constant and
logarithmic growth rates of average degree studied in the literature (Newman et al., 2001;
Bollobas, 2001; Jackson, 2008; Graham, 2017), for instance.

In particular, Proposition 3 covers situations in which the rate of incidental generation
(e.g., the proportion of triangles that are generated incidentally) does not vanish asymptot-
ically. Not only does the estimator have better small sample properties (see the simulations
below), but it also works asymptotically in cases that Theorem 3 does not.

The restrictions are easily interpretable. hT ≥ hL + 1 ensures that triangles are not so
numerous that almost all of the links in the network lie in triangles: that n3−hT does not dwarf
n2−hT . hT ≤ 3hL ensures the opposite: that triangles are not always incidentally formed
by links and never formed directly: n3(1−hT ) is not dwarfed by n3−3hL . hL > 2/3 ensures
that links and triangles are disentangled by imposing a density cap. Finally, hL < 2, hT < 3
ensure that there is information in the network—enough links and triangles are present to
estimate their formation.

Again we note that although the results are stated in terms of b, these are equivalent
statements to saying that ratio of the estimated (β̆MD

n ) and true (βn0 ) frequencies tend to
one. And, that, when self-normalized by the standard deviations, the empirical frequencies
estimated are asymptotically normally distributed. Thus, the result requires no knowledge
of h`s other than that they satisfy the relevant bounds.

4.3.4. Discussion of incidental generation and estimators. It is instructive to summarize the
difference in assumptions and performance of β̆DC

n and β̆MD
n . Again, the first requires more

sparsity—less incidental generation specifically—than the latter. Relative to Theorem 3, we
can see that Proposition 3 covers cases where incidental generation is not ignorable. Namely,
one can check that our result on the β̆DC

n requires hT > 2 (which means that the probability
of a triangle is going to faster at a rate faster than 1/n2). But β̆MD

n only requires a rate
25The expression for Vn is different when hT = hL + 1, and is given in the proof of the proposition.
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faster than hT > 5/3 or 1/n1+2/3. This means that triangles (and therefore links, checking
the conditions) can appear at a faster rate and still be estimated under the minimum distance
estimator but not through direct-counts. We also see evidence of this in our simulations, in
Appendix D, where for very sparse networks both estimators give the same result but the
direct-count becomes biased as we increase density whereas the minimum distance estimator
remains unbiased.

5. Applications

SUGMs are useful for a number of purposes. First, purely as a statistical modeling tool,
SUGMs—even ones with just links and triangles—generate higher-order features of empiri-
cally observed social networks that link-based models (even those accounting for characteris-
tics, unobserved characteristics, geography, and latent locations) cannot. This is important
for prediction. For example, if one wants to see which networks might form under a hypo-
thetical policy, a model is only useful if it can generate networks that are likely to occur
at a variety parameter values. As we demonstrate, our model outperforms stochastic block
models, models with node-level fixed effects, latent space models, and ERGMs in generating
realistic distributions of networks even with considerably fewer parameters (e.g., 4 parameter
SUGMs versus over 200 (or even 400) parameters in some alternatives).

Second, a SUGM can be used to test which incentives underlie link formation. There
are many theories (e.g., Coleman (1988); Jackson, Rodriguez-Barraquer, and Tan (2012))
predicting that triangles and other cliques play special roles in maintaining cooperation in
favor exchange. In order to test such theories, we need a statistical model that allows us to
test whether cliques appear significantly more often than being randomly generated by links,
and whether they appear in configurations that would be predicted by the game theory.

Third, SUGMs can be used for structural estimation. There are parsimonious microfoundations—
models of mutual consent or search—that give rise to SUGMs. Structural parameters are
useful for welfare analyses, and also aid in examining counterfactuals or policy evaluation.
Such parameters are recoverable from SUGM parameters.

We provide three examples. Our first example shows that SUGMs model a myriad of
network features much better than other standard models. The other two examples build
models of network formation to address specific economic questions. In both cases, the
equilibrium network is a random draw from a SUGM with interpretable parameters.

5.1. Data. We use the Banerjee, Chandrasekhar, Duflo, and Jackson (2013, 2019) data
(https://doi.org/10.7910/DVN/U3BIHX) consisting of a variety of social and economic net-
works from 75 Indian villages as well as detailed demographic background.26 Having 75
villages allows us to show not only how the model scales with the number of nodes, but also
to cover both of our asymptotic frames.

The networks have households as nodes. There are an average of n = 220 households
per village. We surveyed adults, asking them about a variety of their daily interactions,
as well as their demographics (caste, education, profession, religion, family size, wealth

26See Banerjee, Chandrasekhar, Duflo, and Jackson (2013) for more information about the data.
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variables, voting and ration cards, self-help group participation, savings behavior, etc.). We
have network data from 89.14 percent of the 16,476 households based on interviews with 65
percent of all adults between the ages of 18 and 55. We have data concerning twelve types
of interactions: (1) whose houses he or she visits, (2) who visits his or her house, (3) his or
her relatives in the village, (4) non-relatives who socialize with him or her, (5) who gives
him or her medical help, (6) from whom he or she borrows money, (7) to whom he or she
lends money, (8) from whom he or she borrows material goods (e.g., kerosene, rice), (9) to
whom he or she lends material goods, (10) from whom he or she gets important advice, (11)
to whom he or she gives advice, (12) with whom he or she goes to pray (e.g., at a temple,
church or mosque).

The answers are aggregated to the household level, but one can also work with the
individual-level networks to get similar results to those presented below. How a link is
defined varies based on the application. We use undirected,27 unweighted networks that may
allow for multiplexing. This also means that we observe 98.8% of the potential links between
pairs.28

For much of what follows, we work with the borrowing and lending of material goods
(questions 8 and 9, with any positive answer indicating a link being present) that we call
“favor” links, and the exchange of advice (questions 10 and 11, with any positive answer
indicating a link being present) that we call “info” links.

5.2. Example 1: Matching Features of Empirical Network Data. A challenge for
network formation models has been to capture more than one or two observed features of
networks at a time. For instance, many observed social networks are sparse but clustered,
which motivates developing models that reflect this (Watts and Strogatz, 1998). They also
have a variety of differing degree distributions ((Barabasi and Albert, 1999; Jackson and
Rogers, 2007) and exhibit high levels of homophily (McPherson, Smith-Lovin, and Cook,
2001; Currarini, Jackson, and Pin, 2009, 2010), which can lead to poverty traps and inequal-
ities (Calvo-Armengol and Jackson, 2007; Jackson, 2023). There are also features such as
the expansion properties of a network that are described by maximal eigenvalue of the ad-
jacency matrix and governs diffusion processes operating on the network (Bollobas (2001)).
The depth of the max flow min cut speaks to several things such as consensus time in a social
learning process Golub and Jackson (2012) as well as the sustainable degree of cooperation
(Karlan, Mobius, Rosenblat, and Szeidl, 2009).

We show that a SUGM fits economically-relevant network features in the data far better
than four prominent alternatives. Importantly, these features were not used to fit the model.
They are the size of the giant component, average path length, and various spectral properties
of the adjacency matrix (e.g., the largest eigenvalue and an eigenvalue measure of homophily).

27Some links are not reciprocated, but that is true at similar rates for the questions regarding relatives
as compared to the other questions, and so much of the failure of reciprocation may simply be measurement
error rather than true one-way relationships. For our purposes here, which are purely to illustrate the ability
of the models to match data, this distinction is inconsequential.

28This is a new wave of data relative to our original microfinance study that includes more surveys. Note
that 1− (1− 0.8914)2 = 0.988.
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A simple SUGM outperforms the alternative models despite the fact that the alternative
models have many more dimensions such as numerous covariates, n fixed effects, or even n

latent space variables, that should give them an advantage in fitting.
Specifically, the alternative models are (a) a standard stochastic block model that includes

flexible controls for continuous covariates that influence edge probabilities; (b) an extension
of that model that includes n parameters to capture node fixed effects (e.g., Graham (2017));
(c) a latent space model (Hoff, Raftery, and Handcock, 2002) in which nodes have unobserved
arbitrary locations in R3 to be estimated and the probability of linking declines in their latent
positions; and (d) an exponential random graph model with links, triangles, and a rich set
of covariates.

Before we proceed, we review the features of the graph structure that we examine and
why they are interesting. We look at the first eigenvalue of the adjacency matrix, which is
a measure of diffusiveness of a network under a percolation process (e.g., Bollobás, Borgs,
Chayes, and Riordan (2010); Jackson (2008)). This is intimately related to the expansiveness
of the network—namely, for any subset of nodes the number of links leaving the subset
relative to the number of links within the subset. We are also interested in the second
eigenvalue of the stochasticized adjacency matrix.29 This is a quantity that is key in local
average learning processes and modulates the time to consensus (DeMarzo, Vayanos, and
Zwiebel (2003); Golub and Jackson (2012)), but is also closely related to homophily (Golub
and Jackson (2012)) and is labeled as such in the table below. Additionally, we look at the
fraction of nodes that belong to the giant component of the network, as well as the number of
isolates, as empirical networks are often not completely connected. Finally, we also consider
average path length (in the largest component).

We present the results for favor and info networks. These networks are reasonably con-
nected (with more than ninety percent of the nodes being in the giant component) and yet
also typically sparse.

Our procedure is as follows. For every village, we estimate six network formation models.
One network formation model is a link-based model (stochastic block model) in which

the probabilities can depend on geographic distance, caste, the number of rooms households
have, number of beds, quality of electricity provision, quality of latrines, household ownership
status, and squared differences in non-binary variables. The probabilities are estimated using
logistic regression and the model has 12 parameters.

The next is the model of Graham (2017). This is the same formulation of the preceding
model, but adds unobserved heterogeneity in the form of node-fixed effects,

P(gij = 1|Xij) = Λ (αi + αj + γ′Xij) ,

where Λ(·) is the logit link function and Xij is the aforementioned vector of demographic
characteristics and polynomials therein. This model has n+12 parameters per network.30

29The stochasticized adjacency matrix T is defined as Tij = gij∑
k
gik

, where either gii = 1, or gik > 0 for
some k 6= i, as this captures the set of people to whom i listens.

30Consistency of all αi in addition to β has been proven for a dense sequence of graphs (e.g., Chatterjee
et al. (2010); Graham (2017)).
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The third model is a latent space model,

P(gij = 1|wij) = Λ (αi + αj − η · dist(wi, wj) + γ′Xij) ,

where now wi are unobserved positions in R3.31 This has 2n+ 12 parameters.
The fourth model is a links and triangles ERGM with covariates. Specifically,

P(g) ∝ exp(θL · SL(g) + θT · ST (g) + γ′X).

Turning to SUGMs, in contrast, we consider only low-dimensional models. One is a the
basic SUGM with links and triangles. Pairs of household are categorized as either being
“close” or “far,” where “close” refers to pairs of nodes that are of the same caste and “far” to
those that differ in caste. Similarly, we categorize triangles as being “close” if all nodes are
of the same caste and “far” otherwise. Thus, we allow for four parameters, close and far link
parameters and close and far triangle parameters. The other model is a slightly richer SUGM
in which we allow some nodes to be isolates, which adds one more parameter.32 Neither
includes any other demographic covariates nor unobserved heterogeneity. We estimate both
via a variation on the minimum distance estimator of Proposition 3, β̆MD

n , since there appears
to be enough incidental generation that needs to be accounted for.33

To make the strongest point, we compare these stark SUGMs that use only same/different
caste variables to account for homophily, to very rich covariate dependent (block) models
that can incorporate a large set of covariates – including much richer demographics that are
usually available to a researcher as well as node-level fixed effects in the unobserved hetero-
geneity model and node-level latent locations in the latent space model. We show that even
though we have considerably more information on the nodes, such as geographic distance
and demographic characteristics, and allow for such unobserved heterogeneities—and we do
not make use of this information for the SUGMs—they recreate networks much more accu-
rately than a link-based model that does takes advantage of a rich set of node characteristics.
Adding over 12 parameters to the block model to flexibly control for demographic attributes,
or even n+12 parameters with unobserved heterogeneity or 2n + 12 with latent locations,
does not come close to doing as well as the simple SUGMs. Moreover, since the specification
developed here makes use of considerably richer data than those used in the two candidate

31We use R3 as Euclidean is commonly used in the literature, though it is not the only choice. The subject
of choice of geometry is addressed in Lubold, Chandrasekhar, and McCormick (2023), which shows how to
check isometric embedding conditions. In this data we find that 25% of networks are not consistent with any
latent space from the family of simply connected, complete Riemannian manifolds of constant curvature,
lending evidence to the idea that latent space models may not be a universally appropriate device to model
correlation.

32With isolates, in a first stage some nodes are randomly chosen to be isolates with a given probability.
For the subsequent formation of other subgraphs, those isolates can be considered as removed from the set
of nodes and no subgraph that involves them forms in the subsequent subgraph formation.

33Specifically, we use a hybrid estimator of first directly (unbiasedly) estimating the link parameters from
the frequency of links among pairs of nodes that have no common neighbors. We then fix this parameter in the
minimum distance estimator to estimate the triangle parameters. This slightly simplifies the computations.
The code appears in supplementary materials.
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SUGM models, it suggests that by decomposing a network into a tapestry of random struc-
tures (triangles, links, and even isolates), considerable value is added in modeling higher
order features of networks in a parsimonious way.

We estimate parameters village-by-village for each model and then generate random net-
work from each model based on the estimated parameters. We do 100 such simulations for
each village and model. We then compare the true network characteristics with those from
the simulations for each of the various models.

Table 1. Network Properties

Truth
Links/
Triangles
SUGM

Links/
Triangles/
Isolates
SUGM

Covariates
(Block
Model)

Covariates +
Unobserved
Heterogeneity
(Latent Block
Model)

Latent Space
Model
(with
Covariates)

ERGM
(Links/Triangles
with Covariates)

Panel A: Information
Degree 8.0960 8.2166 8.2064 8.8111 9.5860 13.2540 13.8812

(0.2607) (0.2754) (0.2746) (0.3126) (0.3615) (0.1257) (0.1337)
Clustering 0.2198 0.1599 0.1478 0.0506 0.0742 0.0834 0.1287

(0.0057) (0.0034) (0.0032) (0.0030) (0.0045) (0.0007) (0.0010)
Isolates 10.9718 3.3361 13.4597 0.5313 0.8369 10.7658 12.8454

(0.8410) (0.3853) (0.9924) (0.0977) (0.1336) (0.1448) (0.1381)
% in Giant 0.9503 0.9844 0.9397 0.9977 0.9964 0.9434 0.9205

(0.0030) (0.0016) (0.0033) (0.0004) (0.0005) (0.0008) (0.0013)
Maximal Eigenvalue 11.9138 10.6260 11.0178 10.3737 12.5418 16.2470 18.3364

(0.3741) (0.3293) (0.3466) (0.3222) (0.4325) (0.1293) (0.1323)
Homophily 0.8865 0.8156 0.8029 0.6869 0.6795 0.8743 0.7921

(0.0065) (0.0090) (0.0093) (0.0104) (0.0097) (0.0009) (0.0024)
Average Path Length 3.0273 2.9406 2.8580 2.7602 2.6399 3.1017 3.1163

(0.0485) (0.0422) (0.0393) (0.0403) (0.0374) (0.0106) (0.0172)

Panel B: Favor
Degree 7.0579 7.2192 7.2185 7.7614 8.5145 13.1301 16.6176

(0.2611) (0.3048) (0.3052) (0.3232) (0.3835) (0.1571) (0.1347)
Clustering 0.2895 0.1894 0.1764 0.0467 0.0641 0.0724 0.1506

(0.0054) (0.0034) (0.0032) (0.0032) (0.0040) (0.0008) (0.0008)
Isolates 10.0704 7.2859 16.0939 1.0423 3.4777 19.3338 15.8796

(0.7670) (0.6645) (1.1103) (0.1429) (1.7734) (0.2763) (0.2046)
% in Giant 0.9510 0.9632 0.9245 0.9955 0.9820 0.8695 0.9108

(0.0032) (0.0031) (0.0041) (0.0005) (0.0107) (0.0021) (0.0012)
Maximal Eigenvalue 10.0654 9.8417 10.1727 9.4778 11.3075 16.0454 21.5754

(0.3337) (0.3702) (0.3826) (0.3382) (0.4236) (0.1637) (0.1201)
Homophily 0.9412 0.8716 0.8636 0.7325 0.7189 0.9074 0.7895

(0.0044) (0.0082) (0.0085) (0.0107) (0.0111) (0.0010) (0.0025)
Average Path Length 3.5158 3.1591 3.0739 2.9140 2.7799 3.8148 2.8126

(0.0659) (0.0479) (0.0441) (0.0442) (0.0443) (0.0212) (0.0149)

Table 1 presents the results, averaged across villages for each of the models. We use
71 villages out of the 75 since 4 villages have only one caste group. The ERGM is only
estimated for 68 villages as it did not converge for 3 villages. Both of the SUGMs match the
features of the networks substantially better than the conditional edge independent models
(with and without node fixed effects). Including isolates in the SUGM further improves the
fits not only for isolates, but also for fraction in the giant component and the maximum
eigenvalue. This suggests that there are more isolated households in a village for a reason
beyond randomness in network formation.
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An obvious thing to note is that the link-based and also latent space models do extremely
poorly when it comes to matching clustering while the SUGM does much better, and here
adding unobserved dimensions to generate unconditional link correlations (e.g., clustering)
does worse than a SUGM that allows correlated link formation directly. The ERGM performs
better on clustering but a the cost of generating excessive density, diffusiveness, the spectral
cut (homophily), connectedness, and average path length.

Including triangles in the SUGM is enough to deliver better matches on all dimensions,
and the difference on homophily is perhaps most interesting, since one would imagine that
the block models or even latent space models could get that right given that they include
many covariates. This tells us that triangles and correlation between links play a subtle
but important role in homophily—something that is better picked up by a SUGM than an
independent link model even when that model includes rich demographics and unobserved
heterogeneity.

It is important that SUGMs do a much better job at recreating a multitude of features
of observed network structures that standard link-based models, especially with rich de-
mographic information, models with unobserved heterogeneity, latent space models, and
ERGMs. It suggests that there is a substantial value added of modeling the formation of
triangles and isolates. Knowing that our model is better able to capture the realistic cor-
relation of links within observed networks should make us more confident in trusting the
results of some other empirical applications. For example, when we look at links across
social boundaries, we can be comfortable that to a first order, thinking about a SUGM with
links and triangles across and within caste groups can do a good job of matching patterns
in the data, and thus tracing them back to model parameters.

5.3. Example 2: Do incentives for risk sharing drive network formation?

5.3.1. A model of mutual consent. Consider a simple model in which individuals get utility
from being in bilateral relationships, denoted by L, as well as trilateral relationships, de-
noted by T . The value of a partner j to i in a bilateral relationship is a function of their
demographics (given by vector Xi) is given by uLi :

uL (Xi;Xj) = X ′iγL1 +X ′jγL2 + γL3dL(Xi, Xj)− εij =: φL(Xi;Xj)− εij.

where dL(Xi, Xj) is a distance or other function comparing the demographics—for instance
to allow for homophily. Similarly, the value of a triangle of relationships jk to i is given by
uTi :

uT (Xi;Xj, Xk) = X ′iγT1 +f(Xj, Xk)′γT2 +γT3dT (Xi;Xj, Xk)−εijk =: φT (Xi;Xj, Xk)−εijk,

where f(·, ·) is a function that is symmetric in arguments, and dT (Xi; ·, ·) is a function
that is symmetric in the last two arguments. The value of the relationships depend on the
characteristics of the people involved, as well as some idiosyncratic values to the relationships,
−εij and −εijk, which may capture personalities, compatibilities, etc., distributed according
to some distributions FL and FT respectively.

Forming relationships requires mutual consent (e.g., the pairwise stability of Jackson and
Wolinsky (1996)), so the net utility must be positive to all agents. The probability that a
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subgraph ij forms is

βL (Xij, γL) = FL (φL(Xi;Xj))× FL (φL(Xj;Xi))

and similarly the probability that subgraph ijk forms is

βT (Xijk, γT ) = FT (φT (Xi;Xj, Xk))× FT (φT (Xj;Xi, Xk))× FT (φT (Xk;Xi, Xj)) .

The products capture that a link requires two consents and a triangle requires three.
By estimating the probabilities of subgraphs forming (βT (·) and βL (·)), under suitable

assumptions described below, one can recover the marginal effects of changes in covariates
on preferences for being in various configurations (γT and γL). Since we have finite support
for covariates, we label the subgraph formation probabilities βT,XT and βL,XL for pair and
node covariate combination XT and XL respectively.

5.3.2. Incentives for Risk-Sharing. Jackson, Rodriguez-Barraquer, and Tan (2012) show that
whether or not a link is supported can play an key role in maintaining informal favor exchange
when it would not be self-sustaining without social pressure. It characterizes renegotiation-
proof and robust pairwise stable networks and shows that (in the homogenous parameter
case) all networks that incentivize exchange are quilts (a union of cliques with no cycle
involving more than the minimal clique-size number of nodes), and in the inhomogenous
parameter case every link must be supported (if i, j are linked then there exists k such that
gik = gjk = 1).

Consider a variation on this model wherein now there are multiple link types: favors and
information. We can use this to study the question raised by Jackson, Rodriguez-Barraquer,
and Tan (2012). To make this simple ignore covariates, so all nodes are identical. Preferences
are described by a random utility framework (McFadden, 1973), with the value of a link
between i and j to i given by

uL,favori (i) = γL,favor − εij,favor, uL,infoi (i) = γL,info − εij,info,

and the value of a triangle given by

uT,favori (jk) = γT,favor − εijk,favor, uT,infoi (jk) = γT,info − εijk,info.

In this case, due to mutual consent, βL,favor = F (γL,favor)2 and βT,favor = F (γT,favor)3. It
is analogous for information. By the arguments of Jackson, Rodriguez-Barraquer, and Tan
(2012), we can test the hypothesis that fraction of links that are supported is higher in favor
exchange than in information links, which would be consistent with exchanging of favors
needing to be incentivized while sharing of information not needing network incentives. In
the language of this model the hypothesis is expressed in terms of parameters as follows:34

Lemma 1. Under the above assumptions,

γT,favor
γL,favor

>
γT,info
γL,info

corresponds to
βT,favor/β

3/2
L,favor

βT,info/β
3/2
L,info

> 1.

34It is without loss of generality to take F (γ) = γ which is just a bijection and is convenient to work with.
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The (joint) hypothesis that we are testing is that exchanging material goods is more costly
and/or happens less frequently for agents, and so requires more incentives and supporting
enforcement than exchanging information which is less costly and/or more frequent.

Given that triangles can be incidentally generated, one cannot test this simply by exam-
ining the ratio of supported links to unsupported ones. If γL,info was very high, then it could
be that there are many incidentally generated information triangles, and few unsupported
links, and so we need to estimate the underlying parameters using our techniques to account
for incidental generation. To keep the illustration in this first example clear, we abstract
from covariates. We illustrate the incorporation of covariates in the examples below.

Table 2. Parameter estimates by network type

β̂MD
R,L β̂MD

R,T

Information 0.0119 0.0001
(0.0191) (0.0001)

Favor 0.0109 0.0002
(0.0307) (0.0002)

Notes: Standard errors com-
puted using the results of
Proposition 2.

First, we estimate the four parameters in question under the many independent network
(n fixed, R → ∞) framework (Proposition 2). Table 2 presents the parameter estimates
and standard errors. Although the point estimates are in line with the theory, the standard
errors estimates are large and we cannot reject the null hypothesis that there is no difference
in the support of favor relationships compared to information relationships.35

We cannot conclude that the data are consistent with the theory that incentives for favor
exchange matters in network formation in these data, but in part because the parameters
actually vary nontrivially across villages. This leads to high standard errors and also suggests
that the more appropriate approach is to examine villages separately.

Thus, we push this further by estimating the parameters separately for each village v, with
the large single network (n→∞, R = 1) paradigm for each village. This allows for hetero-
geneity in the parameters across villages by assuming they are drawn from entirely different
distributions. Again, a we use the same variation on the minimum distance estimator of
Proposition 3 used in Example 1.

We see the results in Figure 6, with standard errors omitted for visual clarity. We see
that for almost all of villages, the favor over info ratios are higher for triangles compared
to links (more than would occur at random at the 1 percent level if the two had the same
distribution).

35Specifically, the p-value is computed for a test of the null hypothesis βT,favor

βT,info
= β

3/2
L,favor

β
3/2
L,info

, where the
parameters are held to be common across all villages in the sample. If instead of using the conservative
standard errors from Proposition 2, we bootstrap them then the hypothesis is rejected at the 1 percent level.
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Figure 6. Plots of estimates of βT,favor
βT,info

against β
3/2
L,favor

β
3/2
L,info

by village.

5.4. Example 3: Links across Social Boundaries. Our next example shows how a
SUGM can be used to investigate whether there are norms governing link-formation across
different social groups. Identities can lead to strong social norms—prescriptions and proscriptions—
concerning interactions across groups. For instance, in much of India there are strong forces
that influence if and when individuals can form relationships across castes, particularly
among “upper caste” Hindus and the “lower caste” communities, comprised of Dalits (Sched-
uled Castes, SC) and scheduled tribes (ST). The SC and ST communities are those defined by
the Indian government as being disadvantaged. This is a fundamental distinction over which
the strongest cultural forces are likely to focus. Additional norms are at work with finer
caste or subcaste distinctions, but those norms are more varied depending on the particular
castes in question while this provides a clear barrier (Munshi and Rosenzweig, 2006).

Among many, one natural question concerns the norms around forming public versus
private cross-caste group relationships. Namely, are members of upper and lower caste
more likely to form cross-group relationships when those links are unsupported (without any
friends in common) compared to when those links are supported with at least one friend in
common (and thus have a witness to the relationship)?

To answer this we need a model that accounts for link dependencies; cliques of three or
more may exhibit greater adherence to a norm prohibiting certain inter-caste relationships,
while the norm may be circumvented in isolated bilateral relationships. In particular, we
can get at this hypothesis by testing whether the relative frequency of triangles compared
to links is higher when the relationships are within caste than across caste.

This example is instructive because it is more subtle than the previous example and it
demonstrates that a SUGM can be used for a hypothesis test even when preference param-
eters are not identifiable without additional restrictive assumptions. Consider a process in
which individuals may meet in pairs or triples and then decide whether to form a given link
or triangle. The link is formed if and only if both individuals prefer to form the link, and
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a triangle is formed if and only if all three individuals prefer to form it. This minimally
complicates an independent-link model enough to include link interdependencies.

Individuals’ probabilities to have opportunities to form links or triads can depend on the
composition of castes of those involved. So let πL(diff), πL(same) denote the probabilities
that a given link has an opportunity to form (i.e., the pair meets and can choose to form the
relationship) that depend on the pair of individuals being of different castes or of the same
caste, respectively. Analogously define πT (diff), πT (same). Notice these are unlikely to be
observed by the researcher.

As noted above, individual i’s utility of having a relationship with j can by influenced by
whether they share caste (xij a dummy variable for same caste) and is given by

uLi (j) = α0,L + γ0,Lxij − εL,ij
and similarly for a triad,

uTi (jk) = α0,L + γ0,Txijk − εT,i,jk,
where xijk is a dummy for whether all three individuals are members of the same caste.36

The probability of an individual consenting to a subgraph of type z ∈ {L, T} among the mz

nodes is
pz,same = F (α0,z + γ0,z) and pz,diff = F (α0,z).

The hypothesis that we explore is that
pT,diff
pT,same

<
pL,diff
pL,same

so that people are more reluctant to involve themselves in cross-caste relationships when
those are “public” in the sense that other individuals observe those relationships.

The researcher does not observe either the meeting probabilities nor the probabilities
within the mutual consent process. Rather, the researcher observes the compositions β` for
` ∈ {L, T} × {same, diff} which are precisely SUGM parameters:

(1) βL,same = p2
L,sameπL(same) and βL,diff = p2

L,diffπL(diff), and
(2) βT,same = p3

T,sameπT (same) and βT,diff = p3
T,diffπT (diff).

There are two challenges. Recall the difference in the exponents reflects that it is more
difficult to get a triangle to form than a link. Hence, to perform a proper test, we have
to adjust for the exponents as otherwise we would just uncover a natural bias due to the
exponent that would end up favoring cross-caste links. Further, identifying a preference
bias is confounded by the meeting bias. Thus, we first model the meeting process πz(x)
more explicitly and show that we still have identification as the meeting bias makes triangles
relatively more likely to be cross-caste than links.

Consider a meeting process where people spend a fraction f of their time mixing in the
community that is predominantly of their own types and a fraction 1−f of their time mixing
in the other caste’s community. Then at any given snapshot in time, a community would

36This is a simplified model for illustration, but one can clearly consider preferences conditional on any
string of covariates. This extends a model such as that of Currarini, Jackson, and Pin (2009, 2010) to allow
for additional link dependencies. We could also be interested in higher order relationships.
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have f of its own types present and 1 − f of the other type present.37 This generates a
conservative test in the sense that if we find cross-caste links relatively more likely, that is
evidence for a preference bias.

Lemma 2. A sufficient condition for pT,diff
pT,same

<
pL,diff
pL,same

is that βT,diff
βT,same

<
(
βL,diff
βL,same

)3/2
.

Turning to the data, we link two households if members of either engaged in favor exchange
with each other: i.e., they borrowed or lent goods such as kerosene or rice in times of need.

Table 3. Parameter estimates by network type

β̂MD
R,L,same β̂MD

R,T,same β̂MD
R,L,diff β̂MD

R,T,diff

Information 0.016891 0.000309 0.006535 0.000002
(0.020001) (0.000156) (0.008739) (0.000048)

Favor 0.012652 0.000302 0.004281 0.000003
(0.024433) (0.000194) (0.006796) (0.000038)

Table 3 presents the parameter estimates using the estimator from Proposition 2, for
the estimation in which we assume that all 75 networks are independent draws from the
same distribution. Similar to the example above, the large standard errors on the triangle
parameters lead us to fail to reject the null hypothesis that pT (diff)

pT (same) =
(
pL(diff)
pL(same)

)3/2
. Again,

this suggests that since the parameters vary by village, that we should work with estimation
by village.
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Figure 7. Plots of estimates of βT,diff
βT,same

against β
3/2
L,diff

β
3/2
L,same

by village for informa-
tion and favors networks.

37Variations on this sort of biased meeting process appear in Currarini, Jackson, and Pin (2009, 2010);
Bramoullé, Currarini, Jackson, Pin, and Rogers (2012).
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Finally, Figure 7 shows the results when we allow the parameter estimates to vary by
village, again using the variation on the estimator of Proposition 3 that we used in Example
1. For the bulk of villages, cross-caste relationships relative to within-caste relationships are
more frequent as isolated links compared to being embedded in triangles, for both information
and favor networks. This is a new observation in the literature and begs the question as to
the foundations as to why members of two groups which meet less frequently and may have
less affinity for each other may nonetheless be able to sustain interactions privately. They
appear to give up support for the sake of not having the interaction be public.

6. A Central Limit Theorem for Correlated Random Variables

We now state a new central limit theorem that applies to a variety of settings in which
all variables may be correlated (well-beyond network settings) but the total amount of co-
variance is bounded. We require it to prove Proposition 3, but the result is considerably
more general. Our result is derived from Stein’s method, which provides the foundations for
many CLTs with dependent variables, but as will become clear, our treatment delivers more
general conditions that also allow us to cover SUGMs (Stein, 1986).

To understand the necessity of such a theorem at a high intuitive level, begin with the
simplest example where n = 3 and the only possible subgraphs are a triangle and three links.
Here if there is a triangle, then there are necessarily three links, and if there is no triangle
there are necessarily fewer than three links. There is a strong dependence in the subgraph
counts, and this carries over in the estimates of parameters. The overall dependence of
different subgraph counts is not so extreme as n grows, but there is always a correlation
and adjacent subgraphs remain nontrivially correlated all along the sequence. Thus, we
need a theorem that covers moments that are based on variables, some of which are highly
correlated all along the sequence.

There are essentially two approaches used to prove CLTs relevant that allow for correlated
random variables and the existing results in neither setting apply to SUGMs.

The first approach to CLTs with dependence we can call “geometric”: random variables
carry indices locating them in some embedding space. This covers time series, spatial data,
mixing random fields. Random variables are embedded in some space where there are “close”
and “far” random variables and the further they are, the less correlated they are. With
enough moment conditions, using distance-based limits on correlation allows researchers to
leverage Stein’s lemma under mixing conditions to derive a CLT (e.g., (Bolthausen, 1982;
Jenish and Prucha, 2009) just to name a few). In fact, a literature evolved focusing on
mixing random fields leveraging such conditions (Froot, 1989; Conley, 1999; Driscoll and
Kraay, 1998).38 Some researchers working on network formation (e.g., Boucher and Mourifié
(2017); Leung (2014)) exploit such spatial techniques by embedding nodes in some space
so that only “nearby” nodes can link and “distant” nodes cannot link (e.g., following the
logic in Penrose (2003); Hoff et al. (2002)) in order to satisfy mixing conditions and apply a

38See also Kuersteiner (2019), which studies conditional mixingale types of assumptions so that nodes
that are “far” in characteristic space have decaying dependence.
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central limit theorem like Bolthausen (1982). As n→∞ most nodes get further and further
apart and therefore essentially never link.

SUGMs do not lend themselves to ordering the indices of random variables into time,
space, lattices, or more general random fields. The reason that this does not work as it
imposes specific structure on the adjacency matrix. For example, consider the simple case
where nodes live on a line. Then in the adjacency matrix, only nodes within some limited
distance to the left or right of any given node tend to be linked to that node. While this is
fine for certain contexts, it is not an adequate description of a village network where there is
no natural space on which some households in a village should be considered, ex ante, to be
infinitely far apart (or students in a university who are, ex ante, infinitely unlikely to link to
each other, etc.). We can prove a CLT without this structure and that nests such previous
theorems, and so it is worthwhile to do so.

A second approach to CLTs with dependence is to use dependency graphs (Baldi and
Rinott (1989); Goldstein and Rinott (1996); Chen and Shao (2004); Ross (2011)).39 There
is another graph (not a SUGM but a graph among indices of random variables), where
edges between random variable indices indicates conditional dependence (and independence
if there is no edge).40 While that literature leverages Stein (1986) to prove CLTs despite
not forcing a geometric structure, they require most entries of the dependency graph to be
zero. That is, they impose a sparse (dependency) graph with independence across many
pairs of random variables (and usually do not consider triangular arrays). SUGMs violate
both impositions since at each n, all links can have non-zero correlations with each other.

Our insight is that if the overall covariances satisfy some bounds, then one can still prove
a CLT no matter how that dependency is arranged and even without numerous conditional
independencies.

Note that both the geometric or dependency graph approaches limit the total correlation
of the

(
n
2

)
random variables with specific structure. We develop a CLT in which all random

variables can have non-zero correlation by controlling the total size but not forcing zeros.
We show that if one can “collect“ what we call affinity sets for each index—that is a set of
other random variables that can have larger correlation with the reference random variable—
then as long as three covariance conditions hold, we can limit the overall correlation and
apply Stein’s method. Our conditions are that on average (1) within an affinity set, most of
the correlation comes from the dependence between the reference variable and its members
rather from than between two members; (2) the amount of correlation between members
of two different affinity sets is small; (3) the correlation between the reference variable and
all those outside its affinity sets is appropriately small. We argue that these are relatively
intuitive (weighted covariance conditions), interpretable, easy to check, and more easily

39Aronow and Samii (2017) use Chen and Shao (2004) assuming conditional independence in treatment
effects with spillovers, where certain interferences are ruled out. But this means one cannot study spillovers
due to information, for example, because in principle information can flow to any node in the network, so
treatment of one node leaves non-zero exposure to all others. Another application of Chen and Shao (2004)
is in Leung and Moon (2022). They characterize dependence through radii of stability which correspond to
changes in network features when dropping observed links.

40Some work, e.g., Chen and Shao (2004), focuses on exact finite sample Berry-Essen inequalities.
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micro-founded than potentially a more complex but specific assumption on things like mixing
random fields. It is in this sense that we believe this is of independent interest. In a follow-
up paper (Chandrasekhar, Jackson, McCormick, and Thiyageswaran, 2023) we provide a
number of other (non-network) applications and additional discussion of the literature.

We require some notation.
Consider a triangular array of (real-valued) random variables XN

α with a set of labels
α ∈ ΛN such that |ΛN | = N . For instance, in our SUGM setting the XN

α may be an
indicator of the appearance of some particular subgraph, such as a link or triangle, and α

would track the pairs of nodes involved in a potential link (ij) or triples of nodes in a triangle
(ijk). N captures the

(
n
2

)
possible links or

(
n
3

)
possible triangles. So when considering link

counts α would track pairs of nodes involved in links and when considering triangles α would
track triples.

Let us normalize the variables by their means:

ZN
α = XN

α − E
[
XN
α

]
.

We presume that the Zαs are such that the E[|ZN
α |3]/E[(ZN

α )2]3/2 is bounded above for all
α,N .41 We provide conditions under which a normalized statistic, as N →∞, converges to
the standard normal distribution, ∑

α∈ΛN Z
N
α√

aN
 N (0, 1),

where the normalizer, aN , is a measure of the variance of the sum, defined below.

6.1. Affinity Sets. For each α,N , we partition the index set ΛN into two pieces: an affinity
set and its complement. In particular, we define an affinity set, for each α,N , as

A (α,N) ⊂ ΛN such that α ∈ A (α,N) .

The conditions for η ∈ A(α,N) are defined below. It is crafted in a specific manner to satisfy
a few sufficient conditions for a CLT.
A (α,N) includes indices η where the corresponding Xη’s have relatively “high” correlation

with Xα, and its complement includes the indices η where the corresponding Xη’s that have
relatively “low” correlation with Xα. There is substantial freedom in defining these sets, but
an easy rule to applying them to (non-sparse) SUGMs is to set the A (α,N) sets to include
the other tuples of nodes with which the reference tuple of nodes shares some potential edges
and therefore could face incidental generation.

We show that under conditions on the relative correlations inside and outside of the affinity
sets a central limit theorem applies.

41This condition holds, for instance, if the Zs are from Bernoulli random variables, or if E[|ZNα |3] is
bounded above and E[(ZNα )2] is bounded below across α,N , but also in cases where such individual bounds
do not hold. Violations of this condition are, for example, random variables with finite second moments but
infinite third moments.
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6.2. The Central Limit Theorem. Let

aN :=
∑

α;η∈A(α,N)
cov (Zα, Zη) ,

be the total sum of variance-covariances across all the pairs of variables in each other’s
affinity sets , and recall this was used in normalizing the total sum above. In what follows,
we maintain the assumption that aN → ∞, as otherwise there is insufficient variation to
obtain a central limit theorem.

Finally, let Z−A(α,N) := ∑
η/∈A(α,N) Zη be the sum over all random variables not in the

reference index α’s affinity set.
The following are the key conditions for the theorem:

(6.1)
∑

α;η,γ∈A(α,N)
E [ |Zα|ZηZγ] = o

(
a

3/2
N

)
,

(6.2)
∑

α,α′,η∈A(α,N),η′∈A(α′,N)
cov (ZαZη, Zα′Zη′) = o

(
a2
N

)
,

(6.3)
∑
α

E
[∣∣∣E [ZαZ−A(α,N)

∣∣∣Z−A(α,N)
]∣∣∣] =

∑
α

E
[∣∣∣Z−A(α,N)E

[
Zα

∣∣∣Z−A(α,N)
]∣∣∣] = o (aN) .

Condition (6.1) captures the idea that most of the covariance between random variables in
an affinity set α comes from covariances between the reference random variable Xα and one
member of the neighborhood Xη, rather than from covariance between two other members
Xη and Xγ. Some of them can have high covariance, but in total they cannot. The term
on the left-hand-side consists of an integral over Zα of covariances between Zγ and Zη,
weighted by |Zα|, so the covariances cannot be too large exactly with large values of Zα.
So in constructing our normalizer aN we need only consider the covariance terms between
reference variables and members of their affinity sets.

Condition (6.2) is similar but it looks at the covariance between two members (η, η′) of
different affinity sets of two distinct reference nodes (α, α′). It says, again, that the total
amount of covariance across members of different affinity sets, when considering any two
pairs of reference nodes, is small relative to the total sum of variances.

Condition (6.3) states that covariances between reference nodes and all members outside
of its affinity set are relatively small. This is intuitive and motivates the strategy in defining
affinity sets in the first place. Note that if, for instance, E[ZαZ−A(α,N)|Z−A(α,N)] ≥ 0, then
Condition (6.3) is simply that ∑α;η/∈A(α,N) cov (ZαZη) = o (aN).

Although these conditions may seem complex, in Chandrasekhar, Jackson, McCormick,
and Thiyageswaran (2023) we show how they can be directly verified in a number of appli-
cations.

Theorem 4. If (6.1)-(6.3) are satisfied, then ∑
α∈ΛN Z

N
α /
√
aN  N (0, 1).

It is useful to consider the special case in which A(α,N) = {α}, which extends but nests
many standard central limit theorems. Here we use the notation Z−α to denote Z−A(α,N)
This is useful when we get to the case of sparse networks, where incidental networks are
unlikely and the correlation between different subgraphs becomes small.
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Corollary 2. If E [ZαZ−α |Z−α ] ≥ 0 for every α, and42

(i) ∑α,η cov(Z2
α, Z

2
η) = o (a2

N), and
(ii) ∑α 6=η cov(Zα, Zη) = o (aN),

then ∑
α∈ΛN Z

N
α /
√
aN  N (0, 1).

Moreover, if the Xαs are Bernoulli random variables with E[Xα] → 0 (uniformly), then
(ii) implies (i).

Note that (i) is often satisfied whenever (ii) is, so this is an easy corollary based on one
intuitive condition: the overall sum of covariances between different variables cannot be too
large relative to the sum of their variances.

7. Concluding Remarks

We have developed a new class of models—SUGMs—in which networks are formed via a
basis set of subgraphs. The parameters are always identified and we study conditions when
the parameters have estimators that are consistent and asymptotically normally distributed.
We provide four such estimators to cover various data settings. En route, we develop a new
central limit theorem for dependent random variables which extends the dependency graph
literature and also does not require a geometric (lattice-like) ordering of covariances of the
kind used in the time series and spatial literatures. We believe this is of independent interest.

Our model is useful for empirical work. We show that it models economically relevant
features of real-world network data better than the standard alternatives: stochastic block
models, unobserved heterogeneity models, latent space models, and ERGMs. Further, we
have illustrated that it is easy to microfound a SUGM to test important hypotheses such as
whether a network provides incentives to sustain informal contracts or whether people are
willing to interact across caste publicly.

Future research can explore, among other things, richer inclusion of covariates in sub-
graphs, a data-driven approach to select subgraphs for inclusion in the model, statistical
properties of other specific empirically-relevant SUGMs not studied here, and systematic
bootstrap techniques for inference for use in complex implementations of these models.

Data Availability Statement: The code and data needed to reproduce all figures and tables
in the paper are available at http://doi.org/10.5281/zenodo.14218442
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Appendix A. Proofs

Proof of Lemma 1. Note that for z ∈ {favor, info}, γT,z
γL,z

= β
1/3
T,z

β
1/2
L,z

and so the condition

becomes β
1/3
T,favor

β
1/2
L,favor

>
β

1/3
T,info

β
1/2
L,info

from which the result directly follows.

Proof of Lemma 2. Having two randomly picked nodes bump into each other within a
community, there is a f 2 + (1− f)2 probability of the nodes being of the same type, and a
1− (f 2 + (1− f)2) probability of them being of different types.43 Thus, the relative meeting
frequency of different type links compared same type links is

πL(diff)
πL(same) = 1− (f 2 + (1− f)2)

f 2 + (1− f)2 .

For triangles, picking three individuals out of the community at any point in time would
lead to a f 3 + (1− f)3 probability that all three are of the same type, and 1− (f 2 + (1− f)2)
of them being of mixed types, and so

πT (diff)
πT (same) = 1− (f 3 + (1− f)3)

f 3 + (1− f)3 .

It follows directly that for f ∈ (0, 1):

(A.1) πT (same)
πT (diff) <

πL(same)
πL(diff) .

So different type triangles are more likely to have opportunities to form under this random
mixing model than different type links. In particular, note that pT,diff

pT,same
<

pL,diff
pL,same

if and only

if
(
βT,diff
βT,same

πT (diff)
πT (same)

)1/3
<
(
βL,diff
βL,same

πL(same)
πL(diff)

)1/2
. In summary, given (A.1), sufficient condition

for pT,diff
pT,same

<
pL,diff
pL,same

is that βT,diff
βT,same

<
(
βL,diff
βL,same

)3/2
.

Proof of Theorem 1. Order subgraph types so that the number of links in a subgraph of
type ` is nondecreasing in `. Let `∗ be the smallest ` for which β` 6= β′`.

Consider a particular subgraph g′ ∈ G`∗ with labeled nodes. Let pβ(g′) denote the prob-
ability that the subgraph g′ (without any extra links within the subgraph nor any links
anywhere else in the network) forms from some collection of subgraphs in G` for ` < `∗. We
can then write the probability of forming the subgraph g′ (and no other links anywhere) as

pβ(g′) + (1− pβ(g′))β`∗ ,

where recall that β`∗ is the probability that g′ forms directly. Let noβ(g′) denote the proba-
bility that all g′′ ∈ G` for ` < `∗ such that g′′ ⊂ g′ do not form. Then the probability that
none of the links in g′ are present as parts of subgraphs that do not extend beyond g′ is then

noβ(g′)(1− β`∗).

43To keep things simple, we consider equal-sized groups, but the argument extends with some adjustments
to asymmetric sizes.
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Let ∅ denote the empty network. It then follows that
Pβ(g′)
Pβ(∅) = pβ(g′) + (1− pβ(g′))β`∗

noβ(g′)(1− β`∗)
.

So the probability that the realized network is exactly g′ compared to the probability that
it is the empty network (which has positive probability given that each β` < 1), depends
only on the probability that g′ forms directly or incidentally from subgraphs of it, over the
probability that no subgraph of g′ (including itself) forms.

Note that this expression is strictly increasing in β`∗ since pβ(g′) < 1 and noβ(g′) > 0. By
the definition of `∗: pβ(g′) = pβ′(g′) < 1 and noβ(g′) = noβ′(g′). It then follows that

Pβ(g′)
Pβ(∅) 6=

Pβ′(g′)
Pβ′(∅)

,

which establishes the claim.

Proof of Proposition 1. First, note that 1 − (1 − βT )x is the probability that some link
is formed as part of at least one triangle out of x possible triangles that could have it as an
edge (independently of whether it also forms directly).

Next, note that the probability that a link forms conditional on some particular triangle
that it could be a part of not forming is44

(A.2) q̃L (βL, βT ) = βL + (1− βL)
(
1− (1− βT )n−3

)
.

To see the derivation, note that:

q̃L (βL, βT ) = P(gij=1 | Tijk = 0) = P(gij = 1 ∩ Tijk = 0)
P(Tijk = 0)

= P(gij = 1 ∩ Tijk = 0)
1− βT

by definition

=

βL(1− βT )︸ ︷︷ ︸
(i)

+ (1− βL)(1− (1− βT )n−3)(1− βT )︸ ︷︷ ︸
(ii)

1− βT

where Tijk is an indicator for the direct triangle on i, j, k forming. Here (i) captures when
the link forms directly and the indicated direct triangle does not and (ii) captures when the
link does not form directly and some other triangle generates it and the indicated directed
triangle does not.

Given this, note that the probability that a link forms can be written as

(A.3) Eβ(SL(g)) = qL = βT + (1− βT )q̃L (βL, βT ) ,

noting that a link could form as part of a triangle that it is part of, or else form conditional
upon that triangle not forming. Note that this is equivalent to saying a link can be formed

44That is, consider a given pair of nodes i, j and a third node k. Consider the probability that link ij is
formed conditional on triangle ijk not forming directly as a triangle.
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as part of some triangle, or else that it could form by other means that exclude that triangle
(but then are either direct or involve other triangles, which is the q̃L (βL, βT ) .

We can write the probability of some triangle forming as

(A.4) Eβ(ST (g)) = qT = βT + (1− βT )(q̃L (βL, βT ))3,

where the first expression βT is the probability that the triangle is directly generated, and
then the second expression (1−βT )(q̃L (βL, βT ))3 is the probability that it was not generated
directly, but instead all three of the edges formed on their own (which happen independently,
conditional on the triangle not forming, which has probability (q̃L (βL, βT ))3). The result
follows from Lemma A.1, with x1 = βL, x2 = βT , qL = a1 (x), qT = a2 (x) and q̃L (βL, βT ) =
f (x).

Lemma A.1. Let x = (x1, x2) ∈ [0, 1)2 and a (x) = (a1 (x) , a2 (x)) be two real-valued func-
tions

a1 (x) = x2 + (1− x2) f (x)
a2 (x) = x2 + (1− x2) f (x)3 ,

with
f (x) = x1 + (1− x1)

[
1− (1− x2)N

]
= 1− (1− x1) (1− x2)N

for some integer N ≥ 0. Then x 6= x′ =⇒ a (x) 6= a (x′) .

Proof. Suppose the contrary. Then

x′2 + (1− x′2) f (x′) = x2 + (1− x2) f (x) and x′2 + (1− x′2) f (x′)3 = x2 + (1− x2) f (x)3 .

First, note that if x′2 = x2, then since these are both less than one, the first equation
above implies that f(x′) = f(x). However, that is not possible since f is increasing in x1
and x′1 6= x1 - recalling that x′ 6= x and x′2 = x2 . Thus, x′2 6= x2, and so without loss of
generality consider the case in which x′2 < x2. This implies that both

f (x′) = bf (x) + c

and
f (x′)3 = bf (x)3 + c,

where b = 1−x2
1−x′2

∈ (0, 1) and c = x2−x′2
1−x′2

∈ (0, 1), and b+ c = 1.
This implies that

bf (x)3 + 1− b = (bf (x) + 1− b)3.

This as an equation of the form

by3 + 1− b = (by + 1− b)3

where b ∈ (0, 1) and y ∈ [0, 1). Note that the left hand side is larger when y = 0 and the
two are equal when y = 1, and that the derivative of the difference is

3by2 − 3b(by + 1− b)2 = 3b
[
y2 − (by + 1− b)2

]
< 0.
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The difference is decreasing over the entire interval, and hits 0 at the end. Thus, the difference
is always positive in [0, 1) and there is no solution, meaning our supposition was incorrect.

Lemma A.2. Any event (in the discrete σ-algebra generated by all possible realizations of all
subgraphs) associated with any SUGM has a probability that is an analytic function (and so
it is in C∞), and has derivatives and cross partials at all levels being uniformly continuous
and bounded on the whole parameter space of [0, 1]k.

Proof. An ‘outcome’ is a specification of exactly which subgraphs form and which do not - so
a complete specification of what happens. Any event then corresponds to a set of outcomes,
and so its probability is a sum of probabilities of the outcomes. Each outcome’s probability
is of the form ∏

`

βz`` (1− β`)m`−z`

where z` indicates how many subgraphs of type ` are present in the outcome. As each of these
functions is analytic (and hence in C∞), all of the derivatives and partials, cross partials,
etc., are continuous and bounded on [0, 1]k and hence uniformly continuous on [0, 1]k. Any
event is then a finite sum of analytic functions and so the result follows directly.

Proof of Theorem 2. We verify the conditions of Theorem 2.5 of Newey and McFadden
(1994) for consistency. Assumption (i) holds by Theorem 1 and we assume compactness of the
parameter space (Assumption (ii)). Continuity of log Pβ(g) at each β with probability one is
mechanical in our model since subgraph probabilities are analytic functions of the parameters
(Lemma A.2). Finally, the uniform bound of assumption (iv) holds since n is fixed, there
are only a finite number of graphs in consideration, each with assigned probabilities in a
compact set of parameters, and there is a positive probability of seeing any graph in Gn.
Therefore, the supremum must be finite.

We verify the conditions of Theorem 3.3 of Newey and McFadden (1994) for asymptotic
normality. We have assumed (i), interiority of the parameter, and our model by construction
places positive mass on all of Gn. We have assumed (iv). Lemma A.2 implies Assumptions
(ii), (iii), and (v). Because all events have probabilities that are analytic functions of param-
eters, with all derivatives and cross-partials being uniformly continuous and bounded in the
parameter space, the norms of the maximal derivative (‖∇βPβ(g)‖) and second derivatives
(‖∇ββPβ(g)‖) of the probability functions, as well as the log likelihood (‖∇β log Pβ(g)‖),
have uniform and finite upper bounds.

Proof of Proposition 2. First we check consistency by the conditions of Theorem 2.6 of
Newey and McFadden (1994). Here each observation is an independently drawn network.
For Assumption (i) let Ŵ be the identity matrix and then apply Proposition 1. For (ii),
we have assumed that the parameter space B is compact. (iii) follows from the fact that
Eβ [S (gr)] is continuous at each β with probability one since it composes continuous functions
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of parameter entries. Finally (iv) follows from the fact that since both S` are shares, they
are strictly less than 1.

Next we check asymptotic normality by the conditions of Theorem 3.4 of Newey and
McFadden (1994).45

Since β0 is in the interior of the compact parameter space, so (i) is met. We see (iii)
holds since by definition the subgraph counts are fractions between 0 and 1. Both (ii) (that
the empirical moment function is continuously differentiable in a neighborhood of the true
parameter) and (iv) (that the gradient of the moment function is continuous at the true
parameter and that it satisfies a ULLN) follow from Lemma A.2. Analytic functions are
C∞, so there are arbitrarily many derivatives. The bounds follow the expressions in (C.6)
and following, which provide the rows of H, and the expressions are bounded in magnitude
by 3(n − 3) + 1 (and note the n is fixed and it is R that is growing). Finally, for (v), that
HH ′ is non-singular follows from the linear independence of rows of H (see the expressions
in (C.6) and following, which provide the rows of H, which dividing through by (1− βT )n−2

are clearly independent for interior parameters).

Proof of Theorem 3. When obvious, we omit superscript n’s to simplify notation, but
they are implicit. It follows that,

(A.5) β̆DC
n,` =

 Strue`

κ`
(
n
m`

) + S̃true` − Strue`

κ`
(
n
m`

) + S̃`(g)− S̃true`

κ`
(
n
m`

)


where Strue` is the number of truly generated such subgraphs (unobserved) on the whole
network, and S̃true` is the number of truly generated such subgraphs (unobserved) on the
networks that the after removing the links in D`(g) = {ij : ij ∈ g′, g′ ⊂ g, g′ ∈ G`′ , `

′ < `},
and

(
n
m`

)
counts the number of ways to pick m` nodes out of n.

We show below that |S̃true` − Strue` | = op(Strue` ) and |S̃`(g)− S̃true` | = op(S̃true` ); which then
also implies that S̃`(g)− S̃true` = op(Strue` ). Together with (A.5), these tell us that

(A.6) β̆DC
n,` =

 Strue`

κ`
(
n
m`

)
 (1 + op(1)).

Note that Strue` (g) has a binomial distribution with parameter βn0,`. From this and (A.6),
it then follows that

β̆DC
n,` − βn0,`
σn,`

 N (0, 1)

where σn,` =
(
βn0,`(1−β

n
0,`)

κ`( n
m`

)

)1/2

. This is because Strue`

κ`( n
m`

) is a self-normalized sum of κ`
(
n
m`

)
Bernoulli(βn0,`) independent random variables with standard deviation σn,` by definition.
Convergence in distribution in the sense of the Central Limit Theorem is a consequence of our

45See also Greene (2000) for the simplification of the variance term in the case in which there is just-
identification as we have.
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own Corollary 2, (though one could appeal to other CLTs on triangular arrays for independent
random variables). So the result follows from Slutsky’s Theorem since 1 + op(1) P−→ 1.

Next, note that the Strue` (g) are independent across `. From (A.6) it then follows that∑
`

α`β̆
DC
n,` =

∑
`

α`
Strue`

κ`
(
n
m`

)(1 + op(1))

for any α ∈ [0, 1]k, with ∑` α` = 1. Given the independence of Strue` across `, it then follows
that the random variable on the right hand side converges to being normal.46 Then, by the
Cramér-Wold Theorem, this implies that the β̆DC

n,` are jointly normally distributed in the
limit, and so

Σ−1/2
n (β̆DC

n − βn0 ) N (0, I)
where Σn,`` = βn0,`(1−β

n
0,`)

κ`( n
m`

) and the off-diagonals are all 0.

Thus, to complete the proof we show that |S̃true` − Strue` | = op(Strue` ) and |S̃`(g)− S̃true` | =
op(S̃true` ).

To establish these claims, we establish two facts. One is that the probability that some
observed subgraph of type ` was incidentally generated (by subgraphs that are no larger
than it in the ordering) is o(1). This establishes that |S̃`(g)− S̃true` | = op(S̃true` ). The other is
that the probability that a truly formed subgraph of type ` becomes part of an incidentally
generated subgraph of type `′ < ` is o(1). This establishes that |S̃true` − Strue` | = op(Strue` ).

Let zn` denote the probability that any given g′ ∈ Gn
` is incidentally generated. We now

show that zn` /βn0,` = o(1), which establishes the first claim. Consider g` ∈ Gn
` and a (minimal,

ordered) generating subclass C = (`j, cj)j∈J , and for which `j ≥ ` for all j.
We show that the probability zn` that it is generated by this subclass goes to zero relative

to βn0,`, and since there are at most M` ≤ km` such generating classes, this implies that
zn` /β

n
0,` → 0.

Consider a subnetwork in Gn
`j

. The probability of getting at least one such network that
has the cj nodes out of the m` in g` is no more than

κ`j

(
n

m`j − cj

)
βn0,`j ≤ κ`jn

m`j−cjβn0,`j .

Then, we can bound the desired ratio by

zn`
βn0,`
≤
∏
j∈J n

m`j−cjκ`jβ
n
0,`j

βn0,`
≤
n
∑

j∈J m`j−h`j−cj
∏
j∈J κ`jb0,`j

n−h`b0,`
→ 0,

where the last convergence is guaranteed by (4.3).
The second claim follows from a similar calculation: It is sufficient to show that the

probability that some subgraph of type `j′ becomes part of a subgraph of type ` < `j′ (where
j′ ∈ J is part of a generating class of some ` < `j′), compared to the likelihood of the
formation of a subgraph of type `j′ , is of vanishing order. Again, as there are a finite number
of larger subgraphs, and a finite number of generating classes, it is sufficient to show this

46Note that under the assumption that m` > h` there are a growing number of observations of each
subgraph.
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for a generic ` < `j′ and generic generating class. In the following, the numerator is on the
order of the expected number of incidentally formed subgraphs of type ` from this type of
generating class, while the denominator is the expected number of the subgraphs of type `.47

κ`
(
n
m`

)∏
j∈J n

m`j−c`jκ`jβ
n
0,`j

κ`j′
(

n
m`j′

)
βn0,`j′

= Θ
nm`n∑j∈J m`j−c`j−h`j

n
m`j′

−h`j′

→ 0,

where the convergence to 0 follows from (4.4).
Finally, by multiplying and dividing by nh` and collecting terms, it follows that |b̆DC

n −
b0|

P−→ 0 and V −1/2
n

(
b̆DC
n − b0

)
 N (0, I). To see this, observe that Σ−1/2

n (β̆DC
n − βn0 ) =

V −1/2
n

(
b̆DC
n − b0

)
.

Proof of Corollary 1. Note that ∑j cj ≥ m` + (|C| − 1)z for some z ≥ 1, where z ≥ 2
if subgraphs are acyclic (each subgraph in the incidental set overlaps the others with at
least one node, and at least two if the subgraphs are acyclic). The conditions then simplify
directly.

Appendix B. Proof of Central Limit Theorem 4 and Corollary 2

B.1. Stein’s Lemma. Our proof uses a lemma from Stein (1986). We review it here, both
to be self-contained and also to explain why this approach to proving asymptotic normality
is useful and distinct from other approaches in the networks literature. The key observation
of Stein (1986) is that if a random variable satisfies

E[f ′(Y )− Y f(Y )] = 0

for every f(·) that is continuously differentiable, then it must have a standard normal dis-
tribution.

This observation leads to a useful lemma, that allows one to characterize the Kolmogorov
distance between a random variable Y and a standard normally distributed Q, denoted
dK(Y,Q). We can bound this from above by (a constant times) the Wasserstein distance,
dW (Y,Q), which itself is bounded by the below expression. Convergence in Wasserstein
distance implies convergence in distribution. Let ‖f‖ denote the sup norm over the domain
of f .
Lemma B.1 (Stein (1986); Ross (2011)). If Y is a random variable and Q has the standard
normal distribution, then

dW (Y,Q) ≤ sup
{f :||f ||,||f ′′||≤2,||f ′||≤

√
2/π}
|E[f ′(Y )− Y f(Y )]| .

Further dK(Y,Q) ≤ (2/π)1/4(dW (Y,Q))1/2.

Define
ZN :=

∑
α∈ΛN

ZN
α and ZN = ZN/a

1/2
N .

47We use Bachmann-Landau notation so f(n) = Θ(g(n)) means that f is bounded above and below
asymptotically by g. That is, ∃k1 > 0,∃k2 > 0,∃n0 such that ∀n > n0, k1g(n) ≤ f(n) ≤ k2g(n).
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For ease of notation, we omit the superscript Ns below. Recall that

Z−A(α,N) =
∑

η/∈A(α,N)
Zη

and let
Z−A(α,N) := Z−A(α,N)/a

1/2.

By this lemma, if we show that a normalized sum of random variables satisfies

sup
{f :||f ||,||f ′′||≤2,||f ′||≤

√
2/π}

∣∣∣E[f ′(ZN)− ZN
f(ZN)]

∣∣∣→ 0,

then dW (ZN
, Q)→ 0, and so it must be asymptotically normally distributed.

B.2. Proofs of Theorem 4 and Corollary 2. The following lemmas are useful in the
proof.

Lemma B.2. A solution to maxh E[Zh(Y )] s.t. |h(·)| ≤ 1 (so the absolute value of h is
bounded by 1, where h is measurable) is h(Y ) = sign(E[Z|Y ]), where we break ties, setting
sign(E[Z|Y ]) = 1 when E[Z|Y ] = 0.

Proof. This can be seen from direct calculation:

E[Zh(Y )] =
ˆ
Y

E[Z|Y ]h(Y )dP(Y )

Maximizing E[Z|Y ]h(Y ) pointwise when |h| ≤ 1 is achieved by setting h(Y ) = sign(E[Z|Y ]),
and we break ties by setting sign(E[Z|Y ]) = 1 when E[Z|Y ] = 0, as that makes no difference
in the integral.

Lemma B.3. E[XY h(Y )] when h(·) is measurable and bounded by
√

2
π

satisfies

E[XY h(Y )] ≤
√

2
π

E [XY · sign(E[X|Y ]Y )] .

Proof. This follows from Lemma B.2, setting Z = XY .

Proof of Theorem 4. By Lemma B.1, it is sufficient to show that the appropriate sequence
of random variables ZN satisfies

sup
{f :||f ||,||f ′′||≤2,||f ′||≤

√
2/π}

∣∣∣E[f ′(ZN)− ZN
f(ZN)]

∣∣∣→ 0.

Observe that

E
[
Zf

(
Z
)]

= E
[

1
a1/2

∑
α

Zα · f
(
Z
)]

= E
[

1
a1/2

∑
α

Zα
(
f
(
Z
)
− f

(
Z−A(α,N)

))]

+ E
[

1
a1/2

∑
α

Zα · f
(
Z−A(α,N)

)]
.
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The first step is to show that∣∣∣∣∣E
[

1
a1/2

∑
α

Zα · f
(
Z−A(α,N)

)]∣∣∣∣∣ = o(1),

by employing condition (6.3).
In order to do this, we can expand the term to∣∣∣∣∣∣E
 1
a

1/2
N

∑
α∈Λ

Zα · f
(
Z−A(α,N)

)∣∣∣∣∣∣ =

∣∣∣∣∣∣E
 1
a

1/2
N

∑
α∈Λ

Zα · f

 1
a

1/2
N

∑
η/∈A(α,N)

Zη

∣∣∣∣∣∣
≤

∣∣∣∣∣∣E
 1
a

1/2
N

∑
α∈Λ

Zα · f (0)
∣∣∣∣∣∣︸ ︷︷ ︸

=0 since E[Zα]=0.

+

∣∣∣∣∣∣E
 1
a

1/2
N

∑
α∈Λ

Zα ·

 1
a

1/2
N

∑
η/∈A(α,N)

Zη

 · f ′ (Ẑ−A(α,N)

)∣∣∣∣∣∣
where Ẑ−A(α,N) is an intermediate value between Z−A(α,N) and 0.

To bound the second term, we apply Lemma B.3 to conclude that∣∣∣∣∣∣∣∣
E
[∑

α∈Λ;η/∈A(α,N) ZαZηf
′
(
Ẑ−A(α,N)

)]
aN

∣∣∣∣∣∣∣∣ ≤
√

2
π

∣∣∣∣∣∣
E
[∑

α∈Λ;η/∈A(α,N) ZαZη · sign (E [ZαZη| Zη])
]

aN

∣∣∣∣∣∣ .
Thus, it is sufficient that

(B.1) E
 ∑
α∈Λ;η/∈A(α,N)

ZαZη · sign (E [ZαZη|Zη])
 = o(aN)

or

E
 ∑
α∈Λ;η/∈A(α,N)

|E [ZαZη|Zη]|
 = o(aN)

to ensure that ∣∣∣∣∣∣∣∣
E
[∑

α∈Λ;η/∈A(α,N) Zα · Zη · f ′
(
Ẑ−A(α,N)

)]
aN

∣∣∣∣∣∣∣∣ = o(1),

which is ensured by (6.3) (noting that Ẑ−A(α,N) is a function of Z−A(α,N))).
Next, the second step of the proof is to apply a similar reasoning as in Ross (2011) with

an o(1) adjustment (from the first step above), to write∣∣∣E [f ′(Z)− Zf(Z)
]∣∣∣ ≤ ∣∣∣∣∣E

[
1
a1/2

∑
α

Zα(f(Z)− f(Z−A(α,N))− (Z− Z−A(α,N))f ′(Z)
]∣∣∣∣∣

+
∣∣∣∣∣E
[
f ′(Z)

(
1− 1

a1/2

∑
α

Zα(Z− Z−A(α,N))
)]∣∣∣∣∣+ o(1),

and then to show that the right hand side of this expression goes to 0.
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By a Taylor series approximation and given the bound on the derivatives of f , it follows
that ∣∣∣E [f ′(Z)− Zf(Z)

]∣∣∣ ≤ ||f ′′||2a1/2

∑
α

E
[
|Zα|

(
Z− Z−A(α,N)

)2
]

+
∣∣∣∣∣E
[
f ′(Z)

(
1− 1

a1/2

∑
α

Zα(Z− Z−A(α,N))
)]∣∣∣∣∣+ o(1).

Let us denote the first two terms on the right hand side as A1 and A2 respectively. We
bound each, and show that each is o(1), which then completes the proof.

A1 = ||f
′′||

2a3/2

∑
α

E

|Zα|
 ∑
η∈A(α,N)

Zη

2
 = ||f

′′||
2a3/2

∑
α;η∈A(α,N),γ∈A(α,N)

E [|Zα|ZηZγ] = o(1),

where the last equality follows from (6.1).
Next,

A2 =
∣∣∣∣∣E
[
f ′(Z)

(
1− 1

a1/2

∑
α

Zα(Z− Z−A(α,N))
)]∣∣∣∣∣ = 1

a

∣∣∣∣∣∣E
f ′(Z)

a− ∑
α,η∈A(α,N)

ZαZη

∣∣∣∣∣∣
≤ ||f

′||
a

E

∣∣∣∣∣∣
a− ∑

α,η∈A(α,N)
ZαZη

∣∣∣∣∣∣ = ||f
′||
a

E

∣∣∣∣∣∣
 ∑
α,η∈A(α,N)

ZαZη − E [ZαZη]
∣∣∣∣∣∣

≤
√

2
a
√
π

var
 ∑
α,η∈A(α,N)

ZαZη

1/2

=
√

2
a
√
π

 ∑
α,α′,η∈A(α,N),η′∈A(α′,N)

cov (ZαZη, Zα′Zη′)
1/2

,

where the last inequality follows by Cauchy-Schwarz. The final expression is o(1) by (6.2).

Proof of Corollary 2. We apply Theorem 4 to the case in which A(α,N) = {α}. (6.1)
becomes ∑

α

E
[
|Zα|3

]
= o

(∑
α

var (Zα)
)3/2


which becomes48 ∑

α

var (Zα)3/2 = o

(∑
α

var (Zα)
)3/2

 ,
which is satisfied directly, given that ∑α var (Zα) is growing without bound.

(i) and (ii) imply (6.2) and (6.3), respectively, (noting that the sign is always nonnegative
by the supposition of the corollary).

We now show that for Bernoulli random variables with uniformly vanishing means, (i)
holds whenever (ii) holds. Observe that

cov
(
Z2
α, Z

2
η

)
= cov

(
(Xα − µα)2 , (Xη − µη)2

)
= cov

(
X2
α − 2Xαµα + µ2

α, X
2
η − 2Xηµη + µ2

η

)
48Recall that it is assumed that E

[
|Zα|3

]
/E
[
Z2
α

]3/2 is bounded above (and necessarily below via Jensen’s
Inequality).
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= cov
(
X2
α, X

2
η

)
− 2µαcov

(
Xα, X

2
η

)
− 2µηcov

(
X2
α, Xη

)
+ 4µαµηcov (Xα, Xη) .

Because they are Bernoulli, cov
(
Xk
α, X

k′
η

)
= cov (Xα, Xη) for any k, k′ > 0. Since the means

tend to zero, this means

cov
(
Z2
α, Z

2
η

)
= cov (Xα, Xη) (1 + o (1)) .

Therefore satisfying (ii) implies (i) (noting also that aN ≥ 1 so a2
N ≥ aN).
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