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1 Introduction

Recent empirical studies have documented important fluctuations in top wealth inequality over

time.1 Volatile stock market returns may account for these fluctuations, though this explanation

has remained relatively underexplored. Conversely, a large theoretical literature in asset pricing

examines the role of household heterogeneity in shaping asset prices but seldom considers its

implication for the wealth distribution.

In this paper, I use newly available data on the wealth distribution to investigate the rela-

tionship between asset prices and wealth inequality. I first document that wealthy households

disproportionately invest in equity, causing equity returns to generate large and persistent fluctu-

ations in top wealth inequality. Motivated by this fact, I build an asset pricing model where agents

have heterogeneous exposures to aggregate income shocks. The model generates a feedback loop

between top wealth shares and asset prices: a higher-than-expected shock in economic growth in-

creases inequality as wealthier households are more exposed to aggregate shocks. In equilibrium,

this raises asset prices due to the greater demand for assets from wealthier households. These

higher asset valuations feed back into inequality, thus continuing the cycle. I show that such a

mechanism can account for a substantial portion of the observed fluctuations in asset prices and

top wealth shares.

The paper proceeds in three steps. I first use recently available data on top wealth inequality

to document that wealthy households are twice as exposed to equity returns as the rest of the

population. Formally, in response to a realized stock return of 10%, the average wealth in the

economy increases by 4.3% while the average wealth in the top 0.01% increases by 7.8%. As a

result, equity returns generate fluctuations in top wealth shares: in response to a realized stock

return of 10%, the share of wealth owned by the top 0.01% increases by 3.5% (= 7.8% − 4.3%).

Using local project methods, I show that this increase is very persistent over time, with minimal

reversion over the next ten years. Given that equity returns are very volatile and almost serially

uncorrelated, this mechanism can generate large fluctuations in top wealth shares over time.

To interpret this evidence, I develop a general equilibrium economy model where agents have

heterogeneous exposures to aggregate income shocks (e.g., shocks to aggregate productivity). In

the model, a subset of the population (“entrepreneurs”) hold concentrated stakes in their firms,

while the remaining population (“households”) freely trade bonds and equity. This setup effec-

tively implies that entrepreneurs hold levered claims on the economy, amplifying their gains dur-

ing economic upturns and their losses during downturns. In the model, as in the data, the wealth

distribution is stochastic. Despite the presence of aggregate shocks, I show that the wealth distri-

bution exhibits a Pareto tail, and I derive a simple characterization of its tail index based on the

time-averaged drift and variance of the log wealth of top households.

Third, I explore the quantitative implications of the model by calibrating it to the U.S. data.

1See, for instance, Wolff (2002), Kopczuk and Saez (2004), and Saez and Zucman (2016).
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I discipline the heterogeneity across agents using moments related to the wealth distribution. In

particular, I use the elasticity of the average wealth in the top 0.01% with respect to equity returns

to discipline the aggregate risk exposure of entrepreneurs relative to households and the tail index

of the wealth distribution to discipline their saving rate (as the tail index is directly informative

on the average growth rate of top households).

The model generates an “excess” volatility of stock market returns relative to the volatility

of aggregate income shocks due to a feedback loop between asset prices and wealth inequality:

when a positive shock hits, investors at the top of the wealth distribution gain more than the

rest; that is, wealth inequality increases. As wealth is redistributed towards wealthier agents, the

aggregate demand for assets increases; that is, asset valuations increase. To better understand

the mechanism, I derive an exact decomposition for the volatility of asset valuations as a sum

of changes in future risk-free rates and changes in future expected excess returns (à la Campbell-

Shiller). Relative to the original decomposition by Campbell and Shiller (1988), this decomposition

is exact and can be computed analytically at every point of the state space. After applying this new

methodology, I show that the volatility of asset returns in the model is mainly driven by changes

in future expected excess returns in good times and by changes in future risk-free rates in bad

times.

Finally, I use the calibrated model to trace the full impulse response of top wealth shares to

aggregate shocks. This analysis extends my empirical findings, which were limited to estimating

the response of top wealth shares over a few years, as standard errors grow prohibitively large

beyond this horizon due to the limited sample period. The calibrated model reveals that aggregate

shocks induce exceptionally persistent movements in top wealth share: it takes approximately 40

years for the impact of an aggregate income shock on the wealth share of the top 0.01% to be

divided by three. Economically, this comes from the fact that a given change in the wealth of

households at the top only dissipates when new generations, unaffected by the shock, reach top

percentiles—a process that unfolds gradually over decades.

The model generates sizable fluctuations in top wealth inequality over time, given the persis-

tence of top wealth shares and the lack of correlation in equity returns over time. Quantitatively,

I find that the calibrated model can account for about 40% of the actual standard deviation in

top wealth shares observed in the data. While the model accurately matches the business cycle

dynamics of top wealth inequality, it cannot fully capture the overall U-shape of inequality over

the 20th century — that is, the large decline in the 40s and the steep increase starting from 1980.

In sum, the model’s core mechanism — the disproportional exposure of wealthy households to

aggregate shocks — can explain a substantial portion, but not all, of the actual fluctuations in

top wealth shares. Hence, this mechanism complements but does not replace other drivers of

wealth inequality put forth in the literature, such as changes in return dispersion, taxes, or saving

behaviors.2

2A non-exhaustive list of papers focused on the low-frequency fluctuations of top wealth inequality for the U.S.

3



Literature review. This paper is motivated by a growing literature documenting the dynamics of

top wealth shares in the U.S. (Kopczuk and Saez, 2004, Saez and Zucman, 2016, Smith et al., 2023).

In response to these findings, a number of macro papers have studied the role of changes in taxes

(Kaymak and Poschke, 2016; Hubmer et al., 2021; Cao and Luo, 2017), changes in labor income

(Kaymak et al., 2018), or changes in idiosyncratic shocks (Atkeson and Irie, 2022; Gomez, 2023) on

top wealth inequality. In contrast to these papers, I focus on examining the effect of excess stock

market returns (in the model, shocks in aggregate income) on top wealth inequality, both in the

short run and in the longer run.

On the empirical side, this paper contributes to a large literature examining the heterogeneity

in equity holdings across the distribution of households (Guiso et al., 1996; Carroll, 2000; Camp-

bell, 2006; Wachter and Yogo, 2010; Roussanov, 2010; Bach et al., 2020; Kacperczyk et al., 2018). In

particular, Parker and Vissing-Jørgensen (2010) document that the income of top percentiles be-

came more exposed to aggregate shocks at the turn of the 20th century. Mankiw and Zeldes (1991)

and Malloy et al. (2009) document that the consumption of rich stockholders is more exposed to

stock market returns. In contemporaneous work, Kuhn et al. (2020) use Survey of Consumer Fi-

nances (SCF) data to measure how a rise in stock market returns affects the share of wealth held

by the top 10%. In contrast, my empirical findings provide two novel insights. First, leveraging

newly available data on top wealth inequality, I show that wealth exposure to stock market returns

increases sharply further up the distribution. While Kuhn et al. (2020) find that a 10% higher-than-

expected equity return raises the top 10% wealth share by 0.25%, I estimate that it raises the top

0.01% share by 3.5%—an order of magnitude larger.3 Second, I employ local projections to esti-

mate the full impulse response of top wealth shares to stock market returns, revealing that that

the effect of stock market shocks on top wealth shares is highly persistent over time—a result that

plays a central role in explaining the historical fluctuations of top wealth shares.

On the theoretical side, my paper contributes to the theoretical literature on wealth inequality.

While the existing literature focuses on deterministic economies, I study a Markovian economy,

where the wealth distribution varies over time. Using tools from large deviations theory, I show that

the wealth distribution exhibits a Pareto tail, as in the deterministic case, and that its tail index can

be characterized analytically. Hence, this paper shows that the characterizations of tail indices

obtained in deterministic random growth models can be extended to more realistic, time-varying

economies (see Champernowne, 1953 for a seminal paper, and Toda, 2014 for an extension where

aggregate shocks average out over any non-infinitesimal time period). The fact that the thick-

ness of the tail depends on the time-averaged logarithmic wealth growth of top households connects

my paper to Kelly (1956), Blume et al. (1992) and Borovička (2020), who stress the importance

includes Kaymak and Poschke (2016), Benhabib et al. (2019), Cao and Luo (2017), Mian et al. (2020), Hubmer et al.
(2021), Atkeson and Irie (2022), and Gomez and Gouin-Bonenfant (2024).

3These estimates also exceed those of Bach et al. (2020) for Sweden, who report that a 10% domestic equity return
raises the wealth of households in the top 0.01% by 5.3%. By comparison, my estimates imply that a 10% equity return
in the United States raises the wealth of top households by 9.8%.
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of this quantity for long-run survival in infinite-horizon economies. Finally, my paper comple-

ments recent work by Luttmer (2012), Gabaix et al. (2016), and Cao and Luo (2017), who study the

transition dynamics of the wealth distribution between two steady states. While these papers em-

phasize that transition dynamics are slow after a permanent change in the dynamics of individual

wealth, I emphasize the flip side of this phenomenon: that one-time shocks in individual wealth

have very persistent effects on the wealth distribution.

This paper also contributes to the large asset pricing literature with heterogeneous agents (Du-

mas, 1989; Guvenen 2009; Chan and Kogan, 2002; Basak and Cuoco, 1998; Gomes and Michaelides,

2008; Brunnermeier and Sannikov, 2014; He and Krishnamurthy, 2012; Gârleanu and Panageas,

2015). An open question in the literature is whether there is enough heterogeneity across house-

holds to account for the excess volatility of asset prices in equilibrium.4 My paper advances on

this question by using two key moments related to wealth inequality—the elasticity of top wealth

shares to stock market returns and the tail index of the wealth distribution—to discipline the de-

gree of heterogeneity across households. Another contribution of this paper is to develop an exact

version of Campbell and Shiller (1988)’s decomposition of innovations in the price-dividend ratio

in continuous-time economies. This decomposition, which can be computed analytically, is partic-

ularly useful for analyzing the excess volatility of returns in non-linear asset pricing models, such

as models with heterogeneous agents.

More generally, this paper contributes to the growing literature on the effect of inequality on

asset prices. The work of Gollier (2001) is an early example that examines theoretically the impor-

tance of the wealth distribution for asset prices. Barczyk and Kredler (2016) and Favilukis (2013)

also study the role of changes in wage inequality on asset prices. More recently, Auclert and Rogn-

lie (2017) and Straub (2019) study the effect of a secular rise in income inequality on interest rates.

Toda and Walsh (2020) document that fluctuations in income inequality negatively predict future

excess stock returns. Eisfeldt et al. (2023) discuss the joint relation between the wealth distribution

and asset prices across markets with different expertise.

Roadmap. The rest of the paper is organized as follows. In Section 2, I document the dynamics

of top wealth shares following equity returns. In Section 3, I build a perpetual-youth endowment

economy model in which agents have heterogeneous exposures to aggregate shocks and I char-

acterize the shape of the wealth distribution implied by the model. In Section 4, I calibrate the

model using U.S. data; I show that the model can jointly match moments related to asset prices

and wealth inequality. In Section 5, I study the impulse response function of top wealth shares to

aggregate income shocks.

4For instance, Cochrane (2017) writes that “[the heterogeneous agents] model faces challenges and opportunities in
the microdata just as the idiosyncratic risk model does. Do the ‘high-beta rich’ really lose so much in bad times? Can
the model quantitatively account for return predictability? But that investigation has not really started.”
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2 Empirical results

In this section, I explore how stock market returns influence the dynamics of top wealth shares.

Section 2.1 presents the data, Section 2.2 discusses the findings, and Section 2.3 examines the

robustness of my results.

2.1 Data

I am interested in measuring the changes in the wealth distribution following stock market re-

turns. Therefore, I need yearly estimates of the wealth distribution that cover several business

cycles. For the baseline analysis, I use the latest version of the series of top wealth shares con-

structed from income tax returns by Saez and Zucman (2016) (2022 vintage), which spans from

1913 to 2020.5 The dataset also includes a series for the average wealth in the economy. In ro-

bustness checks, I also use two alternative data series on top wealth shares found in the literature

for smaller time samples: Smith et al. (2023), which spans from 1966 to 2016, and Kopczuk and

Saez (2004), which spans from 1916 to 2000. It is important to note that all these series measure

a time-averaged distribution of wealth in a given year rather than pinpointing wealth at a specific

moment within the year.

I supplement these series of top wealth shares with the list of the wealthiest 400 Americans

constructed by Forbes every September since 1982, which offers an unparalleled view on the right

tail of the wealth distribution. The list is created by a dedicated staff of the magazine, based on

a mix of public and private information.6 To be consistent with the other data series, I focus on

a given percentile group rather than on a given number of households (the two concepts differ

in the presence of population growth). More precisely, I focus on the percentile that includes the

entirety of households in the Forbes 400 list in 2017 (264 households in 1982) — it corresponds to

approximately 3% of agents in the top 0.01%. I will refer to this top percentile as the top 400 in the

rest of the paper.

I use the series of stock market returns and risk-free rates from Goyal et al. (2024) for asset

pricing data. Stock returns correspond to the S&P 500 index returns from 1926 and returns from

Robert Shiller’s website beforehand. The risk-free rate corresponds to the Treasury-bill rate.7

5This series improves on the initial published series by updating the time sample and by incorporating several
methodological innovations developed, among others, by Smith et al. (2023).

6Forbes reports that “we pored over hundreds of Securities Exchange Commission documents, court records, probate
records, federal financial disclosures and Web and print stories. We took into account all assets: stakes in public
and private companies, real estate, art, yachts, planes, ranches, vineyards, jewelry, car collections and more. We also
factored in debt. Of course, we don’t pretend to know what is listed on each billionaire’s private balance sheet, although
some candidates do provide paperwork to that effect.”

7For the series constructed from tax return data, I construct yearly stock returns by cumulating monthly stock re-
turns from January to December. For the series constructed from Forbes data, I construct yearly returns by cumulating
monthly stock returns from October to September, consistently with the fact that the ranking tries to report the distri-
bution of wealth in September of each year.
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2.2 Findings

Response of the average wealth in top percentiles. I estimate the effect of realized stock mar-

ket returns on the average wealth in top percentiles using local projection methods (Jordà, 2005).

Formally, I regress the excess growth of the average wealth in a given top percentile p at different

horizons on excess stock market returns:

log
(

Wp,t+h

Wp,t−1

)
− (h + 1) log R f ,t = αp,h + βp,h(log RM,t − log R f ,t) + ϵp,t+h, (1)

where h ≥ 0 denotes the horizon, Wp,t denotes the average wealth of households in the top per-

centile p in year t, log RM,t denotes the log stock market return, and log R f ,t denotes the log risk-

free rate. Note that both the growth of the average wealth in a top percentile (the dependent

variable) and the stock market return (the independent variable) are adjusted by the risk-free rate,

as a way to capture expected changes in these variables (e.g., expected inflation). I will discuss al-

ternative specifications in Section 2.3. Following Herbst and Johannsen (2021), I estimate standard

errors using heteroskedasticity-consistent (Huber-White) estimators.8

Figure 1 plots the estimates of βp,h for 0 ≤ h ≤ 8 and p ∈ {100%, 1%, 0.1%, 0.01%, Top 400}.

There are three important observations. First, the estimates increase monotonically across top

percentiles. Second, within each top percentile, the elasticities initially increase with the horizon.

One reason is that Wp,t represents the time-averaged wealth in a given percentile during the year; as

a result, the effect of the cumulative stock market return in year t is only fully incorporated by year

t + 1 (i.e., at h = 1 rather than at h = 0). Another potential reason is that a large share of wealth

in top percentiles is held in privately held assets, whose valuations tend to react sluggishly to

changes in the stock market.9 Third, the effect of stock market returns tends to be very persistent,

with little mean reversion over time (note, however, that these estimates become less precise as the

horizon grows). As we will see in the model below, this reflects that top percentiles mean-revert

very slowly after shocks.

Table 1 reports the estimates of βp,h for h = 3, corresponding to the horizon at which the

impulse responses peak for top percentiles. The estimates increase with top percentiles, from

β = 0.43 for the average household to β = 0.78 for households in the top 0.01% and β = 0.94 for

households in the top 400. In short, these estimates suggest that the wealth of households in the

right tail of the wealth distribution tends to be twice as exposed to stock market returns relative

to the average household in the economy.

8While Jordà (2005) recommends using Newey-West standard errors, Herbst and Johannsen (2021) stress that they
can be downward biased in finite samples and recommend using heteroskedasticity-consistent standard errors. In line
with their results, I find that robust standard errors give me wider standard errors than Newey-West, so I report the
former ones to be conservative.

9This is particularly true for estimates from Forbes, who often use the valuation implied by the last financing round.
Relatedly, I find a similar pattern for measures of wealth constructed from estate tax returns (Kopczuk and Saez, 2004),
where an external appraiser does the valuation of non-tradable assets.
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Figure 1: Response of the average wealth in top percentiles to excess stock returns
Notes: The figure reports the estimates for βp,h estimated via the regression (1) for 0 ≤ h ≤ 8 as well as their 5%–95% confidence inter-

vals using heteroskedasticity consistent standard errors. Each figure corresponds to a different top percentile. Figure 1a corresponds
to the average wealth of U.S. households (p = 100%). Figures 1b-1d correspond to the top 1%, 0.1%, 0.01% using data from Saez and
Zucman (2016) (2022 vintage). Figure 1e corresponds to Forbes 400.

Response of top percentile wealth shares. The previous results show that stock market returns

have higher effects on the average wealth in top percentiles than on the average wealth in the econ-

omy. Mechanically, this means that stock market returns tend to increase top percentile wealth
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Table 1: Wealth exposure to stock returns across top percentiles

Top 100% Top 1% Top 0.1% Top 0.01% Top 400

(1) (2) (3) (4) (5)

Panel A: Average wealth
Excess returns 0.43∗∗∗ 0.54∗∗∗ 0.62∗∗∗ 0.78∗∗∗ 0.98∗∗∗

(0.11) (0.12) (0.14) (0.18) (0.20)
Adjusted R2 0.16 0.20 0.19 0.18 0.31
Time sample 1914-2016 1914-2016 1914-2016 1914-2016 1984-2014
N 103 103 103 103 31

Panel B: Wealth share
Excess returns 0.11∗∗ 0.19∗∗ 0.35∗∗ 0.59∗∗∗

(0.05) (0.09) (0.14) (0.20)
Adjusted R2 0.05 0.04 0.06 0.22
Time sample 1914-2016 1914-2016 1914-2016 1984-2014
N 103 103 103 31

Notes: Panel A reports the results of regressing the four-year growth of the average wealth in a given percentile group on excess
stock returns; that is, equation (1) with h = 3. Panel B reports the same regression using the four-year growth of the top wealth
share as the left-hand-side variable; that is, equation (2) with h = 3.. Each column corresponds to a different top percentile. Column
(1) corresponds to the average U.S. household (p = 100%). Columns (2)–(4) correspond to increasing top percentiles in the wealth
distribution using data from Saez and Zucman (2016) (2022 vintage). Column (5) corresponds to Forbes 400. Estimation is done
via OLS. Standard errors are in parentheses and are estimated using heteroskedasticity consistent standard errors. ∗,∗∗ ,∗∗∗ indicate
significance at the 10%, 5%, 1% levels, respectively.

shares. To see this formally, I estimate regressions of the form

log
(

Sp,t+h

Sp,t−1

)
= ap,h + bp,h(log RM,t − log R f ,t) + ep,t+h, (2)

where Sp,t ≡ pWp,t/W100%,t denotes the share of aggregate wealth owned by individuals in the

top percentile p (i.e., the top percentile wealth share). Note that (2) can be obtained by taking

the difference of (1) between p and p = 100%: intuitively, the exposure of the share of wealth

owned by a top percentile is the difference between the exposure of the average wealth in the top

percentile and the average wealth in the population; that is, bp,h = βp,h − β100%,h. Still, running

this specification allows me to test whether this difference is statistically significant.

Panel B of Table 1 reports the estimates for bp,h at the four-year horizon. Consistently with

the discussion above, the estimate 0.35 for the top 0.01% corresponds precisely to the difference

between the wealth exposure of households in the top 0.01% and the average household in the

economy; that is, 0.35 = 0.78 − 0.43. Note that the difference is significant at the 1% level. Finally,

similarly to Figure 1, Online Appendix Figure A5 reports the impulse response of top wealth

shares obtained by plotting the estimated bp,h from (2) for 0 ≤ h ≤ 8 for different top percentiles.
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2.3 Robustness checks

I now explore the robustness of my findings across three key aspects: empirical specifications,

alternative data sources, and shifts in the composition of households in top percentiles. I briefly

summarize the results below, relegating the reader to Online Appendix B for details.

Alternative specifications. For my baseline results, I estimated local projections using simple

univariate regressions (i.e., excess stock returns as the only regressors). One reason is that these

univariate regressions allow for a straightforward mapping between the response of the average

wealth in a top percentile (1) and the response of the top percentile wealth share (2).

In the spirit of local projections, however, I now augment the specifications with predeter-

mined controls; that is, variables known at time t − 1 that capture the information available at that

time. These variables help isolate the effect of unexpected stock market returns on the wealth distri-

bution. Consistently with the usual intuition for omitted variable biases, I focus on variables that

either correlate with the treatment (excess returns) or the outcome (growth of average wealth in

top percentile / top percentile wealth share). In Online Appendix B.1, I show that augmenting the

baseline specification with these controls does not significantly change the response of top wealth

shares to stock market returns (Table OA1). Intuitively, this comes from the fact that fluctuations

in excess stock returns are hard to predict (i.e., they are only weakly correlated with variables

known at time t − 1).

Another potential concern is that, when the treatment exhibits serial correlation, local pro-

jections capture both the direct effect of a higher-than-average treatment and its indirect effect

through higher future treatments on average. To isolate the direct effect, Alloza et al. (2020) sug-

gests augmenting local projections with controls for future realized treatments. In Online Ap-

pendix B.1, I show that I obtain similar results when doing so (Table OA2), indicating that the

response of top wealth shares obtained in my baseline specification is entirely driven by the direct

effect of higher stock returns at h = 0, rather than by indirect effects through higher (or lower)

average returns at h ≥ 1. This reflects that the serial correlation in excess stock returns is close to

zero empirically.10

Alternative data sources. There is substantial uncertainty about the historical dynamics of top

wealth shares. In Online Appendix B.2, I show that my results remain similar when using the two

main alternative data series for top wealth shares available from the literature: the series from

Kopczuk and Saez (2004), constructed from estate tax returns, and the series from Smith et al.

(2023). The conclusion is that, while these series disagree on the low-frequency fluctuations in top

wealth shares, they tend to imply similar responses of top wealth shares to stock market returns.

10More generally, note that I will rely on these empirical results to discipline a model (see Section 4). Hence, some
degree of misspecification in these regressions is acceptable, provided I consistently apply the same specification in
both the model and the data.
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As a further robustness check, I also show in Online Appendix B.2 that my estimates for the

elasticity of top percentile wealth to stock market returns are consistent with the share of wealth

invested in equity in different part of the wealth distribution, as reported in the Survey of Con-

sumer Finances.

Accounting for composition effects. Top percentiles do not include the same individuals over

time. As a result, changes in the average wealth in a top percentile can be driven by the wealth

changes of individuals initially in the top percentile (an “intensive” term) or by changes in the

composition of individuals in the top percentile (an “extensive” term). Do these composition

effects matter for my estimates?

To answer this question, I decompose the growth of the average wealth in the top 400 into

these two terms using the same methodology as Gomez (2023). As shown in Online Appendix

B.3 (Figure OA3), I find the response of the average wealth in the top 400 to stock market returns

is almost entirely driven by the intensive term rather than by the extensive term. Said differently,

high stock market returns increase the average wealth in the top 400 because they increase the

average wealth of agents who were initially in the top 400, not because they increase the arrival of

new fortunes in the top 400.11

3 A model of wealth inequality with aggregate shocks

Motivated by the reduced-form evidence presented in the previous section, I now build an asset

pricing model in which certain agents (“entrepreneurs”) are required to hold a large share of their

wealth in equity. Because the relative proportion of entrepreneurs increases in the right tail of the

wealth distribution, higher equity returns increase top wealth shares, as in the data. Section 3.1

presents the model, Section 3.2 solves for the Markovian equilibrium, Section 3.3 characterizes the

wealth distribution implied by the model, and Section 3.4 discusses potential extensions.

3.1 Setup

The model is a continuous time, pure-exchange economy with two types of agents: “households,”

who can freely trade firms, and “entrepreneurs,” who must remain disproportionately exposed to

the firms they are born with.

Demography. The demographic structure follows the perpetual youth model of Blanchard (1985),

wherein agents face a constant hazard rate of death δ and the population grows at rate η. Con-

sequently, over a short interval dt, a proportion δ dt of the population dies, while a proportion

11This empirical fact is consistent with Proposition 4, which shows that composition changes become second-order
as the time-horizon tends to zero.
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(δ + η)dt is born. In the model (as in the data), these demographic forces play an essential role in

making the wealth distribution stationary.

A proportion πE of agents are born as “entrepreneurs” while the rest πH = 1 − πE are born as

“households”. I denote IHt the set of households, IEt the set of entrepreneurs, and It ≡ IHt ∪ IEt

the set of all agents in the economy at time t.

Endowment. Aggregate income per capita Yt follows a geometric random walk; that is,

dYt

Yt
= g dt + σ dZt, (3)

where (Zt)t∈R is a standard Brownian motion that represents aggregate shocks, g represents the

growth rate of the economy per capita, and σ represents the volatility of aggregate income.

Each agent is born with a tree that delivers a stochastic flow of income. Formally, each tree i
produces an income flow Yit = sitYt, where sit evolves as

dsit

sit
= −ϕ dt + ν dBit,

where (Bit)t∈R is a standard Brownian motion that represents shocks specific to the tree i, ϕ rep-

resents the rate of depreciation of the tree, and ν represents its idiosyncratic volatility. For the

income of all trees in existence to sum up to aggregate income, the initial value of sit for trees at

birth must average to (η + ϕ)/(η + δ).12

Finally, I assume that the wealth of agents who die is redistributed to newborn agents; that

is, newborns are endowed with new trees and old trees from deceased agents. I assume that the

distribution of this initial endowment among newborns is independent of their types and that it

follows a log-normal distribution with variance ν2
0 .

Markets. Agents in the economy can trade risk-free claims in zero net supply and claims to trees.

Denote rt the risk-free rate and pt the market value of a tree relative to its income.13 We guess that

the process pt evolves according to

dpt

pt
= µpt dt + σpt dZt, (4)

12Indeed, in this case, one can integrate the income flow of all trees in existence to obtain∫ t

s=−∞
(η + δ)|It|e−η(t−s)

(
η + ϕ

η + δ
e−ϕ(t−s)Yt

)
ds = |It|Yt.

Here, and in the rest of the paper, |X| denotes the mass of a set X.
13It is identical across trees as they all have the same law of motions for income.
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where µpt and σpt will be determined in equilibrium. The instantaneous return of holding tree i
between t and t + dt is the sum of it income yield and the growth in its market value:14

dRit

Rit
=

1
pt

dt +
d (Yit pt)

Yit pt

=

(
1
pt

+ g − ϕ + µpt + σσpt

)
︸ ︷︷ ︸

≡µRt

dt + (σ + σpt)︸ ︷︷ ︸
≡σRt

dZt + ν dBit, (5)

where the second line uses Ito’s lemma.

Households. Households have Duffie and Epstein (1992) preferences, which correspond to the

continuous-time version of the recursive preferences of Epstein and Zin (1989). More precisely,

the welfare of a household i with consumption process (Cit)t∈R is defined recursively by

Vit = Et

[∫ ∞

t
f (Ciu, Viu)du

]
,

with f (C, V) = ρ
1 − γ

1 − 1/ψ
V

(
C1−1/ψ

((1 − γ)V)
1−1/ψ

1−γ

− 1

)
.

These preferences are characterized by three parameters: the subjective discount rate (SDR) ρ, the

elasticity of intertemporal substitution (EIS) ψ, and the coefficient of relative risk aversion (RRA)

γ.15

Households can freely sell their initial tree and use the proceeds to invest in a diversified

portfolio of trees. Formally, household i ∈ IHt chooses a share of wealth invested in a diversi-

fied portfolio of trees, αit, and a consumption rate cit = Cit/Wit to maximize their welfare. The

Hamilton-Jacobi-Bellman (HJB) equation corresponding to this problem is

0 = max
αit,cit

{
f (citWit, Vit)dt + Et[dVit]

}
with

dWit

Wit
= (rt + αit(µRt − rt)− cit)dt + αitσRt dZt.

(6)

Given homothetic preferences and linear budget constraints, we know that all households will

choose the same share of wealth invested in equity and consumption rate (irrespective of their

wealth), which we denote by αHt and cHt, respectively.

14Here, Rit/Ris denotes the cumulative return of owning the tree i up from s to t.
15As shown in Gârleanu and Panageas (2015), the SDR ρ should be interpreted as the sum of a subjective impatience

rate ρ̂ and of the hazard rate of death δ.
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Entrepreneurs. In contrast with households, entrepreneurs are required to hold an exogenous

share of wealth αEt in the tree they are born with:

αEt = min

(
αE,

∫
i∈It

Wit di∫
i∈IEt

Wit di

)
, (7)

where αE > 1. The upper bound on the risk exposure αEt ensures that entrepreneurs are not

required to own more trees than there exist in the economy. This constraint will rarely bind in

equilibrium, but it is necessary to solve the model globally.16 For simplicity, I take this equity

constraint as exogenous, and I remain agnostic about its origin. As in Di Tella (2017), this con-

straint could be motivated by a moral hazard or asymmetric information problem. Alternatively,

the over-exposure of entrepreneurs could represent optimism in their projects (Moskowitz and

Vissing-Jørgensen, 2002), a preference for idiosyncratic volatility (Roussanov, 2010), or a higher

risk tolerance (Gârleanu and Panageas, 2015).

For simplicity, I assume that entrepreneurs have Epstein-Zin utility with an EIS of one. This

value fits with the estimates for Vissing-Jørgensen (2002) for the EIS of individuals at the top of

the wealth distribution.17 With these assumptions, the wealth of an entrepreneur i ∈ IEt evolves

as
dWit

Wit
= (rt + αEt(µRt − rt)− ρE)dt + αEtσRt dZt + αEtν dBit. (8)

The law of motion for wealth directly depends on the entrepreneurs’ fixed equity share αEt and

their fixed consumption rate cEt = ρ, which will allow for a transparent calibration of these pa-

rameters based on the observed wealth dynamics of agents at the top of the wealth distribution.

Finally, note that the risk aversion of entrepreneurs does not matter for the equilibrium, as it nei-

ther affects their consumption rate (which is pinned down by ρE) nor their share of wealth invested

in equity (which is pinned down by αE).

Finally, note that the wealth of entrepreneurs in (8) is exposed to the idiosyncratic risk of the

tree they are born with. While this does not affect the aggregate demand for goods and assets in

equilibrium (as entrepreneurs have a fixed equity share and consumption rate), it is important to

generate a realistic wealth distribution.

Equilibrium. An equilibrium for the model is defined as a set of price processes (rt)t∈R, (pt)t∈R

and decision processes for the households (cHt)t∈R, (αHt)t∈R such that

1. Given the price processes, the decision processes solve the household problem (6).

16More precisely, this constraint will bind less than 0.01% of the time in the calibrated model.
17In contrast, I allow for the EIS of households to differ from one, which is consistent with micro- evidence for the

average household (Vissing-Jørgensen, 2002; Best et al., 2020).
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2. The market for goods and risky assets clear; that is∫
i∈IEt

ρEWit di +
∫

i∈IHt

cHtWit di = Yt|It|, (9)∫
i∈IEt

αEtWit di +
∫

i∈IHt

αHtWit di = ptYt|It|. (10)

By Walras’s law, the market for risk-free claims clears automatically.

3.2 Solving the model

I now outline the main steps in deriving the solution in this section (see Appendix C.1 for more

details).

Household optimal policy. We guess that the value function of households takes the form

Vit =
(χtWit)

1−γ

1 − γ
, (11)

where the process χt, which captures the investment opportunities faced by the households, fol-

lows a diffusion process
dχt

χt
= µχt dt + σχt dZt,

where µχt and σχt will be determined in equilibrium. Plugging (11) into the household’s HJB (6)

and applying Ito’s lemma gives

0 = max
cHt,αHt

{
ρ

1 − 1/ψ

((
cit

χt

)1−1/ψ

− 1

)

+rt + αit(µRt − rt)− cHt + µχt −
γ

2

(
α2

Htσ
2
Rt + σ2

χt − 2
1 − γ

γ
αHtσRtσχt

)}
.

(12)

The first-order conditions of this problem give

cHt = ρψχ
1−ψ
t , (13)

αHt =
1
γ

µRt − rt

σ2
Rt

+
1 − γ

γ

σχt

σRt
. (14)

Markov equilibrium. Households and entrepreneurs’ policy functions are linear in wealth. As

a result, the distribution of wealth within each type does not matter for aggregate demand; only

the distribution of wealth between types does. Accordingly, I look for a Markovian equilibrium

where the (endogenous) state variable is the share of aggregate wealth owned by entrepreneurs:

xt =
∫

i∈IEt
Wit di/

(∫
i∈It

Wit di
)

.
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Using this notation, the market clearing equations (9) and (10) can be rewritten as:

xtρE + (1 − xt)cHt =
1
pt

, (15)

xtαEt + (1 − xt)αHt = 1. (16)

The first equation says that the wealth-weighted average consumption rate equals the income

yield of the tree, while the second equation says that the wealth-weighted average equity share

equals one.

We have five unknown functions of x: rt = r(xt), pt = p(xt), χHt = χH(xt), αHt = αH(xt),

and cHt = cH(xt). The market clearing equations (15) and (16) and the optimization conditions for

households (12), (13), and (14) constitute a system of five equations. To solve for the equilibrium,

it remains to solve for the law of motion of the endogenous state variable xt using Ito’s lemma:

Proposition 1. The law of motion of xt is given by

dxt = µxt dt + σxt dZt, where

µxt ≡ xt(1 − xt)

(
(αEt − αHt)(µRt − rt) + cHt − cEt − (αEt − αHt)σ

2
Rt + (η + δ + ϕ)

(
πE

xt
− πH

1 − xt

))
σxt ≡ xt(1 − xt)(αEt − αHt)σRt.

The volatility of xt corresponds to the difference in risk exposure between entrepreneurs and

households. The drift of xt is the sum of four terms: the difference in portfolio returns between en-

trepreneurs and households, the difference in their consumption rates, an Ito’s term that accounts

for the difference in their risk exposures, and a demography term related to the overlapping gen-

eration setting (i.e., due to population growth and death). Due to the demography term, we have

µxt(0) > 0 and µxt(1) < 0. Together with σxt(0) = σxt(1) = 0, this ensures that the boundaries

xt = 0 and xt = 1 are not absorbing states.

In the rest of the paper, I assume this Markov equilibrium exists, is unique, and that that the

endogenous equilibrium quantities r(·), p(·), χH(·), α(·) and cH(·) are all twice differentiable with

respect to x. Given the law of motion from Proposition 1, this implies that the process (xt)t∈R is

recurrent with a unique stationary density (Karlin and Taylor, 1981 Chapter 15).18

3.3 The cross-sectional distribution of wealth

I now study the cross-sectional distribution of wealth implied by the model. Since the economy

grows over time, I focus on individual wealth normalized by the average wealth in the economy:

wit ≡ Wit/(ptYt). Ito’s lemma provides the following expression for the law of motion of wit for

18See Proposition 3.2 in Borovička (2020) as well as its Online Appendix for an exploration of the existence and
smoothness of policy function in heterogeneous agent models, as well as a detailed analysis of probability measure in
heterogeneous agent models.
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household i of type j ∈ {E, H}:19

dwit

wit
= µwjt dt + σwjt dZt + νwjt dBit, where

µwjt ≡ rt + αjt(µRt − rt)− cjt − g − µpt − σσpt − (αjt − 1)σ2
Rt

σwjt ≡ (αjt − 1)σRt

νwjt ≡ 1j=EαEtν.

(17)

Cumulative distribution function. I first analyze the cumulative distribution function of wealth.

The law of motion (17) implies that log wealth follows a random walk, with type-specific and

time-varying drift and volatility. Hence, within each type and cohort, the distribution of wealth is

log-normal. As a result, the overall distribution of wealth across types and cohorts is a mixture of

log-normal distributions, which leads to the following proposition.

Proposition 2. The cumulative distribution of wealth at time t is given by:20

Pt (wit ≤ w|i ∈ It) = ∑
j∈{E,H}

πj

∫ t

−∞
(η + δ)e−(η+δ)(t−s)Φ

(
log w − µj,s�t

νj,s�t

)
ds, (18)

where Φ(·) denotes the cumulative distribution function of a standard normal distribution, and µj,s�t and
ν2

j,s�t denote the cross-sectional mean and variance of log wealth of individuals of type j ∈ {E, H} born at
time s ≤ t

µj,s�t ≡ log
(

η + δ + ϕ

η + δ

)
− 1

2
ν2

j,s�t +
∫ t

s

(
µwju −

1
2

σ2
wju

)
du +

∫ t

s
σwju dZu

ν2
j,s�t ≡ ν2

0 +
∫ t

s
ν2

wju du.

This proposition expresses the cross-sectional distribution of (normalized) wealth as a mixture

of log-normal distributions, where the mixture weights πj(η + δ)e−(η+δ)(t−s) correspond to the rel-

ative mass of individuals of type j in the cohort born at time s. The cross-sectional mean µj,s�t and

variance ν2
j,s�t of the log-normal distributions vary across cohorts and types, reflecting the hetero-

geneity in their ages, in the economic conditions since their birth, and in their policy functions.

In Online Appendix C.2, I derive a similar analytical expression for the total normalized wealth

above a threshold (or, equivalently, for the share of aggregate wealth owned by individuals above

that threshold), and, more generally, for any moment of normalized wealth above a threshold.

Right tail of the wealth distribution. While the distribution of wealth depends non trivially on

the history of preceding aggregate shocks, we can obtain a simple characterization of its right tail.
19This can be obtained by combining the law of motion of individual wealth (6) and (8) with the laws of motion of Yt

(3) and pt (4).
20Here, and in the rest of the paper, Pt (resp. Et) denotes the probability (resp. expectation) with respect to the

cross-sectional distribution of normalized wealth at time t.
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Definition 1. The distribution of a random variable Z has a right Pareto tail if there exists ζ ∈
(0, ∞) such that

log P(Z ≥ z) ∼ −ζ log z as z → ∞. (19)

ζ is called the tail index of the distribution.21

Intuitively, we say that a wealth distribution has a right Pareto tail when the log rank of in-

dividuals (the left-hand-side) becomes asymptotically proportional to their log wealth (the right-

hand-side) as wealth converges to infinity.22 A lower coefficient of proportionality ζ corresponds

to a larger increase in wealth for a given decrease in rank, that is, to a higher level of inequality.

The following proposition, proved using tools from large deviations theory, states that the wealth

distribution implied by the model has a right Pareto tail, and derives a simple formula for its tail

index.

Proposition 3 (Tail index). Let ζ j be the positive root of the equation:23

ζ jE
[

µwjt −
1
2

σ2
wjt

]
+

1
2

ζ j(ζ j − 1)E
[
ν2

wjt

]
− (η + δ) = 0 for j ∈ {H, E}, (20)

where E denotes the expectation with respect to the stationary density of x. At any time t,

1. The distribution of wealth within type j ∈ {E, H} has a right Pareto tail with tail index ζ j if ζ j < ∞.

2. The distribution of wealth has a right Pareto tail with tail index min(ζE, ζH).

The first part of the proposition states that ζ j corresponds to the tail index for the wealth

distribution within type j ∈ {E, H}. Since the overall wealth distribution is a mixture of these

two distributions, it inherits the minimum of these two tail indices, resulting in a tail index of

ζ = min(ζE, ζH). Moreover, the fact that the share of wealth owned by entrepreneurs is a sta-

tionary process within (0, 1) implies that min(ζE, ζH) > 1; that is, the right tail of the wealth

distribution is thinner than Zipf’s law. In the remainder of this section, I assume that the right tail

for entrepreneurs is “thicker” than the right tail of households; that is ζE < ζH (this will also hold

in the calibrated model).24 As shown in the Proof of Proposition 3, this implies that the relative

proportion of entrepreneurs converges to one in the right tail of the wealth distribution.

21Here, and in the rest of the paper f (z) ∼ g(z) as z → ∞ for two functions f (·) and g(·) means f (z)
g(z) → 1 as z → ∞.

22 This definition, which characterizes the asymptotic limit of the log CDF, often appears in the literature (e.g., Nak-
agawa, 2007 or Beare and Toda, 2022). Note that it is weaker than the statement P(Z ≥ z) ∼ Cz−ζ as z → ∞, which
would hold if the economy was deterministic (see, for instance, Reed, 2001).

23When j = E, the positive root always exists as E[ν2
wjt] > 0. When j = H, ζH should be understood as the limit of the

positive root as idiosyncratic volatility tends to zero; that is, ζH = (η + δ)/E
[
µwHt − 1

2 σ2
wHt

]
if E

[
µwHt − 1

2 σ2
wHt

]
> 0,

and +∞ otherwise.
24A sufficient condition is that entrepreneurs grow faster than households in average; that is, E

[
µwHt − 1

2 σ2
wHt

]
≤

E
[
µwEt − 1

2 σ2
wEt

]
.
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To better understand the analytical characterization of the tail index given in (20), it is useful

to discuss it within the context of the existing literature. It is well known that in a static economy

where individual wealth follows a geometric diffusion with drift µ, idiosyncratic volatility ν, and

death rate η + δ, the stationary wealth distribution has a tail index given by the positive root of25

ζµ +
1
2

ζ(ζ − 1)ν2 − (η + δ) = 0. (21)

Proposition 3 extends this fundamental result in two ways: to an economy where the dynamics

of individual wealth varies over time and is exposed to aggregate shocks. First, to account for time-

varying wealth dynamics, the geometric drift and variance of wealth µ and ν2 must be replaced

by their time-averaged counterparts; that is, E
[
µwjt

]
and E

[
ν2

wjt

]
. Second, to account for the pres-

ence of aggregate shocks, the geometric drift must be adjusted by an Ito term, − 1
2 E
[
σ2

wjt

]
, which

captures the negative effect of aggregate shocks on the average logarithmic growth of individuals

at the top.

An alternative interpretation of (20) can be obtained by dividing each term by ζ j:

E
[

µwjt −
1
2

σ2
wjt

]
+

1
2
(ζ j − 1)E

[
ν2

wjt

]
− 1

ζ j
(η + δ) = 0. (22)

As in Gomez (2023), the left-hand side can be interpreted as the logarithmic growth rate of top

wealth shares in the right tail of the distribution. Indeed, the first term, E
[
µwjt − 1

2 σ2
wjt

]
, corre-

sponds to the time-averaged logarithmic growth of the wealth of agents in the top (an intensive

margin) while the two other terms capture the effect of composition changes due to idiosyncratic

returns and demographic forces (an extensive margin). Equation (22) says that, for top wealth

shares to neither grow or shrink on average over time, their logarithmic growth must average to

zero, which pins down the tail index ζ j.

One surprising implication of this proposition is that the tail index does not vary with aggre-

gate shocks or with the state of the economy. To understand the intuition, recall that the fraction

of entrepreneurs tends to one in the right tail of the wealth distribution. As a result, when an ag-

gregate shock occurs, all agents in the right tail move by the same relative amount, which implies

that the tail index (a measure of inequality within the wealthy) remains unchanged.26 The next

paragraph discusses this phenomenon in more detail.

Exposure of top wealth shares to aggregate shocks. I now analyze the response of top wealth

shares to aggregate shocks. As in the previous section, I denote Sp,t the share of aggregate wealth

25See, for instance, Champernowne (1953) and Reed (2001).
26The fact that the tail index does not depend on the state of the economy (i.e., that aggregate shocks do not affect the

tail index, even after some time) is more subtle. It hinges critically on the Markovian structure of the economy, which
allows the application of the law of large numbers to the past economic conditions faced by individuals in the right tail
of the distribution (see the proof of the proposition in Appendix A for more detail).
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owned by individuals in the top percentile p.

Proposition 4. The instantaneous response of top wealth shares to aggregate shocks can be expressed as

∂ log Sp,t

∂Zt
= ∑

j∈{E,H}
Fp,t(j)σwjt, (23)

where Fp,t(j) denotes the fraction of wealth in the top percentile p at time t owned by individuals of type
j ∈ {E, H}.27

This proposition expresses the exposure of a top percentile wealth share to aggregate shocks as

the wealth-weighted average wealth exposure of individuals in the top percentile. In other words,

while the composition of households in the top percentile changes over time, these composition

changes do not affect the instantaneous exposure of top wealth shares.28 In Section 5, we will gen-

eralize this proposition and show that composition changes do affect the response of top wealth

shares over non-infinitesimal horizons (see Proposition 7).

This proposition implies that the exposure of top wealth shares increases across the wealth

distribution and, thus, that the model can generate the reduced-form evidence documented above.

To see why, note that, at the bottom of the wealth distribution (i.e., as p → 1), top wealth shares

converge to one, and thus the risk exposure of top wealth shares converges to zero. In contrast, in

the right tail of the wealth distribution (i.e., as p → 0), the fraction of entrepreneurs converges to

one, and thus the risk exposure of top wealth shares converges to σwEt = (αE − 1)σRt > 0.29

We can also use this proposition to characterize the effect of an aggregate shock on the ratio

between two consecutive top wealth shares, which is often used as a measure of inequality in the

tail.30 For any given p ∈ (0, 1), consider the effect of an aggregate shock on the ratio between the

wealth share in the top 0.1p and in the top p:

∂ log
(
S0.1p,t/Sp,t

)
∂Zt

= (σwEt − σwHt)
(

F0.1p,t(E)− Fp,t(E)
)

. (24)

As long as the fraction of entrepreneurs in the top 0.1p is higher than in the top p, aggregate

shocks increase the share of wealth owned by the top 0.1p more than the top p. Note that, as

27An analytical expression for Fp,t(j) is derived in Equation 44 in the proof of the proposition (Appendix A). Note that
the left-hand side in (23) can also be seen as the instantaneous volatility of log Sp,t; that is, d log Sp,t − Et

[
d log Sp,t

]
=(

∂ log Sp,t/∂Zt
)

dZt.
28This is consistent with the reduced-form evidence discussed in Online Appendix B.3.
29More formally, the proof of Proposition 4 in Appendix A shows that

lim
p→1

∂ log Sp,t

∂Zt
= 0; lim

p→0

∂ log Sp,t

∂Zt
= σwEt.

30For instance, Jones and Kim (2016) propose to use ζp,t ≡ 1
/(

1 + log10

(
S0.1p,t
Sp,t

))
as an empirical proxy for the tail

index of a distribution. When the distribution is exactly Pareto, this quantity equals the tail index. However, when the
distribution only has a right Pareto tail, the equality only holds in the limit p → 0.
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p → 0, the fraction of entrepreneurs converges to one, so the right-hand side of (24) converges to

zero, consistently with the fact that the tail index of the wealth distribution (as a limiting concept)

does not respond to aggregate shocks.

In conclusion, we have obtained simple formulas for the tail index of the wealth distribution

(Proposition 3) and the exposure of top wealth shares (Proposition 4). In particular, we have

shown that (i) the tail index of the wealth distribution depends on the average growth rate of

entrepreneurs, while (ii) the limiting exposure of top wealth shares to aggregate shocks depends

on the wealth exposure of entrepreneurs. These results will play a key role in calibrating the

model, as they suggest that one can calibrate the consumption rate and the wealth exposure of

entrepreneurs by targeting these two moments.

3.4 Extensions

For the sake of parsimony, the environment is highly stylized. I now briefly discuss three exten-

sions of the baseline model that would make it more realistic: (i) distinguishing between labor

and capital income, (ii) adding hand-to-mouth households, and (iii) making the heterogeneity in

initial endowment arbitrary. I show that these extensions would not affect asset prices nor the two

key moments of the wealth distribution discussed above: its tail index and the elasticity of top

wealth shares to aggregate shocks.

Distinction between labor and capital income. For the sake of simplicity, agents in the model

are endowed with only one kind of tree. In reality, agents earn both labor and capital income.

The distinction between these two does not matter for the individual optimization problem, as

markets are dynamically complete in our model (see, for instance, Gârleanu and Panageas, 2015).

However, the distinction matters when mapping the model to the data: wealth, in the model,

corresponds to the capitalized value of all future income promised to an individual (i.e., “total

wealth”), while observed wealth, in the data, only corresponds to the capitalized value of future

capital income (i.e., “financial wealth”).31 In Online Appendix C.3, however, I show that the tail

index of the wealth distribution and the elasticity of top wealth shares to stock market returns

are unchanged whether analyzing the distribution of “financial wealth” or “total wealth”. This

justifies my choice of abstracting from the distinction between these two concepts in the baseline

model.

Hand-to-mouth households. I now turn to the presence of hand-to-mouth households. In the

model, households can freely trade in financial markets. In reality, a lot of households face finan-

cial frictions. To account for this fact, the model could be extended to assume that a third type

of agent consumes the income they are endowed with every period. The key point is that these

agents would not matter for asset prices as they do not trade assets. Furthermore, they would not

31See, for instance, Catherine et al. (2020) and Greenwald et al. (2022b).
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affect the elasticity of top wealth shares to stock returns or the tail index of the wealth distribution

as they would not appear in top percentiles.

Heterogeneity among newborns. Finally, while I have assumed that the initial distribution of

wealth among newborns is log-normally distributed, this parametric assumption (as well as the

value of its standard deviation) does not affect asset prices as agents have homothetic preferences.

Furthermore, as long as the initial distribution is thin-tailed, its shape does not affect the right tail

of the wealth distribution. As a result, its does not affect the elasticity of top wealth shares to stock

market returns nor the tail index of the wealth distribution.32

4 Quantitative analysis

I now turn to the quantitative implications of the model. Section 4.1 presents the calibration,

Section 4.2 discusses the equilibrium, and Section 4.3 discusses the excess volatility of asset returns

implied by the model.

4.1 Parameters

The model has thirteen parameters that I calibrate to match moments related to the U.S. economy.

Demography and endowment. I start with the five parameters related to demography (η, δ) and

to the endowment process (g, σ, ϕ). The population growth rate η is chosen to match the annual

population growth in the U.S. since 1913; that is, η = 1.5%. The death rate δ is chosen to match

the annual death rate of households in the top 0.5% estimated by Kopczuk and Saez (2004); that

is, δ = 2.5%. This value is roughly consistent with the 2.2% annual death rate in the top 400 for

the 1983-2017 period measured in Gomez (2023).

The drift g and volatility σ of the endowment process are chosen to match, respectively, the

average and standard deviation of the growth of time-averaged annual consumption per capita;

that is, g = 2% and σ = 4%. The depreciation rate of trees is chosen to match the 2.5pp difference

between the growth rate of dividends in the economy and the dividend growth of existing firms

in the economy (respectively, g + η and g − ϕ in the model), which gives ϕ = 1%.33

Wealth dynamics of entrepreneurs. I now turn to the four parameters related to the wealth dy-

namics of entrepreneurs (αE, ν, ρE, πE). The share of wealth invested in equity by entrepreneurs,

32The proof follows from writing the (normalized) wealth of an agent at time t as the product of their (normalized)
wealth at birth and the cumulative growth of their (normalized) wealth since birth. Because these two variables are
independent, the tail index of their products is the minimum of the tail indices of each variable (see, for instance,
Gabaix, 2009).

33More precisely, Gârleanu et al. (2015) document a 2pp difference between the growth rate of dividends in the
economy and the dividend growth of existing firms in the S&P 500. I adjust this number to account for the fact that
acquisition accounts for 0.5pp of the growth of assets of firms in Compustat.
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αE, is chosen to match the regressions of the growth of top wealth shares on equity returns es-

timated in Section 2. To interpret these regressions, remember that agents only trade all-equity

firms (or trees) in the model. In reality, firms issue a mix of debt and equity, and therefore, levered

equity corresponds to a levered claim on the underlying firms. Following Modigliani-Miller logic,

the instantaneous return on this levered equity (i.e., the “stock market return”) is:

dRMt

RMt
= (rt + λ(µRt − rt))dt + λσRt dZt, (25)

where λ denotes the market leverage of the corporate sector (i.e., the ratio between the market

value of all liabilities and the market value of equity).34 As a result, regressing the instantaneous

growth of aggregate wealth on stock market returns in the model estimates 1/λ, while regress-

ing the growth of the average wealth of entrepreneurs on stock market returns estimates αE/λ.

Together with the estimates reported in Table 1, this implies λ = 2.3 and αE = 2.35

The idiosyncratic volatility of trees, ν is chosen to match the 20% annual cross-sectional dis-

persion of the wealth growth for agents at the top of the wealth distribution (
√

E
[
α2

Etν
2
]

in the

model), as measured in Gomez (2023); that is, ν = 10%. This value is consistent with similar

reduced-form evidence from Sweden Bach et al. (2020) in Sweden, as well as existing calibrations

by Angeletos (2007) and Benhabib et al. (2011).

The entrepreneur consumption rate, ρE, is chosen to match the tail index of the wealth distribu-

tion. More precisely, I use the expression for the tail index ζ given in Proposition 3, together with

the calibrated values for (δ, η, ν), to back out the average logarithmic growth of entrepreneurs

relative to the economy E
[
µwEt − 1

2 σ2
wEt
]
. Klass et al. (2006) and Vermeulen (2018) measure a

power law exponent for the wealth distribution of ζ = 1.5. Plugging this number into (22) im-

plies an estimate for the average logarithmic growth of entrepreneurs relative to the economy of

E
[
µwEt − 1

2 σ2
wEt
]
≈ 1.7%.

In a second step, I use this estimate to infer the consumption rate of entrepreneurs. More

precisely, the average logarithmic growth of entrepreneurs relative to the economy can be written

as the difference between the average logarithmic growth of entrepreneurs and the logarithmic

growth rate of the economy:36

E
[

µwEt −
1
2

σ2
wEt

]
= E

[
rt + αEt(µRt − rt)−

1
2

α2
Etσ

2
Rt

]
︸ ︷︷ ︸

Average logarithmic return
of entrepreneurs

−ρE −
(

g − 1
2

σ2
)

.︸ ︷︷ ︸
Logarithmic growth rate

of economy

(26)

Given the values of (g, σ), the logarithmic growth rate of the economy is 1.9%. To estimate en-

34See Barro (2006) for a similar approach.
35More precisely, using the exposure for the top 0.01% gives αE = 1.8 while the exposure for the top 400 gives

αE = 2.3. I use the average between the two to calibrate αE.
36Note that I used the fact that the timed-average drift of log asset prices is zero; that is, E

[
µpt − 1

2 σ2
pt

]
= 0.
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trepreneurs’ average logarithm return, I use moments on asset prices over the sample 1913−2020

(i.e., the time sample for which we have data on top wealth shares). As reported in Table 3, the

average logarithmic (real) risk-free rate is E [rt] = 0.3%, the average logarithmic stock market re-

turn is E
[
rt + λ(µRt − rt)− 1

2 λ2σ2
Rt
]
= 6.4%, and its standard deviation is

√
E [λ2σRt] = 19.3%.

Combining these estimates gives an average logarithm return for entrepreneurs of 5.8%. Plugging

these estimates into (26) implies a consumption rate of entrepreneurs ρE = 2.2%.37

I then pick the population share of entrepreneurs to match the proportion of households that

report having more than two-thirds of their wealth invested in public or private equity (Online

Appendix Table A4); that is, πE = 9%. Note that this parameter is a bit difficult to pin down

since, in reality, there exists a continuum between households and entrepreneurs. Fortunately, the

sensitivity analysis reported in Online Appendix Table A8 shows that the model’s implication for

asset prices is not particularly sensitive to the value for πE. In any case, note that our parameter

value is roughly consistent with the 7.5% proportion of entrepreneurs reported in Cagetti and

De Nardi (2006), based on the proportion of U.S. households who are self-employed and who

own a business for which they have an active management role.

Household preferences. I calibrate the remaining three parameters related to households’ pref-

erences (their SDR ρ, their EIS ψ, and their RRA γ) to match four asset price moments jointly:

the average and standard deviation of the risk-free rate and of stock market returns from 1913 to

2020, which are reported in Table 3. Formally, denote θ ≡ (ρ, πE, γ) the vector of parameters and

m(θ) the vector of moments implied by these parameters after simulating the model; that is, the

average and standard deviation of the risk-free rate and of stock market returns. I pick the vector

of parameters θ̂ which minimizes the distance (m̂ − m(θ))′ (m̂ − m(θ)), where m̂ denotes the four

moments in the data. For the sake of realism, I only search for an RRA γ and an inverse EIS 1/ψ

below 20, as well as a SDR ρ below 10%.

Table 2 reports the set of parameters that minimize (m̂ − m(θ))′ (m̂ − m(θ)). I estimate a rela-

tively high SDR (ρ = 10%), a high RRA (γ = 10.3), and a low EIS (ψ = 0.05). Note that such a low

EIS is consistent with evidence from the microdata for the average household (Vissing-Jørgensen,

2002; Best et al., 2020). It is also consistent with existing calibrations of asset pricing models with

heterogeneous agents (Guvenen, 2009 ; Gârleanu and Panageas, 2015).

Distribution of initial wealth. Finally, I pick the standard deviation of the distribution of log

wealth for newborns, ν0, to match the level of the share of wealth owned by the top 1%, which

averages 33% between 1913 and 2020. This gives me ν0 = 1.6. As highlighted in Section 3, this

parameter solely affects the level of top wealth shares — it does not affect asset prices or other

inequality moments such as the tail index of the wealth distribution or the limiting exposure of

37In Online Appendix D.1, I show that I obtain similar results if I directly estimate the consumption rate of top
entrepreneurs using individual data from Forbes 400 instead.
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top wealth shares — which is why I calibrate it after all other parameters have been set.38

Table 2: Parameters

Description Symbol Value Target

Demography and endowment
Population growth rate η 1.5% Growth rate number of U.S. households
Death hazard rate δ 2.5% Death rate at the top
Endowment growth rate g 2% Per capita growth rate of consumption
Endowment volatility σ 4% SD of time-averaged consumption
Tree depreciation rate ϕ 1% Growth rate public firms
STD initial endowment ν0 1.6 Average wealth share top 1%

Entrepreneurs’ dynamics
Entrepreneur equity share αE 2 Regression growth top 0.01% wealth on stock returns
Tree idiosyncratic volatility ν 10% Dispersion wealth growth at the top
Entrepreneur SDR ρE 2.2% Tail index of wealth distribution
Entrepreneur pop. share πE 9% Pct. agents with more than half of wealth in equity

Households’ preferences
Household SDR ρ 10% Asset price moments
Household EIS ψ 0.05 Asset price moments
Household RRA γ 10.3 Asset price moments

Notes: This table summarizes the calibration discussed in Section 4.1. Each parameter is given at the annual frequency.

Table 3: Targeted moments

Moments Data Model

Average interest rate 0.3% 3.4%
Standard deviation interest rate 0.9% 0.7%
Average stock market return 6.4% 6.3%
Standard deviation stock market return 19.3% 18.5%

Notes: The table reports the moments in the data (measured over the 1913-2020 period) and in the calibrated model. The interest rate
is the nominal interest rate deflated by the inflation rate. Each moment is given at the annual frequency.

4.2 Studying the equilibrium

I now examine how well the calibrated model matches asset prices and top wealth inequality. I

also analyze the impulse response of important economic quantities in the calibrated model.

38As discussed above, for the sake of simplicity, the model does not differentiate between capital and labor income,
so the notion of wealth in the model encompasses both financial wealth and human capital. While the distinction does
not matter for two inequality moments I focus on, the tail index of the distribution and the wealth exposure of top
percentiles (Section 3.4), it does matter for the average level of top shares as labor income is more equally distributed
than capital income. Calibrating ν0 to match the average level of the top 1% income share, which averages 16% on a
pre-tax and pre-transfer basis (see Piketty et al., 2018), would imply a lower value for ν0 = 0.8. In any case, the value
for ν0 does not affect equilibrium asset prices or the impulse response of top wealth shares to aggregate shocks, which
is the focus of the rest of the paper.
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Matching asset prices. Table 3 reports the asset price moments implied by the calibrated model.

The calibrated model matches very well the average of stock market returns (6.4% in the data

versus 6.3% in the model) as well as their standard deviation (19.3% in the data versus 18.5% in

the model). Note, however, that the calibrated model tends to overestimate the level of the interest

rate (0.3% in the data versus 3.4% in the data), even though it matches well its low standard

deviation (0.9% in the data versus 0.7% in the model). Note that measuring asset price moments

starting from 1871, as in Gârleanu and Panageas (2015), would give an average interest rate of

2.8%, closer to the one implied by the model.

The fact that the calibrated model implies an interest rate higher than the data is due to some

tension in the model between matching the high standard deviation of returns and matching a

low interest rate. To understand this, observe the asset price volatility rises with the heterogeneity

in consumption rates between households and entrepreneurs.39 Given that the consumption rate

of entrepreneurs is pinned down by the tail index of the wealth distribution, this implies that, in

the model, the standard deviation of returns increases with the consumption rate of households.

However, a high household consumption rate results in a high average consumption rate across

the economy, necessitating a high interest rate to clear the goods market.40 Consistently with this

discussion, Online Appendix Table A8, which reports the sensitivity of asset price moments to the

calibrated parameters, shows that household preferences that increase the standard deviation of

returns also increase the average interest rate.

Second, the calibrated model captures well the effect of excess stock market returns on top

wealth inequality. More precisely, Online Appendix Figure OA4 shows that local projections of

the average wealth in top percentiles on excess stock returns in the model and in the data are very

similar, for all top percentiles p ∈ {100%, 1%, 0.1%, 0.01%, Top 400} and horizons 0 ≤ h ≤ 8

(Online Appendix Figure A4 presents the same exercise for top wealth shares). This good fit

partly reflects that λ (resp. αE) was chosen to match the response of the average wealth in the

economy (resp. in the top 0.01%) to excess stock returns. What is nontrivial is that the model

matches very well (i) the gradual increase in the wealth exposure to stock market returns across

the wealth distribution (in the model, this is driven by the gradual increase of the proportion of

entrepreneurs in the right tail), as well as (ii) the slow rate of decay of these local projections with

the horizon. I will discuss the impulse response of top wealth shares to aggregate shocks in more

detail in Section 5.

Impulse response functions. I now examine the impulse response of asset prices and expected

returns to aggregate shocks. For any quantity that depends smoothly on the state variable gt =

g(xt), I denote its Infinitesimal Impulse Response Function (IIRF) as the effect of an infinitesimal

39Indeed, differentiating the market clearing condition for the goods market (15) give ∂x log p =
p (cHt − ρE − (1 − x)∂xcHt).

40Again, this can be seen through the market clearing condition for the goods market (15).
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aggregate shock on its expected value at horizon h starting from some initial state x:41

IIRFg(xt, h) ≡ ∂E [g(xt+h)|xt = x]
∂Zt

= E
[

∂xt+h

∂xt
∂xg(xt+h)|xt = x

]
σx(x), (27)

where ∂xt+h/∂xt denotes the stochastic derivative of the process (xt)t∈R at time t + h with respect

to its value at time t. This process equals one at time t and then evolves with the law of motion:(
d

∂xt+h

∂xt

)/(∂xt+h

∂xt

)
= ∂xµx(xt+h)dh + ∂xσx(xt+h)dZt+h. (28)

One key advantage of working in continuous-time is that this impulse response function can be

computed analytically, even though it depends non-linearly with the horizon h and the state vari-

able x.42 Figure 2 plots E
[
IIRFg(x, h)

]
, the average IIRF across the state space, as a function of the

horizon h for several important quantities in the model: the price-to-income ratio pt, the wealth-

to-consumption ratio of households 1/cHt, the risk-free rate rt, and expected log stock market

returns. These plots summarize the key mechanism at the heart of the model: in response to an

aggregate shock, the share of wealth owned by entrepreneurs increases (as they own levered po-

sitions in risky assets), which increases asset prices and decreases expected returns in equilibrium

(as they have a higher demand for assets). As a complement to these impulse response functions,

I also plot in Online Appendix Figure A6 the same quantities as a function of the state variable x.

These impulse response functions reveal that aggregate shocks generate persistent effects on

equilibrium prices. As shown in Online Appendix D.3, all infinitesimal impulse response func-

tions decay at the same exponential rate, which is the “spectral gap” of the infinitesimal generator

associated with the process (xt)t∈R. This decay rate is 0.06 in the calibrated model, which means

that it takes more than a decade for the effect of an aggregate shock on asset valuations to decay

by half (log 2/0.06 ≈ 12 years). This decay rate results from the combination of two weak mean-

reverting forces for xt: first there is a mechanical force due to population renewal (death and

population growth), second there is an economic force due to the equilibrium increase in asset

valuations following an increase in xt, which decreases the growth rate of entrepreneurs relative

to households.43

41See Borovička et al. (2014) and Alvarez and Lippi (2022) for related definitions.
42The extended Feynman-Kac formula stated in Lemma A3 (Online Appendix E.3) implies that IIRFg can be obtained

by solving the linear PDE

∂hIIRFg(x, h) = ∂xµx(x)IIRFg(x, h) +
(

µx(x) + σx(x)∂xσx(x)
)

∂xIIRFg(x, h) +
1
2

σ2
x (x)∂xxIIRFg(x, h),

with initial condition IIRFg(x, 0) = ∂xg(x).
43Since the decay rate due to demographic forces is δ + η = 0.04, the remainder can be interpreted as the effect due

to the equilibrium decline in equity returns.
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Figure 2: Impulse response functions of economic quantities
Notes: This figure plots the average infinitesimal impulse response function of different quantities; that is, h → E[IIRFg(x, h)] for

different functions of the state variable g(·). The expected log equity return corresponds to the expected log return of unlevered
equity; that is, r + µR − 1

2 σ2
R. These graphs can be interpreted as the first-order response to a one standard deviation annual shock in

aggregate income.

4.3 Model-implied dynamics of asset prices

Feedback loop. The calibrated model successfully replicates the high volatility of stock market

returns despite the low volatility of aggregate income (Table 3). This arises from a feedback loop

between asset prices and wealth inequality: an increase in asset prices amplifies wealth inequality,

as entrepreneurs hold levered equity positions, while greater wealth inequality, in turn, drives up

asset prices due to entrepreneur’ higher demand for assets. We can formalize this feedback loop

through two equations. The first equation relates the volatility of the state variable to the volatility

of asset returns:44

σx = x(αE − 1)σR, (29)

which says that as long as entrepreneurs own levered positions in equity (αEt > 1), the volatility of

the state variable increases with the volatility of equity returns. On the other hand, the definition

of returns (5) gives:

σR = σ + σp = σ + ∂x log p × σx, (30)

which says that, as long as entrepreneurs have a higher demand for assets (i.e., ∂x log p > 0), asset

returns’ volatility increases with the state variable’s volatility. Combining these two equations

44This equation can be obtained by combining the volatility of x from Proposition 1 σxt = xt(1 − xt)(αEt − αHt)σRt
with the market clearing condition for equity (16) xtαEt + (1 − xt)αHt = 1. This equation reflects the fact that when an
aggregate shock dZt hits the economy, the average wealth of entrepreneurs increases by αEσR dZt while the average
wealth in the economy increases by σR dZt. As a result, the share of wealth owned by entrepreneurs increases by
(αE − 1)σR dZt.
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allows us to solve for the volatility of stock market returns, σR:45

σR︸︷︷︸
Return

volatility

=
1

1 − (αE − 1)x∂x log p︸ ︷︷ ︸
Multiplier ≥ 1

× σ.︸︷︷︸
Income

volatility

(31)

The volatility of equity returns, σR, is the product between the volatility of aggregate income,

σ, and a multiplier. Intuitively, this multiplier increases with the relative risk exposure of en-

trepreneurs αE − 1 and with the elasticity of asset valuations to the share of wealth owned by en-

trepreneurs x∂x log p.46 In the calibrated model, we have αE = 2.0, E [x] ≈ 0.24, and E [∂x log p] ≈
2.09, which gives a multiplier around 2.0. In other words, the calibrated model generates a volatil-

ity of equity returns σR that is twice as high as the volatility of aggregate income σ (and, therefore,

a volatility of stock market returns λσR that is four times as high as the volatility of aggregate

income). Hence, the model can generate the excess volatility of stock market returns.

An exact decomposition for the volatility of asset valuations. The endogenous response of asset

valuations to aggregate shocks plays a key role in generating volatile asset returns (remember that

(30) gives σR = σ + σp). In the spirit of Campbell and Shiller (1988), I now relate this endogenous

response of asset valuations to changes in future risk-free rates and excess equity returns.

Proposition 5. The volatility of asset valuations can be decomposed into two terms, corresponding to the
present value of changes in future risk-free rates and in future (log) excess returns, respectively.

σp(x) =−E
[∫ ∞

0
e−
∫ t

0
1

p(xs)
ds ∂xt

∂x0
∂xr(xt)dt

∣∣∣x0 = x
]

σx(x)︸ ︷︷ ︸
Risk-free rate channel

−E
[∫ ∞

0
e−
∫ t

0
1

p(xs)
ds ∂xt

∂x0
∂x

(
µR − 1

2
σ2

R − r
)
(xt)dt

∣∣∣x0 = x
]

σx(x).︸ ︷︷ ︸
Excess return channel

(32)

where ∂xt/∂x0 denotes the stochastic derivative of the process (xt)t∈R.

This equation says that the response of asset valuations to aggregate shocks, σp, can be written

as the present value of changes in future expected returns. This term can be decomposed into

the contribution of change in future risk-free rates (“risk-free rate channel”) and changes in future

excess returns (“excess return channel”). Relative to the log-linearization introduced by Campbell

and Shiller (1988), this equation has three key advantages.47

45One way to understand this equation is that, following an aggregate income shock, the share of wealth owned by
entrepreneurs increases via (29), which, in turn, increases valuations via (30), which then increases the share of wealth
owned by entrepreneurs even more via (29). . . Summing all of these rounds gives σR as the sum of a geometric series
σR = ∑∞

k=0 (x(∂x log p)(αE − 1))k σ, which is equivalent to (31).
46If either term is null, this multiplier is simply equal to one.
47 This decomposition, which is new to my knowledge, holds in any asset pricing model in which the growth rate
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First, this decomposition is exact, which is helpful as Campbell and Shiller (1988)’s log lin-

earization can have large errors in nonlinear models (e.g., Pohl et al., 2018). Second, each term can

be computed numerically using a version of the Feynman-Kac formula.48 Third, the decomposi-

tion can be computed at each point of the state space x, so it can be used to examine the relative

effect of fluctuations in risk-free and expected equity returns in different parts of the state space.

In terms of magnitude, I find that the risk-free rate channel and the excess return channel

account for, respectively, 53% and 47% of the volatility of asset valuations. The impulse responses

for log expected returns plotted in Figure 2b shows that the risk free-rate and the expected excess

return contribute equally to the response in expected log returns to aggregate shocks. As shown in

Online Appendix Figure A7, this average value masks a large heterogeneity across the state space:

in particular, news about interest rates become a relatively larger source of asset price fluctuations

as x, the share of wealth owned by entrepreneurs, approaches zero.49

Finally, one can easily extend the result of Proposition 5 to obtain a similar decomposition for

the response of asset valuations over any horizon h ≥ 0.50 Figure 3 plots the resulting decompo-

sition of the average infinitesimal impulse response function, h → E
[
IIRFlog p(x, h)

]
, as a sum of

the effect of changes in future risk-free rates and future expected excess returns.
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Excess returns channel
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Figure 3: Decomposing the impulse response of asset valuations to aggregate shocks
Notes: This figure plots the average impulse response function for asset valuations, h → E

[
IRRFlog p(x, h)

]
, as well as its decompo-

sition into a “risk-free rate channel” and an “excess return channel”, similarly to (32). The graph can be interpreted as the first-order
response to a one standard deviation annual shock in aggregate income.

of cashflows and expected returns are smooth functions of some Markovian process. This essentially includes all
“textbook” asset pricing models (e.g., Campbell and Cochrane, 1999, Bansal and Yaron, 2004, Wachter, 2013, He and
Krishnamurthy, 2013, Gârleanu and Panageas, 2015. . . ). See the proof of Proposition 5 in Appendix A for details.

48See the proof of the proposition in Appendix A for details.
49This comes from the fact that the gradient of the interest rate with respect to the state variable x increases as it

approaches zero (see Online Appendix Figure A6.
50Formally, the response of asset valuations to an aggregate shock at horizon h can be written as

IIRFlog p(x, h) = E
[

∂xh
∂x0

∂x log p(xt)|x0 = x
]

σx(x) = −E
[∫ ∞

h
e−
∫ t

h
1

p(xs )
ds ∂xt

∂x0
∂x

(
µR − 1

2
σ2

R

)
(xt)dt

∣∣∣x0 = x
]

σx(x).
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Comparison with the literature. Having described the implications of my model for asset prices,

I now briefly emphasize two differences between my model and the existing asset pricing litera-

ture. First, the key financial friction in my model is that a subset of agents (“entrepreneurs”) must

maintain a constant share of their wealth invested in their firms. This contrasts with the standard

financial friction used in the asset pricing literature, where entrepreneurs are collectively required

to hold a fixed fraction of the corporate sector in the aggregate (e.g., Basak and Cuoco, 1998, Gu-

venen, 2009, Brunnermeier and Sannikov, 2014, He and Krishnamurthy, 2013. . . ). This alternative

approach implies that the share of wealth invested in equity by entrepreneurs is counter-cyclical.51

In Online Appendix D.4, I discuss the difference between the two approaches for asset prices and

show that there is no evidence for such cyclicality in the micro-data, which justifies my approach.

The second difference with the existing literature is that my model is built and calibrated to

match the wealth distribution. This allows me to discipline the degree of agent heterogeneity

using observable moments, instead of treating it as a free parameter. To illustrate the importance of

this step, I show in Online Appendix D.4 that changing moments related to the wealth distribution

would have large implications on asset prices. Relatedly, I show that existing asset pricing models

tend to imply a wealth distribution that moves too much or is too unequal relative to the data.

This suggests that they tend to overestimate the degree of heterogeneity between agents.

5 Impulse response function of top wealth shares

I now use the calibrated model to analyze the full impulse response of top wealth shares to ag-

gregate shocks. This analysis complements the empirical approach in Section 2, which focused

on estimating the short-term responses of top wealth shares (less than ten years) due to the rapid

decline in the precision of local projections over longer horizons.

5.1 Impulse response of surviving individuals

I first examine the effect of an aggregate shock on the average normalized wealth of “surviving”

entrepreneurs. Here, and in the rest of the section, the term “surviving” entrepreneurs refers to

the subset of entrepreneurs who remain alive following the realization of the aggregate shock up

to the horizon of interest. Formally, the response of the average normalized wealth of surviving

entrepreneurs at horizon h starting from an economy in state x is defined as:52

ϵ(xt, h) ≡ ∂

∂Zt
Et [log Et+h [wi,t+h|i ∈ IE,t ∩ IE,t+h]] . (33)

51To see why, note that, after a sequence of negative shocks, entrepreneurs are relatively poorer, which means that
they must invest a larger fraction of their wealth in equity to hold a given fraction of the corporate sector. Within the
asset pricing literature, Di Tella (2017) uses a similar constraint as this paper; however, that paper allows entrepreneurs
to undo their exposure to aggregate risk, which limits the comparison between the two papers.

52The fact that it depends on the state of the economy purely through the value of the state variable at that time is
proved in Proposition 6 below.
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The following proposition gives an analytical characterization of this impulse response function.

Proposition 6. The effect of an aggregate shock on the average wealth of surviving entrepreneurs at horizon
h and starting from an economy in state x is given by

ϵ(x, h) = σwE(x) + E
[∫ h

0

∂xt

∂x0
∂x

(
µwE − 1

2
σ2

wE

)
(xt)dt

∣∣∣x0 = x
]

σx(x). (34)

This proposition expresses the impulse response of surviving entrepreneurs as the sum of two

terms. The first term corresponds to the “instantaneous” effect of the aggregate shock on the

normalized wealth of entrepreneurs (i.e., at h = 0). The second term corresponds to the effect of

the aggregate shock on the (logarithmic) growth rate of surviving entrepreneurs going forward

(i.e., for h > 0), due to the endogenous rise in asset valuations. The second term can be computed

numerically using a version of the Feynman-Kac formula.53

To fix ideas, consider what would happen if asset valuations did not react to aggregate shocks.

In this case, an aggregate income shock σ dZt would permanently increase the normalized wealth

of surviving entrepreneurs by (αE − 1)σ dZt; that is, the impulse response of surviving entrepreneurs

would simply be given by ϵ(x, h) = (αE − 1)σ.

Figure 4 plots the average impulse response of surviving entrepreneurs E [ϵ(x, h)] together

with this baseline income response (αE − 1)σ. The difference between the two captures the effect of

the endogenous response in asset valuations following an aggregate shock. Initially (at h = 0), this

difference is positive: due to the rise in asset valuations after an aggregate shock, entrepreneurs’

wealth reacts twice as much as their income on impact; that is, σwE(x) = (αE − 1)σR > (αE −
1)σ. In the longer term, however, the difference turns negative; that is, the normalized wealth of

entrepreneurs “underreacts” to the initial income shock. This comes from the fact that the rise

in asset valuations reduces the growth rate of entrepreneurs going forward since it makes them

earn lower returns and pushes them to consume more (see Online Appendix D.5 for more details).

Overall, this figure illustrates that the endogenous response of asset valuations amplifies the initial

response of entrepreneurs’ wealth while dampening their long-term response.

5.2 Impulse response of top wealth shares

I now turn to the impulse response of top wealth shares. The next proposition characterizes the

effect of an aggregate shock on top wealth shares at any horizon h ≥ 0. It can be seen as a gener-

alization of Proposition 4, which characterized the instantaneous response of top wealth shares to

aggregate shocks (i.e., the case h = 0).

Proposition 7. The effect of an aggregate shock at time t on the share of wealth owned by a top percentile

53See the proof of the proposition in Appendix A for details.
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Figure 4: Average impulse response of the wealth of surviving entrepreneurs
Notes: This figure plots the average impulse response of the (log) average (normalized) wealth of surviving entrepreneurs (i.e.,

h → E [ϵ(x, h)]), together with the entrepreneurs’ income shock (αE − 1)σ, which can be interpreted as the impulse response if asset
valuations were fixed over time. Hence, the difference between the two lines reflects the effect of endogenous changes in asset
valuations. The graph can be interpreted as the first-order response to a one standard deviation annual shock in aggregate income.

p at time t + h is given by

∂Et
[
log Sp,t+h

]
∂Zt

= ∑
j∈{E,H}

Et
[
σwj(xt)Fp,t+h(j, t)

]
+ ∑

j∈{E,H}
Et

[∫ t+h

t

∂xs

∂xt
∂x

(
µwj −

1
2

σ2
wj

)
(xs)Fp,t+h(j, s)ds

]
σx(xt),

where Fp,t+h(j, s) denotes the fraction of wealth in the top percentile p at time t + h owned by individuals
of type j ∈ {E, H} born before time s.54

To understand the intuition behind this expression, it is helpful to compare it to the impulse

response of surviving entrepreneurs ϵ(x, h) discussed in Proposition 6. The key difference is that

the effect of aggregate shocks on the wealth of surviving individuals is now mediated by weights

Fp,t+h(j, s). These weights account for the fact that the effect of an aggregate shock on the wealth

dynamics at time s impacts the top wealth share at t + h only through the fraction of individuals

in the top percentile who were alive at that time. Another difference is the summation sign across

agent types: top percentiles include both entrepreneurs and households, so one needs to consider

the effect of aggregate shocks on both types of agents.

I now use this proposition to describe the impulse response of top wealth shares in two impor-

tant limiting cases.55 On the one hand, fixing the top percentile p, the response of the top wealth

share converges to zero in the limit h → ∞. Intuitively, as the horizon h grows, surviving individ-

uals in the top percentile cede their places to younger individuals, born long after the shock. On

54An analytical expression for Fp,t+h(j, s) is derived in Equation 46 in the proof of the proposition (Appendix A). The
proof also details the two (accurate) approximations used to obtain the result.

55The proof of Proposition 7 in Appendix A contains a heuristic derivation for these two limits.
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the other hand, fixing the horizon h, the response of the top wealth share converges to the impulse

response of surviving entrepreneurs ϵ(x, h) in the limit p → 0. This limit comes from the fact that,

at any horizon, the fraction of individuals in the top percentile born before the shock converges

to one in the right tail of the wealth distribution, so the impulse response of the top percentile

converges to the impulse response of surviving entrepreneurs. Overall, while the first limit says

that all top wealth shares ultimately mean-revert as the horizon grows, the second limit says that

the speed of mean-reversion becomes arbitrarily low in the right tail of the wealth distribution.

Intuitively, wealth in top percentiles is older and thus retains the effect of past aggregate shocks

for longer.

To visualize these forces, Figure 5 plots the impulse response of the share of wealth owned

by a top percentile p ∈ {1%, 0.1%, 0.01%, 0.001%} to an aggregate shock up to a horizon of

100 years using simulated data. On impact (i.e., h = 0), higher top percentiles respond more

to aggregate shocks, consistently with the data. In the model, this comes from the fact that the

relative proportion of entrepreneurs increases in the distribution’s right tail (see the discussion

of Proposition 4). As the horizon grows, top wealth shares mean-revert towards zero. As seen

above, this mean-reversion results from the combination of two distinct forces. First, the rise in

asset valuations after an aggregate shock means that surviving entrepreneurs earn lower returns

and consume relatively more going forward. Second, younger generations, who are not directly

impacted by the shock, slowly replace older generations in top percentiles. The higher the top

percentile, the longer it takes for existing agents to be replaced by newborns and, therefore, the

longer it takes for the effect of the aggregate shock to dissipate fully. Quantitatively, it takes 30

years for the effect of the initial shock to be divided by three for the top 1%. In comparison, this

reduction takes 60 years for the top 0.01%.

0 25 50 75 100

0%

2%

4%

6%

8%

Top 1%
Top 0.1%

Top 0.01%
0.001% Top 400

Entrepreneurs’ wealth response E[ε(x, h)]

Time horizon (years)

Figure 5: Impulse response of top wealth shares
Notes: This figure plots the infinitesimal impulse response for the average (normalized) wealth of surviving entrepreneurs; that is,

h → E[ϵ(x, h)]. The figure also plots the impulse responses of the (log) share of wealth owned by each top percentile to aggregate
income shocks, estimated using local projections on a very long sample of simulated data. The graph can be interpreted as the first-
order response to a one standard deviation annual shock in aggregate income.
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5.3 Standard deviation of top wealth shares

So far, I have focused on the dynamics of top wealth shares in response to aggregate income

shocks. I now use this analysis to study the overall standard deviation of top wealth shares gen-

erated by the model, as aggregate income shocks cumulate over time. The two concepts are in-

timately linked as the standard deviation of top wealth shares roughly corresponds to the area

below its impulse response function.56

The first line of Table 4 reports the standard deviation of (log) top wealth shares in the cali-

brated model using simulated data. The key observation is that this standard deviation increases

monotonically in the right tail. Glancing at Figure 5 reveals that this increase in the standard de-

viation of top wealth shares at the top is due to the combination of two forces (i) aggregate shocks

have larger effects on higher top percentiles on impact (due to the higher fraction of entrepreneurs

in top percentiles) (ii) higher top percentiles take a longer time to mean-revert (due to the longer

time it takes for newborns to reach top percentiles).

Table 4: Standard deviation of log top wealth shares

Top 1% Top 0.1% Top 0.01% Top 0.001%

Model (long sample) 0.09 0.18 0.28 0.35
Model (short sample) 0.07 0.07 0.07 0.07
Data 0.20 0.33 0.46

For the sake of parsimony, I have focused on a model in which the only reason top wealth

shares fluctuate over time is that wealthier agents have a higher wealth exposure to aggregate

shock. In reality, there may be additional sources of fluctuations in top wealth shares. One inter-

esting question is: How much can fluctuations in top wealth shares be explained by the model?

To facilitate the comparison between the model and the data, I compare the standard deviation

of top wealth shares in the data with the averaged standard deviation of top wealth shares in the

calibrated model, obtained by averaging the estimated standard deviations across simulated sam-

ples with the same length as the data (105 years).57 The results, reported in Table 4, reveal that

the calibrated model can account for approximately 40% of the standard deviation of top wealth
56Formally, the Clark-Ocone formula allows us to write the logarithm of the share of wealth owned by a top percentile

p as some time t as the infinite moving average of past aggregate shocks

log Sp,t = E[log Sp,t] +
∫ t

−∞
Es

[
∂ log Sp,t

∂Zs

]
dZs.

Ito’s isometry implies

Var[log Sp,t] = E

[∫ t

−∞
Es

[
∂ log Sp,t

∂Zs

]2
ds

]
= E

[∫ ∞

h=0
E0

[
∂ log Sp,h

∂Z0

]2]
dh.

57This is because the naive estimate for the standard deviation of a persistent process suffers from a downward bias
in finite sample. This is why I do not report the standard deviation of the Top 400 wealth share in the data, as the time
sample is too low to be informative (35 years).
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shares in the data (or, equivalently, a quarter of their variances). Hence, the heterogeneous expo-

sure of agents to aggregate income shocks can explain a sizable fraction, but not all, of the actual

fluctuations in top wealth shares observed in the data.

A complementary way to assess “how much” of the fluctuations in top wealth inequality can

be explained by the model is to compare the realized dynamics of top wealth shares between the

data and the model, after feeding the model with the realization for excess returns across the

20th century. This exercise, done in Online Appendix D.6, reveals that the model can explain

the persistent decline in wealth inequality during the Great Depression, its rise immediately after

WW2, and its rise during the dot-com bubble. However, the model has a hard time reproducing

the overall U-shape of top wealth shares; that is, it cannot fully explain the secular decline of

wealth inequality in the 1940s nor its secular rise in the 1980s. This result suggests that, to fully

account for the dynamics of top wealth shares over the 20th century, one would need to augment

the model with additional sources of fluctuations in the economy, such as changes in taxes or

regulations (Hubmer et al., 2021, Cao and Luo, 2017), changes in idiosyncratic returns (Benhabib

et al., 2019, Atkeson and Irie, 2022, Gomez, 2023), or changes in labor income inequality (Rosen,

1981, Gabaix and Landier, 2008, Terviö, 2008).

6 Conclusion

This paper studies the interplay between wealth inequality and asset prices. First, I document

that the wealth of households at the top of the wealth distribution is twice as exposed to stock

market returns as the wealth of the average household. Since stock market returns are volatile

and uncorrelated, and top wealth shares mean-revert very slowly, this heterogeneous exposure

generates long-lived fluctuations in top wealth inequality.

Motivated by this fact, I develop a model where different households have different exposures

to aggregate shocks. While the wealth distribution implied by the model is stochastic, I show that

it still exhibits a right Pareto tail, and that its tail index can be characterized analytically. Hence,

this paper extends the characterization of tail indices obtained in deterministic random growth

models (starting with Champernowne, 1953) to more realistic, stochastic economies.

Third, I calibrate the model to U.S. moments related to asset prices and wealth inequality. The

model features a feedback loop between wealth inequality and asset prices following an aggregate

shock. The model generates particularly large fluctuations in the right tail of the wealth distribu-

tion, as higher percentiles are more exposed to aggregate risk and take longer to mean revert.

For simplicity, I only consider shocks to aggregate income in the model. However, the in-

terplay I describe between asset prices and wealth inequality would also appear with shocks

that redistribute aggregate income between labor and capital (Greenwald et al., 2022a, Moll et

al., 2022), shocks between young and old households (Gârleanu et al., 2012), or monetary policy

shocks (Silva, 2016, Kekre and Lenel, 2022). Moreover, this interplay could also affect real quan-
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tities through changes in corporate investment policies or labor supply. Exploring these effects

requires moving away from an endowment economy, which I leave for future research.

Data Availability Statement

The data and code underlying this research is available on Zenodo at https://doi.org/10.5281/zenodo.
14248965.
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Appendix

A Proofs

Proof of Proposition 1. By definition, we have xt =
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Now, the instantaneous change in the aggregate wealth within each group j ∈ {E, H} is given by:
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Dividing by
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i∈Ijt

Wit di
)

/|Ijt|
dt − δ dt.

Plugging this into the law of motion of xt (35) gives

dxt = xt(1 − xt)

(∫
i∈IE,t

dWit di∫
i∈IE,t

Wit di
−
∫

i∈IHt
dWit di∫

i∈IHt
Wit di

+ (η + δ + ϕ)

(
πE

xt
− πH

1 − xt

)
dt

−
(∫

i∈IE,t
dWit di∫

i∈IE,t
Wit di

−
∫

i∈IHt
dWit di∫

i∈IHt
Wit di

)
d(ptYt)

ptYt
dt

)
.

Combining this expression with the law of motion of Wit for households (6) and entrepreneurs (8)

gives the result.

Proof of Proposition 2. Equation (17) implies the following law of motion for the logarithm of nor-

malized wealth for individual i in group j ∈ {E, H}:

d log wit =

(
µwjt −

1
2

σ2
wjt −

1
2

ν2
wjt

)
dt + σwjt dZt + νwjt dBit. (36)
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Integrating over time, this implies that, for an individual born at time s ≤ t,

log wit = log wis +
∫ t

s

(
µwju −

1
2

σ2
wju −

1
2

ν2
wju

)
du +

∫ t

s
σwju dZu +

∫ t

s
νwju dBiu. (37)

We assumed in Section 3.1 that the logarithm of normalized wealth at birth was normally dis-

tributed with mean log
(

η+δ+ϕ
η+δ

)
− 1

2 ν2
0 and variance ν2

0 (Section 3.1). Together with (37), this im-

plies that the cross-sectional distribution of log normalized wealth is normal with mean µj,s→t =

log
(

η+δ+ϕ
η+δ

)
− 1

2 ν2
0 +
∫ t

s

(
µwju − 1

2 σ2
wju − 1

2 ν2
wju

)
du+

∫ t
s σwju dZu and variance ν2

j,s→t = ν2
0 +
∫ t

s ν2
wju du.

Finally, denoting ait the age of an individual i ∈ Iit at time t, we get:

P
(
wit ≤ w|i ∈ Ijt

)
=
∫ ∞

0
P
(
ait = a|i ∈ Ijt

)
P
(
wit ≤ w|ait = a, i ∈ Ijt

)
da

=
∫ t

−∞
P
(
ait = t − s|i ∈ Ijt

)
P
(
wit ≤ w|ait = t − s, i ∈ Ijt

)
ds (s ≡ t − a)

=
∫ t

−∞
(η + δ)e−(η+δ)(t−s)Φ

(
log w − µj,s→t

νj,s→t

)
ds.

Proof of Proposition 3. Similarly to many results in large deviations theory, the proof is structured

in three steps. In the first step, I use the existence of cross-sectional moments of individual wealth

of order lower than ζ j to prove that the limit superior of log Pt(wit ≥ w|i ∈ Ijt)/ log w is lower

than −ζ j for j ∈ {E, H}. In the second step, we use the law of large numbers to prove that the

limit inferior of log Pt(wit ≥ w|i ∈ Ijt)/ log w is higher than −ζ j for j ∈ {E, H}. In the third

step, we combine the two preceding to show that the limit of log Pt(wit ≥ w|i ∈ Ijt)/ log w is

exactly −ζ j for j ∈ {E, H}, which implies that the limit of log Pt(wit ≥ w|i ∈ It)/ log w is exactly

−min(ζH, ζE). As the distribution of wealth is itself random, all of these statements should be

understood as holding at any point in time t ∈ R almost surely (i.e., with probability one).

Step 1. In this step, we prove

lim sup
w→∞

log Pt(wit ≥ w|i ∈ Ijt)

log w
≤ −ζ j for j ∈ {E, H}. (38)

To show this, we first prove that mjt(ξ) ≡ Et

[
wξ

it|i ∈ Ijt

]
, the ξ-th cross sectional moment of

wealth within group j at time t, is finite for 0 ≤ ξ < ζ j. Applying Ito’s lemma to the definition of

mjt(ξ) gives:

dmjt(ξ) = d
(

1
|Ijt|

∫
i∈Ijt

wξ
it di

)
= mjt(ξ)

d
(∫

i∈Ijt
wξ

it di
)

∫
i∈Ijt

wξ
it di

− d
∣∣Ijt
∣∣

|Ijt|

 . (39)
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Now, the instantaneous change in
∫

i∈Ijt
wξ

it di is given by

d
(∫

i∈Ijt

wξ
it di

)
=

∫
i∈Ijt

dwξ
it di︸ ︷︷ ︸

contribution of surviving agents

+ (η + δ)|Ijt|eξ log
(

η+δ+ϕ
η+δ

)
+ 1

2 ξ(ξ−1)ν2
0 dt︸ ︷︷ ︸

contribution of newborns

− δ

(∫
i∈Ijt

wξ
it di

)
dt.︸ ︷︷ ︸

contribution of deceased

Dividing by
∫

i∈Ijt
wξ

it di and rearranging gives

d
(∫

i∈Ijt
wξ

it di
)

∫
i∈Ijt

wξ
it di

=

∫
i∈Ijt

dwξ
it di∫

i∈Ijt
wξ

it di
+ (η + δ)

eξ log
(

η+δ+ϕ
η+δ

)
+ 1

2 ξ(ξ−1)ν2
0

mjt(ξ)
dt − δ dt.

Plugging this into (39) gives

dmjt(ξ) =

∫
i∈Ijt

dwξ
it di∫

i∈Ijt
wξ

it di
mjt(ξ) + (η + δ)

(
eξ log

(
η+δ+ϕ

η+δ

)
+ 1

2 ξ(ξ−1)ν2
0 − mjt(ξ)

)
dt.

Now, applying Ito’s lemma to (17) gives the law of motion of wξ
it for i ∈ Ijt:

dwξ
it

wξ
it

=

(
ξµwjt +

1
2

ξ(ξ − 1)
(

σ2
wjt + ν2

wjt

))
dt + ξσwjt dZt.

Combining the two previous equations gives

dmjt(ξ) =

(
ξµwjt +

1
2

ξ(ξ − 1)
(

σ2
wjt + ν2

wjt

)
− (η + δ)

)
mjt(ξ)dt + ξσwjtmjt(ξ)dZt

+ (η + δ)

(
η + δ + ϕ

η + δ

)ξ

e
1
2 ξ(ξ−1)ν2

0 dt.
(40)

Given our assumptions on the smoothness of the policy functions, we can apply Lemma A1 (stated

and proved in Online Appendix E.1) which implies that the stochastic process mjt(ξ) remains finite

a.s. as long as

E
[

ξ

(
µwjt −

1
2

σ2
wjt

)
+

1
2

ξ(ξ − 1)ν2
wjt − (η + δ)

]
< 0.

Combined with the definition of ζ j (20), this implies that mjt(ξ) remains finite a.s. for ξ ∈ (0, ζ j).58

We now use this result to derive an upper bound on the limit superior of the tail probability.

58In this case, we can also write mjt(ξ) in an integral form:

mjt(ξ) =

(∫ t

−∞
(η + δ)e

∫ t
s ((ξ(µwju− 1

2 σ2
wju)+

1
2 ξ(ξ−1)ν2

wju−(η+δ))du+ξσwju dZu) ds
)(

η + δ + ϕ

η + δ

)ξ

e
1
2 ξ(ξ−1)ν2

0 .
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For any ξ ∈ (0, ζ j), Markov inequality implies

Pt(wit ≥ w|i ∈ Ijt) = Pt(w
ξ
it ≥ wξ |i ∈ Ijt) ≤

mjt(ξ)

wξ
.

Taking logarithms, dividing by log w, and passing to the limit w → ∞ gives

lim sup
w→∞

log Pt(wit ≥ w|i ∈ Ijt)

log w
≤ −ξ.

As this inequality holds for any 0 < ξ < ζ j, it also holds in the limit ξ → ζ j, which gives (38).

Step 2. In this step, we prove

lim inf
w→∞

log Pt(wit ≥ w|i ∈ Ijt)

log w
≥ −ζ j for j ∈ {E, H}. (41)

To do so, we start by rewriting the probability of wealth being higher than a certain threshold

from Proposition 2. Denoting Φ(·) ≡ 1 − Φ(·) the counter-cumulative distribution function of a

standard normal variable, we have

Pt(wit ≥ w|j ∈ Ijt) =
∫ ∞

0
(η + δ)e−(η+δ)aΦ

(
log w − µj,t−a�t

νj,t−a�t

)
da. (42)

In words, the mass of individuals above wealth w can be written as the integral of the mass of

individuals above wealth w and with age a, evaluated over all ages a ∈ (0, ∞).

We first consider the case j = H (households). When E
[
µwHt − 1

2 σ2
wHt
]
≤ 0, ζH = ∞ and (41)

is trivial. Otherwise, we are in the case E
[
µwHt − 1

2 σ2
wHt
]
> 0. The law of large numbers implies

that µH,t−a�t
a → E

[
µwHt − 1

2 σ2
wHt
]

as a → ∞. As a result, for any ϵ > 0, there exists a0 such that

µH,t−a�t ≥ E[µwHt− 1
2 σ2

wHt]
1+ϵ a for a ≥ a0. In words, there exists an age a0 so that all cohorts older

than a0 have a lifetime average log wealth growth higher than E
[
µwHt − 1

2 σ2
wHt
]

/(1 + ϵ). This

implies that, for any log w ≥ E[µwHt− 1
2 σ2

wHt]
1+ϵ a0, we have µH,t−a�t ≥ log w for a ≥ 1+ϵ

E[µwHt− 1
2 σ2

wHt]
log w.

Combining this inequality with (42) implies that, for any log w ≥ E[µwHt− 1
2 σ2

wHt]
1+ϵ a0,

Pt(wit ≥ w|i ∈ IHt) ≥
∫ ∞

1+ϵ

E[µwHt− 1
2 σ2

wHt]
log w

(η + δ)e−(η+δ)aΦ
(

log w − µH,t−a�t

νH,t−a�t

)
da

≥
∫ ∞

1+ϵ

E[µwHt− 1
2 σ2

wHt]
log w

(η + δ)e−(η+δ)a 1
2

da

=
1
2

e
−(η+δ) 1+ϵ

E[µwHt− 1
2 σ2

wHt]
log w

.
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Taking logarithms, dividing by log w, and passing to the limit w → ∞ gives

lim inf
w→∞

log P (wit ≥ w|i ∈ IHt)

log w
≥ −(1 + ϵ)

η + δ

E
[
µwHt − 1

2 σ2
wHt
] .

Since this inequality holds for any ϵ > 0, we can pass to the limit ϵ → 0 to obtain (41).

lim inf
w→∞

log Pt(wit ≥ w|i ∈ IHt)

log w
≥ − η + δ

E
[
µwHt − 1

2 σ2
wHt
] = −ζH.

We now consider the case j = E (entrepreneurs) — while the intuition remains the same, the

mathematical derivation is more intricate due to the presence of idiosyncratic volatility. The law

of large numbers implies that µE,t−a�t
a → E

[
µwEt − 1

2 σ2
wEt − 1

2 ν2
wEt
]

and
ν2

E,t−a�t
a → E

[
ν2

wEt
]

as a → ∞.

Together with the asymptotic behavior of Φ, this implies that, for any α > 0,

lim
w→∞

log
(

e−(η+δ)α log wΦ
(

log w−µE,t−α log w�t
νE,t−α log w�t

))
log w

= −I(α), where

I(α) ≡ (η + δ)α +
1
2

(
1 − αE

[
µwEt − 1

2 σ2
wEt − 1

2 ν2
wEt
])2

αE
[
ν2

wEt
] ,

where the convergence is locally uniform in α. Hence, for any α > 0 and any ϵ > 0, there exists

γ > 0 and w ≥ 0 such that, for any w ≥ w and v ∈ (α − γ, α + γ),

e−(η+δ)v log wΦ
(

log w − µE,t−v log w�t

νE,t−v log w�t

)
≥ e−(1+ϵ)I(α) log w.

Without loss of generality, we can assume γ ≤ α. Combining the previous inequality with (42)

gives, for any w ≥ w,

Pt(wit ≥ w|i ∈ IE,t) =
∫ ∞

0
(η + δ)e−(η+δ)aΦ

(
log w − µE,t−a�t

νE,t−a�t

)
da

=
∫ ∞

0
(η + δ)e−(η+δ)v log wΦ

(
log w − µE,t−v log w�t

νE,t−v log w�t

)
(log w)dv (v ≡ a/ log w)

≥
∫ α+γ

α−γ
(η + δ)e−(η+δ)v log wΦ

(
log w − µE,t−v log w�t

νE,t−v log w�t

)
(log w)dv

≥ 2γ(η + δ)e−(1+ϵ)I(α) log w(log w).

Taking logarithms, dividing by log w, and passing to the limit w → ∞ gives

lim inf
w→∞

log Pt(wit ≥ w|i ∈ IE,t)

log w
≥ −(1 + ϵ)I(α).
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Since α > 0 and ϵ > 0 were chosen arbitrarily, we get

lim inf
w→∞

log Pt(wit ≥ w|i ∈ IE,t)

log w
≥ − inf

α∈(0,∞)
I(α). (43)

The minimum of the function α → I(α) on (0, ∞) is attained for

α =
1√

E
[
µwEt − 1

2 σ2
wEt − 1

2 ν2
wEt
]2

+ 2(η + δ)E
[
ν2

wEt
]

and the corresponding value at this point is ζE. Hence, (43) implies

lim inf
w→∞

log Pt(wit ≥ w|i ∈ IE,t)

log w
≥ −ζE.

Step 3. Combining the results proved in the two previous steps gives that

lim
w→∞

log Pt(wit ≥ w|i ∈ Ijt)

log w
= −ζ j for j ∈ {E, H},

which constitutes the first part of the proposition. Now, we have

Pt (wit ≥ w|i ∈ It) = ∑
j∈{E,H}

πjPt
(
wit ≥ w|i ∈ Ijt

)
.

Combining the two previous equations gives

lim
w→∞

log Pt(wit ≥ w|i ∈ It)

log w
= −min(ζE, ζH).

To conclude, note that E
[
ν2

wEt
]
> 0 implies that ζE < ∞, and, therefore, ζ = min(ζE, ζH) < ∞.

The fact that x has a stationary distribution implies that the cross-sectional moment of order one

is finite for both types, which implies min(ζE, ζH) > 1.

Finally, note that assuming ζE < ζH implies

lim
w→∞

log
(

Pt(wit ≥ w|i ∈ IHt)

Pt(wit ≥ w|i ∈ It)

)
= −∞,

which implies that the relative fraction of households (resp. entrepreneurs) converges to zero

(resp. one) in the right tail.

Proof of Proposition 4. The proof is in two steps. In the first step, we express the instantaneous

response of top wealth shares in terms of the instantaneous response of the cumulative distribu-

tion function of wealth. In the second step, we use the expression for the cumulative distribution

function from Proposition 2 to obtain its instantaneous response to aggregate shocks.
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Step 1. Consider a given top percentile p ∈ (0, 1). Denote qp,t the top quantile, which solves the

equation

Pt
(
wit ≥ qp,t|i ∈ It

)
= p.

The top percentile wealth share corresponds to the sum of normalized wealth above this quantile

threshold

Sp,t =
∫ ∞

qp,t

w dPt (wit ≤ w|i ∈ It) .

Integrating by parts gives

Sp,t = pqp,t +
∫ ∞

qp,t

Pt (wit ≥ w|i ∈ It)dw.

Differentiating with respect to an aggregate shock gives

∂Sp,t

∂Zt
= p

∂qp,t

∂Zt
− Pt+h(wit ≥ qp,t|i ∈ It)

∂qp,t

∂Zt
+
∫ ∞

qp,t

∂Pt(wit ≥ w|i ∈ It)

∂Zt
dw

=
∫ ∞

qp,t

∂Pt(wit ≥ w|i ∈ It)

∂Zt
dw.

This equation expresses the instantaneous response of a percentile wealth share to an aggregate

shock as the integral of the instantaneous response of the cumulative distribution function of

wealth above the quantile (conveniently, the response of the top quantile to the aggregate shock

does not appear in the expression).

Step 2. Combining the previous equation with the expression for the CDF given by Proposition 2

gives

∂Sp,t

∂Zt
=
∫ ∞

w=qp,t

 ∑
j∈{E,H}

πj

∫ t

s=−∞
(η + δ)e−(η+δ)(t−s)ϕ

(
log w − µj,s→t

νj,s→t

)
1

νj,s→t

(
∂µj,s→t

∂Zt

)
ds

dw,

where ϕ(z) ≡ ∂ZΦ(z) denotes the density of a standard normal variable. Exchanging the order of

integrations gives

∂Sp,t

∂Zt
= ∑

j∈{E,H}
πj

(∫ t

s=−∞
(η + δ)e−(η+δ)(t−s)

(∫ ∞

w=qp,t

1
νj,s→t

ϕ

(
log w − µj,s→t

νj,s→t

)
dw
)

ds
)

σwjt

= ∑
j∈{E,H}

πj

(∫ t

s=−∞
(η + δ)e−(η+δ)(t−s)

(∫ ∞

x=log qp,t

ex

νj,s→t
ϕ

(
x − µj,s→t

νj,s→t

)
dx
)

ds
)

σwjt

= ∑
j∈{E,H}

πj

(∫ t

s=−∞
(η + δ)e−(η+δ)(t−s)eµj,s→t+

1
2 ν2

j,s→t Φ
(

log qp,t − µj,s→t

νj,s→t
− νj,s→t

)
ds
)

σwjt,

where the last equation uses Lemma A2 (stated and proved in Online Appendix E.2) with ξ = 1.
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Next, Proposition A1 (stated and proved in Online Appendix C.2) gives, in the special case ξ = 1,

Et
[
wit1wit≥qp,t |i ∈ Ijt

]
=
∫ t

−∞
(η + δ)e−(η+δ)(t−s)eµj,s�t+

1
2 ν2

j,s�t Φ
(

log qp,t − µj,s�t

νj,s�t
− νj,s�t

)
ds.

Combining the two expressions implies

1
St

∂Sp,t

∂Zt
= ∑

j∈{E,H}
Fp,t(j)σwjt,

where Fp,t(j) denotes the fraction of wealth in the top percentile p at time t owned by individuals

of type j; that is,

Fp,t(j) ≡ Et
[
wit1wit≥qp,t |i ∈ Ijt

]
∑j∈{E,H} πjEt

[
wit1wit≥qp,t |i ∈ Ijt

]
=

πj
∫ t
−∞(η + δ)e−(η+δ)(t−s)eµj,s→t+

1
2 ν2

j,s→t Φ
(

log qp,t−µj,s→t
νj,s→t

− νj,s→t

)
ds

∑j∈{E,H} πj
∫ t
−∞(η + δ)e−(η+δ)(t−s)eµj,s→t+

1
2 ν2

j,s→t Φ
(

log qp,t−µj,s→t
νj,s→t

− νj,s→t

)
ds

. (44)

We can use this expression to characterize the instantaneous response of top wealth shares to

aggregate shocks in the limit p → 0. As shown in the proof of Proposition 3, the assumption that

ζE ≤ ζH implies that the fraction of entrepreneurs tends to one in the right tail of the distribution;

that is,

lim
w→∞

πEPt(wit ≥ w|i ∈ IE,t)

Pt(wit ≥ w|i ∈ It)
= 1.

As a result, we get

lim
p→0

πE
∫ ∞

qp,t
Pt(wit ≥ w|i ∈ IE,t)dw∫ ∞

qp,t
Pt(wit ≥ w|i ∈ It)dw

= 1.

Integrating by parts both the numerator and the denominator implies

lim
p→0

πE
∫ ∞

qp,t
w dPt(wit ≥ w|i ∈ IE,t)dw∫ ∞

qp,t
w dPt(wit ≥ w|i ∈ It)dw

= 1,

which implies limp→0 Fp,t(E) = 1 (and therefore limp→0 Ft,p(H) = 0). Hence, we get

lim
p→0

∂ log Sp,t

∂Zt
= σwEt.

50



Proof of Proposition 5. I first prove a more general statement that might be helpful in other contexts.

I then apply this result to the specific model discussed in the paper.

Step 1. Consider an asset with income flow Et[d log Dt] = gD(xt) and required return Et[d log Rt] =

gR(xt), where gD(·) and gR(·) are both smooth functions of a Markov process (xt). Denote p(xt)

the ratio of the asset value to its income. We can express the derivative p with respect x as the

weighted sum of the derivative of gD and gR with respect x:

∂x log p(x) = E
[∫ ∞

0
e−
∫ t

0
1

p(xs)
ds ∂xt

∂x0
∂x (gD(xt)− gR(xt))dt

∣∣∣x0 = x
]

. (45)

To show this, start with the market pricing equation

Et[d log Rt] = gR(xt)dt =
1

p(xt)
dt + gD(xt)dt + Et [d log p(xt)] .

Differentiating with respect to x0 gives

∂xt

∂x0
∂xgR(xt)dt = − ∂xt

∂x0

1
p(xt)

∂x log p(xt)dt +
∂xt

∂x0
∂xgD(xt)dt + Et

[
d
(

∂xt

∂x0
∂x log p(xt)

)]
.

Rearranging,

Et

[
d
(

e−
∫ t

0
1

p(xs)
ds ∂xt

∂x0
∂x log p(xt)

)]
= e−

∫ t
0

1
p(xs)

ds ∂xt

∂x0
∂x (gR(xt)− gD(xt)) .

Integrating forward gives (45), which concludes the proof of this statement.

Step 2. In our particular model, gD(x) is constant and gR(x) = µR(x)− 1
2 σ2

R(x), so (45) implies

∂x log p(x) = −E
[∫ ∞

0
e−
∫ t

0
1

p(xs)
ds ∂xt

∂x0
∂x

(
µR(xt)−

1
2

σ2
R(xt)

)
dt
∣∣∣x0 = x

]
.

Adding and subtracting by ∂xr(x) in the right-hand-side and multiplying both sides by σx(x) gives

the result (32).

I now briefly discuss how to compute this decomposition using numerical methods. The ex-

tended Feynman-Kac formula stated in Lemma A3 (Online Appendix E.3) implies that, for any f ,

the function u(x) ≡ E
[∫ ∞

0 e−
∫ h

0
1
ps ds ∂xh

∂x0
f (xh)dh

∣∣∣x0 = x
]

solves the linear ODE

0 = f (x) +
(

∂xµ(x)− 1
p(x)

)
u(x) +

(
µx(x) + σx(x)∂xσx(x)

)
∂xu(x) +

1
2

σ2
x(x)∂xxu(x).

Applying this result with f (x) = r(x) and f (x) = µR(x) − 1
2 σ2

R(x) allows me to compute the

risk-free rate channel and the excess return channel, respectively.

Proof of Proposition 6. We can express the normalized wealth of an entrepreneur at time t + h in
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terms of their wealth at time t:

wi,t+h = wi,te
∫ t+h

t ((µwEs− 1
2 σ2

wEs− 1
2 ν2

wjs)ds+σwEs dZs+νwEs dBis).

Averaging across all individuals in IE,t ∩ IE,t+h:

Et+h [wi,t+h|i ∈ IE,t ∩ IE,t+h] = Et [wit|i ∈ IE,t ∩ IE,t+h] e
∫ t+h

t ((µwEs− 1
2 σ2

wEs)ds+σwEs dZs).

Taking logarithms and the expectations at time t

Et [log Et+h [wi,t+h|i ∈ IE,t ∩ IE,t+h]] = log Et [wit|i ∈ IE,t ∩ IE,t+h]+Et

[∫ t+h

t

(
µwEs −

1
2

σ2
wEs

)
ds
]

.

Differentiating with respect to an aggregate shock at time t:

∂

∂Zt
Et [log Et+h [wi,t+h|i ∈ IE,t ∩ IE,t+h]] = σwEt(xt) + ∂x=xt E

[∫ h

0

(
µwE − 1

2
σ2

wE

)
ds|x0 = x

]
σx(xt),

which proves the result. Note that the right-hand side only depends on the horizon h and the

value of x at t, which justifies the notation ϵ(x, h).
I now briefly discuss how to compute this quantity using numerical methods. The extended

Feynman-Kac formula stated in Lemma A3 (Online Appendix E.3) implies that the function u(x, h) ≡
E
[∫ h

0
∂xh
∂x0

(
µwE − 1

2 σ2
wE
)
(xh)dh

∣∣∣x0 = x
]

solves the linear PDE

∂hu(x, h) =
(

µwE − 1
2

σ2
wE

)
(x) + ∂xµ(x)u(x, h)

+
(

µx(x) + σx(x)∂xσx(x)
)

∂xu(x, h) +
1
2

σ2
x(x)∂xxu(x, h),

with initial condition u(x, 0) = 0. After solving this PDE, one can obtain ϵ(x, h) = σwE(x) +
u(x, h)σx(x).

Proof of Proposition 7. We can follow the same steps as in Step 1 of the proof of Proposition 4 to

obtain the response of the top wealth share to an aggregate shock at horizon h in terms of the

response of the CDF of the wealth distribution:

∂Sp,t+h

∂Zt
=
∫ ∞

qp,t+h

∂Pt+h(wit+h ≥ w|i ∈ It+h)

∂Zt
dw.
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Combining with the expression for the CDF of wealth given in Proposition 2 gives

∂Sp,t+h

∂Zt
=
∫ ∞

w=qp,t+h

 ∑
j∈{E,H}

πj

∫ t+h

s=−∞
(η + δ)e−(η+δ)(t+h−s)ϕ

(
log w − µj,s→t+h

νj,s→t+h

)

× 1
νj,s→t+h

(
∂µj,s→t+h

∂Zt
− log w − µj,s→t+h

νj,s→t+h

∂νj,s→t+h

∂Zt

)
ds
)

dw,

where ϕ(z) ≡ ∂ZΦ(z) denotes the density of a standard normal variable. Next, the expressions

for µj,s→t+h and νj,s→t+h given in Proposition 2 imply

∂µj,s→t+h

∂Zt
= σwj(xt)1s≤t + σx(xt)

∫ t+h

t

∂xu

∂xt

(
∂x

(
µwj −

1
2

σ2
wj

)
(xu)du + ∂xσwj(xu)dZu

)
1s≤u

and
∂νj,s→t+h

∂Zt
= 1j=Eσx(xt)

ν2

νj,s→t+h

∫ t+h

t
αE(xu)

∂xu

∂xt
∂xαE(xu)du.

The fact that νj,s→t+h potentially reacts to aggregate shocks is an artifact of the model: to make

sure that entrepreneurs never own collectively more than 100% of equity, I assumed that, when-

ever xt is higher than 1/αE, the required equity share of entrepreneurs decreases to αE(x) = 1/x
(see Equation 7). Because this situation happens in less than 0.01% of the time in the calibrated

model, and because taking this into account would complicate the formulas further, I make the

approximation ∂νj,s→t+h/∂Zt ≈ 0 in the rest of the derivation.

As a result,

∂Sp,t+h

∂Zt
≈ ∑

j∈{E,H}
πj

∫ ∞

w=qp,t+h

∫ t+h

s=−∞
(η + δ)e−(η+δ)(t+h−s) 1

νj,s→t+h
ϕ

(
log w − µj,s→t+h

νj,s→t+h

)

×
(

σwj(xt)1s≤t + σx(xt)
∫ t+h

u=t

∂xu

∂xt

(
∂x

(
µwj −

1
2

σ2
wj

)
(xu)du + ∂xσwj(xu)dZu

)
1s≤u

)
ds dw.

Exchanging the order of integrations gives

∂Sp,t+h

∂Zt
≈ ∑

j∈{E,H}
σwj(xt)Wp,t+h(j, t)

+ ∑
j∈{E,H}

σx(xt)
∫ t+h

t

∂xs

∂xt

(
∂x

(
µwj −

1
2

σ2
wj

)
(xs)ds + ∂xσwj(xs)dZs

)
Wp,t+h(j, s),

where Wp,t+h(j, s) denotes the total normalized wealth at time t + h for individuals of type j in the
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top percentile p born before time s ≤ t + h:

Wp,t+h(j, s) ≡ πj

∫ s

−∞
(η + δ)e−(η+δ)u

∫ ∞

qt+h,p

1
νj,u→t+h

ϕ

(
log w − µj,u→t+h

νj,u→t+h

)
dw du

= πj

∫ s

−∞
(η + δ)e−(η+δ)ueµj,u→t+h+

1
2 ν2

j,u→t+h Φ
(

log qp,t+h − µj,u→t+h

νj,u→t+h
− νj,u→t+h

)
du,

where the second line uses Lemma A2 (state and proved in Online Appendix E.2) with ξ = 1.

Dividing by Sp,t+h = Wp,t+h(E, t + h) + Wp,t+h(H, t + h) gives

∂ log Sp,t+h

∂Zt
≈ ∑

j∈{E,H}
σwj(xt)Fp,t+h(j, t)

+ ∑
j∈{E,H}

σx(xt)
∫ t+h

t

∂xs

∂xt

(
∂x

(
µwj −

1
2

σ2
wj

)
(xs)ds + ∂xσwj(xs)dZs

)
Fp,t+h(j, s),

where Fp,t+h(j, s) denotes the fraction of wealth in the top percentile p at time t + h owned by

individuals of type j born before time s ≤ t + h:

Fp,t+h(j, s) ≡ Wp,t+h(j, s)
Wp,t+h(E, t + h) + Wp,t+h(H, t + h)

=
πj
∫ s
−∞(η + δ)e−(η+δ)ueµj,u→t+h+

1
2 ν2

j,u→t+h Φ
(

log qp,t+h−µj,u→t+h
νj,u→t+h

− νj,u→t+h

)
du

∑j∈{E,H} πj
∫ t+h
−∞ (η + δ)e−(η+δ)ueµj,u→t+h+

1
2 ν2

j,u→t+h Φ
(

log qp,t+h−µj,u→t+h
νj,u→t+h

− νj,u→t+h

)
du

.

(46)

Taking the expectation at time t gives

∂Et[log Sp,t+h]

∂Zt
≈ Et

 ∑
j∈{E,H}

σwj(xt)Fp,t+h(j, t)


+ Et

 ∑
j∈{E,H}

∫ t+h

t

∂xs

∂xt

(
∂x

(
µwj −

1
2

σ2
wj

)
(xs)ds + ∂xσwj(xs)dZs

)
Fp,t+h(j, s)

 σx(xt).

To simplify this further and make the resulting formula more intuitive, the second (and last) ap-

proximation I make is cov(∂xσwjt(xs)dZu, Fp,t+h(j, u)) ≈ 0; that is, I neglect the second-order term

that accounts for the fact that aggregate shocks between t and t+ h impact both the relative wealth

exposure of entrepreneurs and the fraction of wealth in the top percentile at time t + h owned by

agents of type j born before u. This term is small as long as ∂xσwjt(xs) and/or ∂Fp,t+h(j, u)/∂Zu are

small.59 This approximation allows me to abstract from the term in ∂xσwj(xs)dZs in the previous

59The fact that the actual impulse responses of top wealth shares plotted in Figure 5 are close to ϵ(x, h) for top
percentiles is visual evidence that this second-order term is small.
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equation, which proves the main formula in the proposition:

∂Et[log Sp,t+h]

∂Zt
≈ Et

 ∑
j∈{E,H}

σwj(xt)Fp,t+h(j, t)


+ Et

 ∑
j∈{E,H}

∫ t+h

t

∂xs

∂xt
∂x

(
µwj −

1
2

σ2
wj

)
(xs)Fp,t+h(j, s)ds

 σx(xt). (47)

I now use this proposition to describe the impulse response of top wealth shares as h → ∞

or p → 0. First, consider the case where p is fixed and h → ∞. The key observation is that,

given two times t < s and a top percentile p, the fraction of individuals in the top percentile p
at time t + h who are born before time s tends to zero as the horizon h tends to infinity; that is,

limh→∞ Fp,t+h(j, s) = 0 a.s. This result comes from the fact that this fraction is bounded above by

the relative mass of individuals born before s, e−(δ+η)(t+h−s), which itself tends to zero. Combining

this with (47) gives limh→∞ ∂Et[log Sp,t+h]/∂Zt = 0.

Second, consider the case where h is fixed and p → 0. The key observation is that, given a

time t and a horizon h, the fraction of individuals in the top percentile p at time t + h who are

born after time t tends to zero as the top percentile p tends to zero. This comes from the fact

that the cross-sectional average growth of the cohorts born between t and t + h is bounded above

by supu∈(t,t+h) |µju|h + supu∈(t,t+h) |σju| supu∈(t,t+h) |Zt+h − Zu|, and so the wealth distribution of

these agents at time t + h has thin tails. Because the overall distribution of entrepreneurs has a

thick tail, this implies limp→0 Fp,t+h(j, t) = 1j=E a.s.. Combining with (47) gives

lim
p→0

∂Et[log Sp,t+h]

∂Zt
= ϵ(x, h),

which concludes the proof.
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