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Abstract

We provide a finite sample inference method for the structural parameters of the
semiparametric binary response model under a conditional median restriction origi-
nally studied by Manski (1975, 1985). This is achieved by exploiting distributional
properties of observable outcomes conditional on the observed sequence of exogenous
variables. Moment inequalities conditional on the size n sequence of exogenous co-
variates are constructed, and the proposed test statistic is a monotone function of
violations of the corresponding sample moment inequalities. The critical value used
for inference is provided by the appropriate quantile of a known function of n indepen-
dent Bernoulli random variables, and does not require the use of a cube root asymptotic
approximation employing a point estimator of the target parameter. Simulation studies
demonstrate favorable finite sample performance of the test in comparison to several
existing approaches. Empirical use is illustrated with an application to the classical
setting of transportation choice.

JEL classification: C12 C14.

Keywords: Finite sample inference, Maximum score estimation, Moment inequalities,
Partial identification.

∗This is a revised version of the May 2020 CeMMAP working paper CWP 22/20. We thank Tim Arm-
strong, Federico Bugni, Bryan Graham, Jiaying Gu, Michal Kolesár, Sokbae Lee, Jia Li, Chuck Manski,
Matt Masten, Ilya Molchanov, Francesca Molinari, Ulrich Müller, Whitney Newey, Pepe Montiel Olea,
Thomas Russell, Chris Sims, and seminar and conference participants at Columbia, Duke, National Uni-
versity of Singapore, Penn State, Princeton, Singapore Management University, Vanderbilt, Yale, the 2019
Triangle Econometrics Conference, the 2019 Southern Economic Association Conference, the 2019 California
Econometrics Conference, the 2019 Young Econometricians Conference, the cemmap/WISE Workshop on
Advances in Econometrics, a cemmap/Turing Institute Economic Data Science Workshop, and the Univer-
sity of Tokyo Workshop on Advances in Econometrics for helpful comments and discussion. We are grateful
to Gurobi Optimization for their free academic license. Kuong (Lucas) Do, Cheuk Fai Ng, and especially
Xinyue Bei provided excellent research assistance at various stages of this project. Financial support from
the Economic and Social Research Council ESRC Large Research Grant ES/P008909/1 to the Centre for
Microdata Methods and Practice is gratefully acknowledged. Takuya Ura acknowledges financial support
from Small Grants in Aid of Research at UC Davis.

†Address: Adam Rosen, Department of Economics, Duke University, 213 Social Sciences Box 90097,
Durham, NC 27708; Email: adam.rosen@duke.edu

‡Address: Takuya Ura, Department of Economics, University of California, Davis, One Shields Avenue,
Davis, CA 95616; Email: takura@ucdavis.edu

1



1 Introduction

Point identification of parameters relies on exogenous variables exhibiting sufficient variation.

Precisely what properties constitute sufficient variation depends on the model employed,

for example taking the form of a rank condition in parametric models with linear index

restrictions. Many semiparametric and nonparametric models rely on additional support

conditions to ensure point identification. Hypothesis tests and confidence intervals in turn

rely on the asymptotic distribution of test statistics in order to achieve adequate asymp-

totic performance. The hope is that such asymptotic characterizations provide a suitable

approximation to the finite sample distribution of these test statistics.

The support conditions that ensure point identification in semiparametic models often

require that at least one of the exogenous variables is continuously distributed, and, more-

over that it has full support on the real line, so that it can take values of arbitrarily large

magnitude with positive probability.1 In contrast to rank conditions, if the support of exoge-

nous variables in the population were the finite set of points observed in an actual data set,

such conditions could not possibly be satisfied and the parameter of interest would not nec-

essarily be point identified. One may then wonder whether a test statistic whose asymptotic

distribution presupposes point identification in fact provides a reasonable approximation to

its finite sample distribution.

We examine this issue in the context of Manski’s (1985) semiparametric binary response

model, a central model in the literature on semiparametric econometrics.2 Like all semi-

parametric models, the model features a parametric component β ∈ RK and a nonpara-

metric component, in this case, a distribution-free specification of unobservable heterogene-

ity. We introduce the concept of the set of conditionally observationally equivalent parame-

ters, denoted B∗
n, as the set of parameter vectors b that satisfy the observable implications

of the model conditional on a size n sequence of observable exogenous covariate vectors

Xn ≡ (X1, ..., Xn).
3 This is the set of parameter vectors that would comprise the identified

set if the support of exogenous variables were in fact their observed support in the finite

sample. Thus, the difference between B∗
n and the identified set for β is that the former is

based on the conditional distribution of the outcome variables given X = x for values of

1Formally these support conditions on the distribution of a single exogenous variable are required to hold
conditional on any value of the other exogenous variables.

2This model is a binary outcome version of the model introduced by Manski (1975), cited by Powell
(1994) as the earliest example of semiparametric analysis of limited dependent variable models. Estimation
and inference on the parameters of this model – the maximum score estimand – have featured prominently
in the literature on semiparametric estimation.

3In some earlier drafts of this paper this set of conditionally observationally equivalent parameters was
called the “finite sample identified set”.
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x ∈ Xn, while the latter is based on the conditional distribution for values of x ∈ SX , the

support of exogenous variables in the population. As we illustrate, the set B∗
n is useful for

understanding both the possibilities and limitations of finite sample inference conditional

on Xn. While our focus in this paper is on the semiparametric binary response model, the

set of conditionally observationally equivalent parameters could be explicitly defined and

potentially used for studying finite sample inference using other models too.

The model features a binary outcome determined by the linear index threshold-crossing

specification

Y = 1{Xβ + U ≥ 0},

for observable variables Y ∈ {0, 1} and X a row vector in RK , where the unobservable

variable U is restricted to satisfy the zero conditional median restriction

median (U | X) = 0.

This semiparametric model is thus distribution-free with regard to unobservable U .4 Full

stochastic independence between U and X is not required, allowing for the conditional

distribution of U givenX = x to vary with the conditioning value x, and thus accommodating

general forms of heteroskedasticity. Under a rank condition and a large support condition

on a continuous regressor Manski (1985) established point identification of β up to scale,

as well as the large deviations convergence rate of the maximum score estimator. Several

further analyses of the maximum score and similar estimators for this and closely related

semiparametric binary response models have since been provided, and the literature on the

asymptotic properties of the maximum score estimator is now vast.5

In contrast to prior approaches for inference on β that employ asymptotic distributional

approximations, in this paper we develop a method for conducting finite sample inference

on β. To do this we provide a conditional moment inequality characterization of the afore-

mentioned set B∗
n. Moment inequality characterizations of the model’s implications have

4As noted in Manski (1985), his analysis easily generalizes to cover the restriction that the conditional
τth quantile of U given X is 0, where τ ∈ (0, 1) is known. The analysis in this paper can be similarly
generalized.

5Kim and Pollard (1990) showed that the convergence rate of the maximum score estimator is n−1/3

and established its nonstandard asymptotic distribution after appropriate centering and scaling. Horowitz
(1992) developed a smoothed maximum score estimator that converges faster than the n−1/3 rate and is
asymptotically normal under some additional smoothness assumptions. Additional papers that study large
sample estimation and inference applicable in the maximum score context include Manski and Thompson
(1986), Delgado, Rodŕıguez-Poo, and Wolf (2001), Abrevaya and Huang (2005), Léger and MacGibbon
(2006), Komarova (2013), Blevins (2015), Jun, Pinkse, and Wan (2015, 2017), Chen and Lee (2018, 2019),
Patra, Seijo, and Sen (2018), Seo and Otsu (2018), Cattaneo, Jansson, and Nagasawa (2020), Mukherjee,
Banerjee, and Ritov (2021), and Khan, Komarova, and Nekipelov (2024).
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been previously used by Komarova (2013), Blevins (2015), and Chen and Lee (2019). More

recently Khan, Komarova, and Nekipelov (2024) introduce a random set quantile estimator

for partially identifying discrete response models with discrete regressors and provide novel

comparative analyses of the estimation properties of several estimators, including the maxi-

mum score estimator for binary response. None of these papers propose an inference method

which is guaranteed to have finite sample validity, which is our focus here. As was the case

in the analysis provided in these papers, we do not require that β is point identified. For

instance, we do not require that any component of X is continuously distributed, much less

with large support. Our proposed test is valid both when such conditions hold, and when

they do not.

The approach taken here exploits the implication of the binary response model that con-

ditional on Xn, each outcome Yi follows a Bernoulli distribution. In practice, the Bernoulli

probabilities are unknown. Nonetheless, conditional on Xn, the probability P (Yi = 1 | Xn) =

P (Ui ≥ −Xiβ | Xn) is bounded from above or below by 1/2 according to the sign of Xiβ.

Consequently, for any known nonnegative-valued function g (·), the finite sample distribu-

tions of (2Yi − 1)1{Xiβ ≥ 0}g (Xi) and (1− 2Yi)1{Xiβ ≤ 0}g (Xi) conditional on Xn can be

bounded from below. Intuitively this is achieved by the distribution of the test statistic under

a least favorable configuration in which the unobservables Ui have large probability mass in

the tails, which minimizes the contribution of β for the determination of Yi. The test statistic

Tn(b) that we use to implement our test of the null hypothesis H0 : β = b is a supremum of

weighted sample averages of −(2Yi − 1)1{Xib ≥ 0}g (Xi) and −(1 − 2Yi)1{Xib ≤ 0}g (Xi),

where the supremum is taken over particular collections of functions g (·). The test statistic
Tn(b) is shown to be bounded from above by a function T ∗

n(b) of n independent Bernoulli

random variables, such that the finite sample distribution of T ∗
n(b) given Xn is known. Then,

under the null hypothesis β = b, we have

P (Tn(b) > q1−α(b) | Xn) ≤ α,

where q1−α(b) is the conditional 1 − α quantile of T ∗
n(b) given Xn. We further show that

if particular functions g (·) are used, the moment functions which Tn(b) incorporates fully

characterize the set of conditionally observationally equivalent parameters.

For any conditionally observationally equivalent parameter value b ∈ B∗, we show that

any test that achieves size control rejects the null hypotheses H0 : β = b with probability no

greater than α conditional on Xn. We subsequently establish a lower bound on the rejection

probability of our test for values of b ̸= β, and we show that this bound is increasing

in the degree to which the hypothesized parameter vector b violates the inequalities that
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characterize the set of conditionally observationally equivalent parameters. Thus values of b

that are sufficiently far from the set of conditionally observationally equivalent parameters

by this measure are guaranteed to be rejected with probability exceeding the size of the test.

For the sake of comparison we also consider likelihood ratio tests, which have favorable

minimax properties under general conditions, see e.g. chapter 8 of Lehmann and Romano

(2005). The minimax properties of a test for the null hypothesis of β = b depend on the

specification of the alternative hypothesis. The likelihood ratio test is a most powerful test

when the alternative hypothesis is simple, meaning that it specifies a unique conditional

distribution of (Y1, ..., Yn) given Xn. However, when the alternative hypothesis is of the form

β ̸= b or β = b̃, many possible distributions of (Y1, ..., Yn) given Xn are permitted under the

conditional median restriction. This alternative hypothesis is therefore composite. Indeed,

we show that the sets of possible distributions of (Y1, ..., Yn) given Xn admitted by both the

alternative and null hypothesis have nonempty intersection, so that they are not robustly

testable in the sense of Kaido and Zhang (2019, pp. 12-13). A completely randomized test

that rejects with probability α irrespective of the data is minimax optimal, suggesting that

minimax optimality may not be a suitable criterion for comparing tests in this setting. We

further establish a connection between the profile log-likelihood that profiles out the unknown

distribution of unobservable heterogeneity and the maximum score criterion function.

Among the aforementioned papers from the literature on maximum score, the most closely

related is that of Chen and Lee (2019), who also cast the implications of Manski’s (1985)

model as conditional moment inequalities for the sake of delivering a new insight, albeit one

that is different from ours. Chen and Lee (2019) expand on the conditional moment inequal-

ities used by Komarova (2013) and Blevins (2015) to develop a novel conditional moment

inequality characterization of the identified set which involves conditioning on two linear

indices instead of on the entire exogenous covariate vector. They apply intersection bound

inference from Chernozhukov, Lee, and Rosen (2013) to this conditional moment inequality

characterization to achieve asymptotically valid inference. This cleverly exploits the model’s

semiparametric linear index restriction in order to sidestep the curse of dimensionality. Al-

though a good deal of focus is given to Manski’s (1985) binary response model, their method

can also be applied to other semiparametric models.

This paper appears to be the first to propose a method that ensures valid finite sample

inference for β in Manski’s (1985) semiparametric binary response model. This is the main

contribution of the paper. Furthermore, although it is well known that identification analysis

relies on properties of the support of exogenous variables, this paper is also the first to for-

mally introduce the concept of a set of conditionally observationally equivalent parameters,

explicitly defining the set of model parameters logically consistent with the modeling restric-
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tions and only information that can be gathered from observable implications conditional

on realizations of exogenous variables observed in the finite sample. This concept can be

applied to other models, and may therefore be of independent interest.

There are a handful of precedents for employing finite sample inference with other par-

tially identifying models. Manski (2007) considers the problem of predicting choice prob-

abilities for the choices individuals would make if subjected to counterfactual variation in

their choice sets. In the absence of the structure afforded by commonly used random util-

ity models, he shows that counterfactual choice probabilities are partially identified, and

proposes a procedure for inference using results from Clopper and Pearson (1934). Cher-

nozhukov, Hansen, and Jansson (2009) propose a finite sample inference method for quantile

regression models in which the outcome is continuously distributed. Their approach exploits

a “conditionally pivotal property” to bound the finite sample distribution of a GMM cri-

terion incorporating moment equalities, but which does not require point identification for

its validity.6 Syrgkanis, Tamer, and Ziani (2018) conduct inference on partially identified

parameters in auction models imposing weak assumptions on bidders’ information. They

propose a method to conduct finite sample inference on moments of functions of the under-

lying valuation distribution using concentration inequalities. Armstrong and Kolesár (2021)

provide methods for optimal inference on average treatment effects that are finite sample

valid in the special case in which regression errors are normal, and which are asymptotically

valid more generally. Their conditions cover cases where identification may fail due to a

lack of overlap of the support of conditioning variables. The recent working paper Li and

Henry (2022) proposes a method for finite sample inference in parametric incomplete models

based on an optimal transport characterization of the identified set, employing Monte Carlo

tests. The approach taken in this paper for finite sample inference in the context of Manski’s

(1985) binary response model is different from all of these.

The rest of this paper is organized as follows. Section 2 formally sets out the testing

problem and the moment inequality representation of the set of conditionally observation-

ally equivalent parameters. Section 3 lays out the main results of the paper, namely the

construction of the test statistic and corresponding critical value, and the establishment of

our test’s finite sample validity as well as the aforementioned finite sample (lower) power

bound. Section 4 considers likelihood ratio tests. We establish a power envelope for tests of

the hypothesis β = b by directing power against simple alternatives and additionally show

that the maximum score estimator admits an interpretation as the maximizer of the profile

6Chernozhukov, Hansen, and Jansson (2009) study instrumental variable quantile regression with en-
dogenous covariates. In Appendix D, we outline an extension of our test in Section 3 to the case when X is
endogenous.
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likelihood in which the distribution of unobservable heterogeneity is treated as a nuisance

parameter. Section 5 demonstrates the performance of our approach relative to several oth-

ers by reporting results from Monte Carlo simulations. Section 6 applies our proposed test

to the dataset from Horowitz (1993). Section 7 concludes and discusses avenues for future

research. All proofs are in the Appendix. Unless otherwise stated, our analysis throughout

this paper should be read as conditional on observable covariate vectors Xn ≡ (X1, ..., Xn).

2 Model and Moment Restrictions

This section is divided into three subsections, the first of which formally presents the mod-

eling restrictions imposed. The second subsection characterizes the observable implications

of the binary response model conditional on a size n sequence of covariate vectors, Xn,

in contrast to those observable implications obtainable from knowledge of the population

distribution of observable variables. Based on these observable implications, this second

subsection introduces our definition of the set of conditionally observationally equivalent

parameters, B∗
n. The set clarifies which conjectured parameter values a test can feasibly

detect, as we show that for any test of β = b against β ̸= b that achieves finite sample size

control rejects any null value b ∈ B∗
n with probability no greater than the significance level

of the test. The third subsection provides a moment inequality representation of B∗
n that is

subsequently used in the construction of our test statistic. It further describes how recently

developed incremental enumeration algorithms for hyperplane arrangements can be used to

enumerate these inequalities.

2.1 Model

The following assumptions formalize the restrictions of the semiparametric binary response

model under study and the requirements on the sampling process. We maintain these As-

sumptions 1(i)–1(v) throughout this paper.

Assumption 1. (i) Random vectors {(Yi, Xi, Ui) : i = 1, ..., n} reside on a probability space

(Ω,F,P). (ii) Variables {(Yi, Xi) : i = 1, ..., n} are observed. (iii) There is a column vector

β ∈ RK such that P (Yi = 1{Xiβ + Ui ≥ 0} | Xn) = 1 and P (Ui ≥ 0 | Xn) = 1/2 for every

i = 1, . . . , n, where Xn ≡ (X1, ..., Xn). (iv) There is a known set B ⊆ RK to which β

belongs. (v) The unobservable variables (1{U1 ≥ 0}, ..., 1{Un ≥ 0}) are mutually independent

conditional on Xn.

The requirements of Assumption 1 are slightly weaker than the assumptions used in

the existing literature (e.g. Manski, 1975, 1985). Parts (i), (ii), and (iv) are standard.
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Although it is not necessary in this paper because we employ partial identification analysis,

the parameter space B can be restricted by imposing one of the usual scale normalizations

from the literature, such as |b1| = 1 for all b ∈ B. Part (iii) imposes the binary response

structure and the requirement that P (Ui ≥ 0 | Xn) = 1/2 for each i, which follows from

the inequality of display (1) in Manski (1985, page 315). Binary response models typically

require that Ui is continuously distributed in a neighborhood of zero, in which case this is

implied by a conditional median restriction. Strictly speaking, we do not need to impose that

each Ui is continuously distributed at zero to ensure our proposed test achieves finite sample

size control, and hence we replace the median restriction with this weaker requirement.7

Part (v) holds if (Yi, Xi, Ui) are independent and identically distributed, but is much more

general. Throughout the text, E is used to denote population expectation with respect to P,
and En ≡ n−1

∑n
i=1.

In the model specified by Assumption 1, knowledge of β is insufficient to uniquely deter-

mine the conditional distribution of (Y1, ..., Yn) given Xn, or even the conditional probability

of Yi = 1 for any i. One additionally requires knowledge of the joint distribution of (U1, ..., Un)

given Xn, here denoted G0. In other words, G0 is a nuisance parameter that is restricted by

Assumption 1, but is otherwise left unspecified. The conditional distribution of (Y1, ..., Yn)

given Xn is uniquely determined by (β,G0):

P(Yi = yi for all i | Xn) = P(β,G0) (Yi = yi for all i | Xn) , (2.1)

where for any (b,G) ∈ B×G, P(b,G)(Yi = yi for all i | Xn) = G(1{Xib+Ui ≥ 0} = yi for all i |
Xn).

8 Note that G denotes the set of possible distributions of (U1, ..., Un) given Xn satisfying

Assumption 1.9

In this paper, we consider the hypothesis test

H0 : β = b versus H1 : β ̸= b, (2.2)

where b is an arbitrary element of B. Using the nuisance parameter G0, the null and alter-

7Appendix G discusses implications of additionally require each Ui to be continuously distributed with
strictly increasing CDF conditional on Xn.

8It is to be understood here that writing that an event holds “for all i” means that it holds for all
i = 1, ..., n. The expression G(1{Xib + Ui ≥ 0} = yi for all i | Xn) denotes the conditional probability of
(1{X1b + U1 ≥ 0}, ..., 1{Xnb + Un ≥ 0}) = (y1, ..., yn) given Xn when G is the conditional distribution of
(U1, ..., Un) given Xn.

9In other words, G is the set of conditional distributions G of (U1, ..., Un) given Xn such that
G (Ui ≥ 0 | Xn) = 1/2 for every i = 1, . . . , n and that (1{U1 ≥ 0}, ..., 1{Un ≥ 0}) are mutually independent
conditional on Xn under G.
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native hypotheses in (2.2) can be equivalently expressed as

H0 : (β,G0) = (b,G) for some G ∈ G,

and

H1 : (β,G0) = (b̃, G̃) for some b̃ ∈ B with b̃ ̸= b and some G̃ ∈ G.

The objective of this paper is to propose a test of (2.2) with binary rejection rule ϕ(b, Y1, ..., Yn;Xn)

that achieves finite sample size control for H0 : β = b when the null hypothesis is true. The

rejection probability of such a test when β = b and G0 = G (conditional on Xn) is

P(b,G)(ϕ(b, Y1, ..., Yn;Xn) = 1 | Xn) =
∑

(y1,...,yn)∈{0,1}n
ϕ(b, y1, ..., yn;Xn)P(b,G) (Yi = yi for all i | Xn) .

A test ϕ(b, Y1, ..., Yn;Xn) achieves finite sample size control if

sup
G∈G

P(b,G)(ϕ(b, Y1, ..., Yn;Xn) = 1 | Xn) ≤ α. (2.3)

We focus on deterministic tests that achieve finite sample size control conditional on Xn.

The above inequality could easily be made an equality by employing a randomized test.

The power result presented in Theorem 5 in Section 3 and the results of Sections 4.1–4.3

additionally invoke the following assumption.

Assumption 2. Unobservable variables (U1, ..., Un) are mutually independent conditional on

Xn.

Assumption 2 is common in the prior literature on maximum score estimation, but is not

required for many of the results in this paper. In particular, it is not necessary to establish

finite sample size control for our test. The assumption is satisfied in models that restrict

(Xi, Ui) to be i.i.d., implied for example by Assumption 3 of Manski (1985). Note however

that Assumption 2 does not require (U1, ..., Un) to be i.i.d. given Xn, but only mutually

independent.

2.2 Observable Implications Conditional on Xn

To conduct finite sample inference, we focus solely on the implications obtainable from the

conditional distribution of (Y1, ..., Yn) given Xn. The approach does not rely on features of

the population conditional distribution of Y given values of X that may be on the support of

X but that are not realized in the sample. The set of parameters satisfying all implications

of the conditional distribution of (Y1, ..., Yn) given Xn is by definition the set of parameter
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vectors b ∈ B such that the conditional distribution of (Y1, ..., Yn) given Xn matches that

of Ỹi ≡ 1{Xib + Ũi ≥ 0} for a sequence of random variables (Ũ1, ..., Ũn) that satisfy the

restrictions placed on the conditional distribution of U1, ..., Un given Xn in Assumption 1.

This is the set we refer to as the set of conditionally observationally equivalent parameters,

which we denote B∗
n.

Definition 1. The set of conditionally observationally equivalent parameters for

β, denoted B∗
n, is the set of b ∈ B for which there exist random variables {Ỹi : i = 1, ..., n}

and {Ũi : i = 1, ..., n} on (Ω,F,P) such that:

(i): P
(
Ỹi = 1{Xib+ Ũi ≥ 0} for all i | Xn

)
= 1,

(ii): (Ỹ1, ..., Ỹn) and (Y1, ..., Yn) have the same conditional distribution given Xn,

(iii): P
(
Ũi ≥ 0 | Xn

)
= 1/2 for every i = 1, . . . , n,

(iv): {1{Ũi ≥ 0} : i = 1, . . . , n} are mutually independent given Xn.

The set B∗
n is thus determined by Xn and the conditional distribution of (Y1, ..., Yn) given

Xn. Each parameter vector b ∈ B∗
n cannot be distinguished from the population parameter

β on the basis of this conditional distribution. The set B∗
n involves the unknown population

distribution of (Y1, ..., Yn) given Xn, so it is an unknown object, even after Xn is realized. No-

tably, it is not argmaxb∈B Sn(b), the set of Manski’s (1985) maximum score estimators, where

the sample score function is defined by Sn(b) ≡ 1
n

∑n
i=1(2Yi − 1)sgn(Xib) with sgn(Xib) ≡

1 {Xib ≥ 0}−1 {Xib < 0} . The set argmaxb∈B Sn(b) is a sample object that can be computed

directly from sample data.

In this paper, the set B∗
n plays a key role in testing (2.2). Let b denote any element of

B∗
n and consider a level α test of (2.2) with null hypothesis H0 : β = b. Theorem 1 below

establishes that any such test that controls size has rejection probability less than or equal

to α, conditional on Xn.
10

Theorem 1. Let Assumption 1 hold, let b be any element of B∗
n, and let ϕ(b, Y1, ..., Yn;Xn)

be any rejection rule that achieves finite sample size control for H0 : β = b, thus satisfying

(2.3). Then

P(β,G0)(ϕ(b, Y1, ..., Yn;Xn) = 1 | Xn) ≤ α.

10Theorem 9 in the appendix further shows that this statement remains true if we additionally require
that the cumulative distribution function of Ui given Xn is strictly increasing, in which case the conditional
mean of Ui given Xn is unique.
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Here P(β,G0)(ϕ(b, Y1, ..., Yn;Xn) = 1 | Xn) is the rejection probability of test ϕ(b, Y1, ..., Yn;Xn)

for the hypothesis β = b under the population data generation process produced by (β,G0).

Theorem 1 allows b ̸= β as long as b belongs to B∗
n. In this case, the conclusion of

the theorem considers the rejection probability of a test ϕ under the population distri-

bution of Y1, ..., Yn given Xn when the null hypothesis is false (i.e., β ̸= b). It estab-

lishes that any finite sample valid test for H0 : β = b rejects with probability no higher

than α when b ∈ B∗
n. Theorem 1 holds because when the null and alternative hypothe-

ses restrict the class of possible G0 no further than the restrictions maintained under As-

sumption 1, then, for any b ∈ B∗
n, it is always possible to find a G̃ ∈ G that produces

P(Yi = yi for all i | Xn) = P(b,G̃) (Yi = yi for all i | Xn), the same distribution induced by β

and the unknown population distribution of G0.

While Theorem 1 shows no test of (2.2) that achieves finite sample size control can reject

a null of β = b with probability greater than α when b ∈ B∗
n conditional on Xn, it is possible

to do so when b /∈ B∗
n, as we will later show. In models in which conditions for point

identification of β are satisfied it is well known that it is possible to consistently estimate

β at the n−1/3 rate and hence achieve nontrivial asymptotic power against b ̸= β. Under

such conditions the set Xn approaches Supp(X) as n increases, and in the limit the set B∗
n

will then converge to the singleton set {β}. Theorem 1 aligns with the ability to achieve

non-trivial asymptotic power against b ̸= β because for sufficiently large n, b ̸= β implies

that b /∈ B∗
n.

Our next task in developing our test is to express B∗
n with a moment inequality repre-

sentation useful for inference. The following lemma sets out two observable implications for

this purpose.

Lemma 1. Under Assumption 1,

Xiβ ≥ 0 =⇒ E[2Yi − 1 | Xn] ≥ 0, (2.4)

Xiβ ≤ 0 =⇒ E[2Yi − 1 | Xn] ≤ 0. (2.5)

From the inequalities of the lemma, it further follows that if Xiβ = 0 then E[2Yi − 1 |
Xn] = 0. Moreover (2.4) and (2.5) and their implications described above hold with β

replaced by any b that is an element of the set of conditionally observationally equivalent

parameters B∗
n. This can be proven by following precisely the same steps as in the proof of

the lemma with Ũi from Definition 1 replacing Ui.

With Lemma 1 in hand, the following theorem provides a moment inequality characteri-

zation of B∗
n.
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Theorem 2. Under Assumption 1, the set of conditionally observationally equivalent pa-

rameters is

B∗
n = {b ∈ B : E [(2Yi − 1) 1{Xib ≥ 0} | Xn] ≥ 0 ≥ E [(2Yi − 1) 1{Xib ≤ 0} | Xn] for all i} .

The conditional moment inequalities characterizing B∗
n in Theorem 2 are equivalent to

(2.4) and (2.5) for all i = 1, ..., n. However, using this conditional moment inequality rep-

resentation to conduct inference on β is complicated by the fact that in a sample of n

observations the distribution of Yi given Xn can vary across i, even if (Yi, Xi) : i = 1, ..., n

are identically distributed, and there is only one observation of (Yi, Xi) for each i. Thus,

to make these inequalities operational for inference, some level of aggregation across i is

required. The following section considers the use of unconditional moment inequalities for

precisely this purpose.

2.3 Observable Implications as Unconditional Moment Inequali-

ties

In order to construct unconditional moment inequalities that hold for each b ∈ B∗
n, let

{gu(·, v) : v ∈ Vu}, {gl(·, v) : v ∈ Vl} (2.6)

be collections of nonnegative-valued instrument functions indexed by v ∈ Vu and v ∈ Vl,

respectively. That is, for any vu ∈ Vu and vl ∈ Vl, gu(·, vu) : SX → R+ and gl(·, vl) : SX → R+

are functions that map from SX , the support of X, to the nonnegative real numbers. Since

these functions are nonnegative-valued, Theorem 2 implies that for any b ∈ B∗
n, and all

vu ∈ Vu and vl ∈ Vl:

E [En [(2Y − 1)1{Xb ≥ 0}gu(X, vu)] | Xn] ≥ 0, (2.7)

E [En [(1− 2Y )1{Xb ≤ 0}gl(X, vl)] | Xn] ≥ 0. (2.8)

The test statistic developed in Section 3 incorporates empirical analogs of moment inequali-

ties of this form. Here we focus on instrument functions (2.6) of a particular form, as we now

describe, while noting that the steps taken to prove finite sample size control in Theorem 4

can in fact be applied to an analogous test statistic employing any choice of nonnegative-

valued instrument functions (2.6) that do not depend on (Y1, ..., Yn). The choice of instrument

functions will in general affect the power of the test. Here we consider a different criterion

from an identification perspective – namely, how to choose a sufficiently rich collection of in-

12



strument functions such that the unconditional inequalities (2.7) and (2.8) fully characterize

B∗
n.

For this purpose, consider a comparison of the hypothesized parameter b to a parameter

v. For values of Xi such that the sign of Xiv is the same as Xib, both β = v and β = b

deliver the same implication for whether E [2Yi − 1|Xi] is nonnegative or nonpositive. When

instead Xiv has the opposite sign of Xib, then the two parameter vectors make different

predictions for the sign of E [2Yi − 1|Xi]. Heuristically, parameter vector b does a better

job at predicting the sign of E [2Yi − 1|Xi] if the sign of Xib matches that of E [2Yi − 1|Xi]

more often than the sign of Xiv does. This is the intuition that underlies Manski’s (1985)

maximum score estimator.

This intuition motivates the use of instrument functions of the form gu(X, v) = 1{Xv <

0} and gl(X, v) = 1{Xv > 0}. These functions are nonnegative, so (2.7) and (2.8) are implied

for all v ∈ B by the conditional inequalities that characterize B∗
n provided by Theorem 2. As

we now establish, ensuring that (2.7) and (2.8) hold for all v ∈ B provides a full characteriza-

tion of B∗
n. However, we do not need to consider these inequalities for all the possible values

of v. For any v and ṽ such thatXiv andXiṽ have the same sign for all i, the resulting inequal-

ities in (2.7) and (2.8) are the same, so it is redundant to use inequalities that feature both v

and ṽ. To make use of this observation, we consider the hyperplanes
{
v ∈ RK : Xiv = 0

}
for

i = 1, ..., n and the complement of their union, i.e.,
{
v ∈ RK : Xiv ̸= 0 for all i

}
.11 Further

define V(Xn) to be the partition of
{
v ∈ RK : Xiv ̸= 0 for all i

}
according to the sequence

of inequalities Xiv < 0 and Xiv > 0, i = 1, ..., n, with boundaries given by the hyperplanes{
v ∈ RK : Xiv = 0

}
.12 Such a collection of hyperplanes is referred to as a linear hyperplane

arrangement in the computational geometry literature, and V(Xn) is the partition induced

by this hyperplane arrangement on
{
v ∈ RK : Xiv ̸= 0 for all i

}
.13 The second part of The-

orem 3 below implies that the moment inequality characterization using such instrument

functions and such a collection of points provides a full characterization of B∗
n with no loss

of identifying information.

11Points v at which Xiv = 0 for some i need not be considered. For such v the contribution of the term
involving Xi to both inequalities (2.7) and (2.8) is zero for all b, and there must exist a perturbation of v,
say ṽ, such that Xiṽ ̸= 0 for all i, which produces a smaller value of the left hand side of both (2.7) and
(2.8) for all b. Thus if inequalities employing such values of ṽ are used, values of v for which Xiv = 0 for
some i are redundant for characterizing B∗

n.
12In an early paper comparing computational methods for the maximum score estimator Pinkse (1993,

Section 3.3) used these hyperplanes to provide an exact but practically infeasible characterization of the
maximum score estimator. More recently Florios and Skouras (2008) developed a mixed integer linear
program for efficient computation of the estimator, see also Florios (2018) and Florios, Louka, and Bilias
(2022).

13In Appendix C we provide a detailed illustration of the hyperplane arrangement and resulting cells for
the simplest nontrivial case in which K = 2.
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Theorem 3. Let Assumption 1 hold. Then

(i) If b ∈ B∗
n then for any Vu ⊆ B and Vl ⊆ B:

∀v ∈ Vu : E [ En [(2Y − 1)1{Xb ≥ 0}1{Xv < 0}] | Xn] ≥ 0, (2.9)

and

∀v ∈ Vl : E [ En [(1− 2Y )1{Xb ≤ 0}1{Xv > 0}] | Xn] ≥ 0. (2.10)

(ii) If Vu = Vl = V and V contains at least one element from each cell of the par-

tition V(Xn) of
{
v ∈ RK : Xiv ̸= 0 for all i

}
induced by the hyperplane arrangement{

v ∈ RK : Xiv = 0
}
, then (2.9) and (2.10) imply that b ∈ B∗

n, so that B∗
n = {b ∈ B :

(2.9) and (2.10) hold}.

The test statistic developed for inference in Section 3 employs sample analogs of moment

inequalities of the form (2.9) and (2.10). The first part of Theorem 3 justifies their use

for arbitrary collections of v. The second part establishes that the use of Vu = Vl = V ,
where V comprises a collection of representatives that includes at least one element from

each member of the partition V(Xn), exhausts all the identifying power of these moment

inequalities, conditional on Xn. The use of values of v that belong to the same element

of the partition is redundant; thus it is sufficient to use a set V that has precisely one

representative point from each cell.

The first implication of Theorem 3 will imply asymptotic validity of the test we propose

in Section 3 below. That is, asymptotic size control does not rely on the choice of Vu and

Vl: we can use any sets of values Vu and Vl to achieve finite sample size control. If however

one wishes to use a sufficiently rich collection of moment inequalities to fully characterize

B∗
n, then it will be necessary to compute an exhaustive collection of representatives. In this

case the number of required representative points grows quickly with both the dimension K

of β and the sample size n. From Theorem 1 of Cover (1965), the maximal number of cells

from such a dichotomy employing n hyperplanes in RK is bounded from above by

2
K−1∑
j=0

(
n− 1

j

)
,

which can be a very large number. This is equivalently the upper bound on the number

of elements of V(Xn), attained when every subset of K points from X1, ..., Xn are linearly

independent.

Fortunately algorithms for enumeration of cells induced by the hyperplane arrangement

determined by any sequence of points, X1, ..., Xn, have been developed. Such algorithms have
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been put to good use recently in econometrics by e.g. Gu and Koenker (2022) for the purpose

of computing nonparametric maximum likelihood estimators for binary response models, Gu

and Russell (2023) for computing bounds on certain counterfactuals in nonseparable models

of binary response, and Gu, Russell, and Stringham (2022) for latent space enumeration

for the sake of computing bounds on counterfactuals in a more general class of partially

identifying models. Notable contributions in the development of such algorithms in the

computational geometry literature include Avis and Fukuda (1996), Sleumer (1998), and

Rada and Černý (2018).

While it is not necessary to compute an exhaustive collection of representatives for

asymptotic size control, if one wishes to do so we have found the class of algorithms

known as incremental enumeration methods useful for this purpose. These algorithms

start with an initial hyperplane, for example in our context this could be the hyperplane{
v ∈ RK : X1v = 0

}
, and take one representative point each from the region above and below

the hyperplane. This is the partition of RK induced by the singleton hyperplane arrange-

ment
{
v ∈ RK : X1v = 0

}
. Incremental enumeration works by iteratively adding one of the

hyperplanes
{
v ∈ RK : Xiv = 0

}
for i = 2, ..., n, each time splitting RK into the two re-

gions above and below the newly added hyperplane, and adding representative points for

any newly created cells in which there is not already a representative from prior iterations.

Enumerating all hyperplanes in this way produces a representative point for each cell of the

partition induced by the hyperplane arrangement.

This type of approach was proposed by Rada and Černý (2018), whose algorithm solves

a sequence of linear programs in each iteration to find new representatives from the newly

added hyperplane. Because linear programs can be solved very quickly, the algorithm per-

forms well compared to earlier approaches, and we use it here in our simulation studies and

our empirical application where K > 2. Nonetheless, the number of cells of the hyperplane

arrangement can be very large. For our problem the sheer number of points required makes

computation of our test statistic based on an exhaustive enumeration of cells costly. In order

to speed up computation, one can impose an upper bound on the number of representative

points v collected, such that the algorithm stops when this number is attained. While an

exhaustive set of representatives is necessary for a sharp characterization of B∗
n, any set of

points achieves valid finite sample inference. In our Monte Carlo analysis in Section 5 we

used the first 500 points collected by the Rada and Černý (2018) algorithm.14 With this

14In Appendix E we include additional Monte Carlo results comparing the use of 500 and 1000 values of
v when K = 5, and we find that the difference is quite small. Moreover the relationship between the power
curves for these two cases is not monotone. While using an exhaustive collection of v from the cells induced
by hyperplane arrangement provides a complete moment inequality characterization of B∗

n, it is not clear
that using more values of v is optimal from a power perspective, due to sampling variation.
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choice our inference method performed well in comparison to the other inference approaches

considered. Nonetheless, the development of incremental enumeration algorithms remains an

active area of study, and future innovation in this dimension may speed up the computation

of our test statistic when employing more cells.15

3 Inference Based on Moment Inequalities

For a given value b ∈ B, we consider a hypothesis test of

H0 : β = b versus H1 : β ̸= b, (3.1)

on the basis of n observations {(Yi, Xi) : i = 1, ..., n} following the restrictions of the semi-

parametric binary response model given by Assumption 1. In this section we first provide

theoretical guarantees for our test, followed by a step-by-step guide for implementation. If

one wishes to construct a confidence set for β, the set of b for which H0 is not rejected

by a size α test will provide a confidence set guaranteed to contain β with probability at

least 1 − α. We come back to this point in our empirical application, in which we also

consider the problem of conducting marginal inference on individual components of β from

a computational standpoint.

3.1 Hypothesis Test

To perform inference based on moment inequalities in Theorem 3, we incorporate sample

analogs of the moments appearing in (2.9) and (2.10), which are

m̂u(b, v) ≡ En [(2Y − 1)1{Xb ≥ 0 > Xv}] , v ∈ Vu,

m̂l(b, v) ≡ En [(1− 2Y )1{Xb ≤ 0 < Xv}] , v ∈ Vl,

into our test statistic

Tn(b) ≡ max

{
0, sup

v∈Vu

√
n

(
−m̂u(b, v)

σ̂u(b, v)

)
, sup
v∈Vl

√
n

(
−m̂l(b, v)

σ̂l(b, v)

)}
, (3.2)

15For example, the contemporaneous working paper Gu, Russell, and Stringham (2022) proposes a novel
incremental enumeration algorithm that replaces the use of linear programs to find new representative points
in each iteration. Instead, for this step they invoke recursion in the dimension of the space under study,
which avoids the need to repeatedly solve linear programs.
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where:16

σ̂u(b, v) ≡
√
En [1{Xb ≥ 0 > Xv}]− m̂u(b, v)2, (3.3)

σ̂l(b, v) ≡
√
En [1{Xb ≤ 0 < Xv}]− m̂l(b, v)2. (3.4)

The finite sample distribution of Tn(b) under H0 is unknown. We construct a random

variable T ∗
n(b) which has a known finite sample distribution given Xn and which satisfies

Tn(b) ≤ T ∗
n(b) under H0 : β = b. (3.5)

To this purpose define (Y ∗
1 , ..., Y

∗
n ) by

Y ∗
i = 1{Ui ≥ 0}, i = 1, ..., n,

and define

T ∗
n(b) ≡ max

{
0, sup

v∈Vu

√
n

(
−m̂∗

u(b, v)

σ̂∗
u(b, v)

)
, sup
v∈Vl

√
n

(
−m̂∗

l (b, v)

σ̂∗
l (b, v)

)}
with

m̂∗
u(b, v) ≡ En [(2Y

∗ − 1)1{Xb ≥ 0 > Xv}]

m̂∗
l (b, v) ≡ En [(1− 2Y ∗)1{Xb ≤ 0 < Xv}]

σ̂∗
u(b, v) ≡

√
En [1{Xb ≥ 0 > Xv}]− m̂∗

u(b, v)
2,

σ̂∗
l (b, v) ≡

√
En [1{Xb ≤ 0 < Xv}]− m̂∗

l (b, v)
2.

The random variable T ∗
n(b) replaces Y with Y ∗ in Tn(b) defined by (3.2) – (3.4). We do

not observe T ∗
n(b) because (Y

∗
1 , ..., Y

∗
n ) are not observed, but the finite sample distribution of

T ∗
n(b) given Xn is known since (Y ∗

1 , ..., Y
∗
n ) are independent Bernoulli(1/2) random variables

conditional on Xn.

Thus, for a given level α ∈ (0, 1), the critical value used for our test is the conditional

1− α quantile of T ∗
n(b) given Xn, namely

q1−α(b) ≡ inf{c ∈ R : P (T ∗
n(b) ≤ c | Xn) ≥ 1− α}. (3.6)

This critical value can be computed up to arbitrary accuracy by drawing a large number of

16In (3.2) it is to be understood that when σ̂c(b, v) = 0 then −m̂c(b, v)/σ̂c(b, v) = 0 if m̂c(b, v) = 0, while
otherwise −m̂c(b, v)/σ̂c(b, v) = ±∞ with the sign that of −m̂c(b, v).
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simulations, each of which comprises a sequence of n independent Bernoulli random variables.

Our proposed test uses the rejection rule 1{Tn(b) > q1−α(b)}, that is, it rejects H0 in favor

of H1 iff Tn(b) > q1−α(b).

The relationship between Tn(b) and T ∗
n(b) in (3.5) implies Theorem 4, establishing finite

sample size control of the proposed test. As is the case with all formal mathematical results

stated in the paper, the proofs of inequality (3.5) and Theorem 4 are in the Appendix.

Theorem 4. If Assumption 1 holds, then

P (Tn(b) ≤ q1−α(b) | Xn) ≥ inf
G∈G

P(β,G)(Tn(b) ≤ q1−α(b) | Xn) ≥ 1− α under H0 : β = b,

and for any value c̃ < q1−α(b) that is fixed conditional on Xn,

inf
G∈G

P(β,G) (Tn(b) ≤ c̃ | Xn) < 1− α under H0 : β = b.

Theorem 4 establishes finite sample size control of the rejection rule 1{Tn(b) > q1−α(b)}
for hypothesis test (3.1). While it is possible that P (Tn(b) ≤ q1−α(b) | Xn) strictly exceeds

1 − α under H0, any test using the same test statistic Tn(b) with a smaller critical value c̃

does not establish finite sample size control.17

Theorem 5 next establishes a power result for our test as a function of a measure of the

violation of moment inequalities that define B∗
n. Specifically, Hoeffding’s inequality is used

to establish a lower bound on finite sample power for certain violations of the inequalities

(2.9) and (2.10).

Theorem 5. Let Assumptions 1 and 2 hold, and let ρ be any number in (0, 1). If there is

v ∈ Vu such that

E [ En [(2Y − 1)1{Xb ≥ 0 > Xv}] | Xn]

≤ − 1√
n

(
q1−α(b)

√
En[1{Xb ≥ 0 > Xv}]

1 + q1−α(b)2/n
+
√

2 log(1/ρ)En[1{Xb ≥ 0 > Xv}]

)
, (3.7)

17Our proposed critical value q1−α(b) and the value c̃ in Theorem 4 depend only on Xn. In this paper, we
focus on fixed critical values, where here because inference is conditional on Xn we mean fixed conditional
on Xn. Also, note that Theorem 4 is silent about different choices of the test statistic.
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or there is v ∈ Vl such that

E [ En [(1− 2Y )1{Xb ≤ 0 < Xv}] | Xn]

≤ − 1√
n

(
q1−α(b)

√
En[1{Xb ≤ 0 < Xv}]

1 + q1−α(b)2/n
+
√

2 log(1/ρ)En[1{Xb ≤ 0 < Xv}]

)
, (3.8)

then the rejection probability is at least 1− ρ, i.e., P(Tn(b) > q1−α(b) | Xn) ≥ 1− ρ.

Furthermore, inversion of the conditions in Theorem 5 provides a power guarantee for

any parameter value b /∈ B∗
n.

Corollary 1. Let Assumptions 1 and 2 hold. For any b /∈ B∗
n, the rejection probability

P(Tn(b) > q1−α(b) | Xn) is at least the maximum of the following two expressions:

max
v∈Vu

(
1− exp

(
−1

2

(
max

{
0,
√
nζu(b, v)− q1−α(b)(1 + q1−α(b)

2/n)−1/2
})2))

, (3.9)

max
v∈Vl

(
1− exp

(
−1

2

(
max

{
0,
√
nζl(b, v)− q1−α(b)(1 + q1−α(b)

2/n)−1/2
})2))

, (3.10)

where the quantities in the above expressions are defined as

ζu(b, v) ≡
−E [ En [(2Y − 1)1{Xb ≥ 0 > Xv}] | Xn]√

En[1{Xb ≥ 0 > Xv}]

ζu(b, v) ≡
−E [ En [(1− 2Y )1{Xb ≤ 0 < Xv}] | Xn]√

En[1{Xb ≤ 0 < Xv}]
.

The bound provided by Theorem 5 depends on the degree to which the inequalities

(2.9) and (2.10) that characterize B∗
n are violated relative to

√
En[1{Xb ≥ 0 > Xv}] and√

En[1{Xb ≤ 0 < Xv}]. However, Theorem 5 further implies an explicit mapping between

(i) the extent to which a given parameter vector b violates the inequalities that define the set

of conditionally observationally equivalent parameters and (ii) a lower bound on the finite

sample power of our test for β = b that does not depend on sample quantities. To see this,

define

Qu(b) ≡ −min

{
0,min

v∈Vu

E [ En [(2Y − 1)1{Xb ≥ 0 > Xv}] | Xn]

}
,

Ql(b) ≡ −min

{
0,min

v∈Vl

E [ En [(1− 2Y )1{Xb ≤ 0 < Xv}] | Xn]

}
.

The values of Qu(b) and Ql(b) denote the maximal violation exhibited by b of the inequalities

(2.9) and (2.10) that characterize B∗
n in Theorem 3. Theorem 5 implies that our test is
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guaranteed to reject false hypotheses β = b with probability at least 1 − ρ whenever the

measure of violation, max{Qu(b), Ql(b)}, is at least Cα(b, 1− ρ), defined by

Cα(b, 1− ρ) ≡ 1√
n

(
q1−α(b)(1 + q1−α(b)

2/n)−1/2 +
√
−2 log(ρ)

)
. (3.11)

Inversion of this relation also provides an explicit power guarantee as a function of max{Qu(b), Ql(b)}.
The following corollary to Theorem 5 gives the formal results.

Corollary 2. Let Assumptions 1 and 2 hold and let ρ ∈ (0, 1).

1. If max{Qu(b), Ql(b)} ≥ Cα(b, 1− ρ), then P(Tn(b) > q1−α(b) | Xn) ≥ 1− ρ.

2. For any b /∈ B∗
n, the rejection probability P(Tn(b) > q1−α(b) | Xn) is at least

1− exp

(
−1

2

(
max

{
0,
√
nmax{Qu(b), Ql(b)} − q1−α(b)(1 + q1−α(b)

2/n)−1/2
})2)

.

Corollary 2 can be used to indicate how big max{Qu(b), Ql(b)} must be in order for The-

orem 5 to guarantee our test has power at least α against a parameter value b̃ irrespective of

sample quantities. It should be noted however that the power bounds delivered by Theorem

5 provide power guarantees which may not be sharp. That is, the test may achieve higher

power than this bound guarantees.

3.2 Implementation

The following steps describe how to perform inference using test statistic Tn(b) with the

critical value q1−α(b) described above.

1. Compute Vu and Vl to use in Tn(b).

2. Compute Tn(b) as defined in (3.2) - (3.4).

3. Draw r samples of n i.i.d. Bernoulli(1/2) variables Y ∗
1 , ..., Y

∗
n .

4. Compute T ∗
n(b) in each sample from step 3 and set q1−α(b) to the 1 − α quantile of

T ∗
n(b) in these r samples.

5. Reject the null hypothesis β = b of (3.1) if Tn(b) > q1−α(b), otherwise do not reject.

Step one can be implemented in several different ways. For instance, it can be done by

exhaustively computing representatives from V(Xn) using incremental cell enumeration algo-

rithms for hyperplane arrangements such as those of Rada and Černý (2018) and Gu, Russell,
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and Stringham (2022) as described in Section 2.3. Alternatively, one can randomly select

points in B. Exhaustively computing all representatives can be computationally demanding

depending on n and K, so imposing a maximal number or randomly selecting points can

help to maintain computational feasibility even when the number of elements of V(Xn) is

prohibitive.

Steps three and four are used to approximate the critical value q1−α(b), the conditional

1 − α quantile of T ∗
n(b) given Xn, defined in (3.6). It can be computed up to arbitrary

accuracy by choosing a sufficiently high value of r. If the test is carried out for multiple null

values of b, then the same r samples of (Y ∗
1 , ..., Y

∗
n ) can be used for each one.

4 Likelihood Ratios, Minimax Tests, and Maximum

Score

In this section, we consider the use of likelihood ratio tests. In subsections 4.1–4.3 we con-

sider their performance among least favorable configurations for the sake of determining

minimax optimal tests under a sequence of null and alternative hypotheses, the key dis-

tinction between subsections being whether each hypothesis is simple or composite. When

considering the minimax optimality of the likelihood ratio test, the relevant consideration

is the set of conditional distributions of (Y1, ..., Yn) given Xn allowed under each hypothesis.

A point null hypothesis for β is a composite hypothesis because it does not specify the con-

ditional distribution of (U1, ..., Un) given Xn, and therefore admits many different possible

conditional distributions of (Y1, ..., Yn) given Xn even under the maintained assumption that

for all i, P (Ui ≥ 0 | Xn) = 1/2. We therefore begin by first considering cases in which the

null and alternative hypotheses each uniquely specify both β and G0, and hence uniquely

determine the distribution P(β,G0), before then moving on to consideration of composite hy-

potheses. In Section 4.4 we then move beyond analysis under least favorable configurations

and instead consider likelihood ratio tests that treat the distribution of unobservable het-

erogeneity as a nuisance parameter over which to optimize subject to the restriction of the

hypothesized parameter value. Under standard conditions the profile log-likelihood is shown

to be a monotone transformation of the maximum score objective function.

4.1 Simple Null Hypotheses and Simple Alternative Hypotheses

When both hypotheses are simple, they have the representation

H0 : (β,G0) = (b,G) versus H1 : (β,G0) =
(
b̃, G̃

)
. (4.1)
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The likelihood under the null hypothesis is

P(b,G)(Yi = yi for all i | Xn) = G(1{Xib+ Ui ≥ 0} = yi for all i | Xn), (4.2)

and the likelihood under the alternative hypothesis is

P(b̃,G̃)(Yi = yi for all i | Xn) = G̃(1{Xib̃+ Ui ≥ 0} = yi for all i | Xn).

The likelihood ratio test ϕLR is the test that rejects H0 in favor of H1 with probability

ϕLR(Y1, ..., Yn;Xn) defined by

ϕLR(y1, ..., yn;Xn) =


1 if P(b̃,G̃)(Yi = yi for all i | Xn) > kP(b,G)(Yi = yi for all i | Xn)

ξ if P(b̃,G̃)(Yi = yi for all i | Xn) = kP(b,G)(Yi = yi for all i | Xn)

0 otherwise,

where k and ξ ∈ [0, 1] are chosen such that
∑

(y1,...,yn)∈{0,1}n ϕLR(y1, ..., yn;Xn)P(b,G)(Yi =

yi for all i | Xn) = α. 18

When the null and alternative distributions of a hypothesis test are simple, then by the

Neyman-Pearson Lemma (e.g., Chapter 3.2 of Lehmann and Romano (2005)), the likelihood

ratio test is the uniformly most powerful test. However, the hypothesis test of interest, (3.1),

differs because neither the null or alternative hypotheses uniquely specify G0.

If Assumption 2 additionally holds, the likelihood simplifies to the product of individual

likelihoods. Define

p̄i ≡ G (Ui ≥ −Xib | Xn) , (4.3)

and

p̃i ≡ G̃
(
Ui ≥ −Xib̃ | Xn

)
, (4.4)

18This test uses randomization in the event that P(b̃,G̃)(Yi = yi for all i | Xn) = kP(b,G)(Yi = yi for all i |
Xn). If a non-randomized implementation of the likelihood ratio test is preferred, that can be done in the
usual way by making the modification

ϕLR(y1, ..., yn;Xn) =


1 if P(b̃,G̃)(Yi = yi for all i | Xn) > kP(b,G)(Yi = yi for all i | Xn)

0 if P(b̃,G̃)(Yi = yi for all i | Xn) = kP(b,G)(Yi = yi for all i | Xn)

0 otherwise,

with k chosen as small as possible subject to the constraint that∑
(y1,...,yn)∈{0,1}n ϕLR(y1, ..., yn;Xn)P(b,G)(Yi = yi for all i | Xn) ≤ α. The conclusion of Theorem 6

would then be that the likelihood ratio test is a most powerful non-randomized test of (4.5) subject to
achieving finite sample size control. Subsequent results could be similarly modified without substantive
change of conclusions.
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The test ϕLR(Y1, ..., Yn;Xn) can then be written as

ϕLR(Y1, ..., Yn;Xn) =


1 if

∏n
i=1 p̃

Yi
i (1− p̃i)

1−Yi > k
∏n

i=1 p̄
Yi
i (1− p̄i)

1−Yi ,

ξ if
∏n

i=1 p̃
Yi
i (1− p̃i)

1−Yi = k
∏n

i=1 p̄
Yi
i (1− p̄i)

1−Yi ,

0 otherwise,

where k and ξ ∈ [0, 1] are chosen such that
∑

(y1,...,yn)∈{0,1}n ϕLR(y1, ..., yn;Xn)
∏n

i=1 p̄
yi
i (1 −

p̄i)
1−yi = α.

4.2 Composite Null Hypothesis and Simple Alternative Hypoth-

esis

In a step closer to the two-sided hypothesis test (3.1), consider the hypothesis test

H0 : β = b versus H1 : (β,G0) =
(
b̃, G̃

)
, (4.5)

which comprises the same null hypothesis of (3.1) and the alternative hypothesis of (4.1).

This test features a composite null hypothesis and a simple alternative hypothesis for (β,G0).

Using Theorem 3.8.1 of Lehmann and Romano (2005), we can reduce H0 to a simple

hypothesis by finding the least favorable distribution of (Y1, ..., Yn) given Xn. This entails

pairing the null value β = b with the distribution G0 among those satisfying the restric-

tions maintained in Assumptions 1 and 2 for which the likelihood ratio test has minimal

power against H1. Using the independence restriction of Assumption 2, the distributions of

(Y1, ..., Yn) given Xn are given by the marginal Bernoulli probabilities for each i, so that the

hypotheses can be characterized by the implied collections of probabilities (p̄1, ..., p̄n) and

(p̃1, ..., p̃n) coincident with (4.3) and (4.4) under the null and alternative, respectively. Thus

the null hypothesis in (4.5) can be written as

H0 : (β,G0) =

(
b,

n∏
i=1

Gi

)
for some (G1, ..., Gn).

For each observation i consider the probabilities p̄i and p̃i. Note that under Assumptions 1

and 2, p̄i−1/2 is nonpositive (nonnegative) if Xib is nonpositive (nonnegative), and likewise

p̃i − 1/2 is nonpositive (nonnegative) if Xib̃ is nonpositive (nonnegative). When Xib and

p̃i − 1/2 have the same sign, then there exists a conditional distribution of unobservable Ui

given Xn such that p̄i can be made equal to p̃i. For such i, the least favorable distribution

will thus have p̄i = p̃i. When instead Xib and p̃i−1/2 have the opposite sign, then in general
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p̄i cannot be equal to p̃i under the null due to the requirement in Assumption 1(iii) that

P(Ui ≥ 0 | Xn) = 1/2. The least favorable probability p̄i will however be made as close as

possible to p̃i while adhering to this assumption if the conditional distribution of Ui given

Xn allocates all mass to regions in which |Ui| > |Xib|, so that p̄i = 1/2.

We now formally let p̄i denote the null probability of Yi = 1 given Xn in keeping with

the above intuition for constructing the least favorable distribution under the composite null

β = b as follows:

p̄i =

1/2 if Xib(p̃i − 1/2) < 0 or Xib = 0,

p̃i otherwise.
(4.6)

These probabilities lie within the null set in (4.5) because p̄i = 1/2 is possible for any value

of b, and p̄i = p̃i is possible when p̃i − 1/2 and Xib are either both positive or negative. By

the Neyman-Pearson Lemma, the likelihood ratio test for the simple null of p̄1, ..., p̄n against

p̃1, ..., p̃n is most powerful. Theorem 6 verifies that the likelihood ratio test for this simple

hypothesis achieves finite sample size control under the composite null β = b, thus enabling

application of Theorem 3.8.1 of Lehmann and Romano (2005) and establishing that these

null probabilities are least favorable.

To proceed consider the corresponding test ϕ̄LR for (4.5) that makes use of this config-

uration of implied probabilities under the null. In other words, we consider the likelihood

ratio test with

ϕ̄LR(Y1, ..., Yn;Xn) =


1 if

∏n
i=1 p̃

Yi
i (1− p̃i)

1−Yi > k
∏n

i=1 p̄
Yi
i (1− p̄i)

1−Yi ,

ξ if
∏n

i=1 p̃
Yi
i (1− p̃i)

1−Yi = k
∏n

i=1 p̄
Yi
i (1− p̄i)

1−Yi ,

0 otherwise,

(4.7)

where k and ξ ∈ [0, 1] are chosen such that

∑
(y1,...,yn)∈{0,1}n

ϕ̄LR(y1, ..., yn;Xn)
n∏

i=1

p̄yii (1− p̄i)
1−yi = α. (4.8)

There is the following result, leveraging Theorem 3.8.1 of Lehmann and Romano (2005).

Theorem 6. Let Assumptions 1 and 2 hold. Consider the null and alternative hypotheses

stated in (4.5) and the test ϕ̄LR defined in (4.7) and (4.8). If the null hypothesis is true then

the rejection probability E
[
ϕ̄LR(Y1, ..., Yn) | Xn

]
is no greater than α. Moreover,

(y1, ..., yn) 7→
n∏

i=1

p̄yii (1− p̄i)
1−yi (4.9)
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is the least favorable distribution of (Y1, ..., Yn) given Xn under H0 against H1, and the test

ϕ̄LR is a most powerful test of H0 against H1.

Moreover, because the likelihood ratio test (4.7) is a most powerful test for hypothesis

(4.7) in which the alternative hypothesis specifies a particular distribution G in addition

to b̃, it provides a (possibly unattainable) power envelope for the test (3.1) which does not

specify G0 under the alternative hypothesis.

4.3 Composite Null Hypothesis and Composite Alternative Hy-

pothesis

When the researcher’s goal is to test β = b against the simple alternative hypothesis in

(4.5) that completely specifies the conditional distribution of (Y1, ..., Yn) given Xn, then the

likelihood ratio test implemented by adopting the rejection probability specified in (4.6)

– (4.8) is most powerful. When instead the researcher wishes to control power against a

composite alternative hypothesis, such as that of

H0 : β = b versus H1 : β = b̃, (4.10)

Theorem 6 is silent because each conditional distribution of (Y1, ..., Yn) given Xn allowed un-

der the alternative hypothesis will result in a different least favorable configuration and thus

a different likelihood ratio test. However, following arguments in Chapter 8.1 of Lehmann

and Romano (2005), it is straightforward to construct the least favorable pair of distributions

for this test. Note that for any b̃ hypothesized under the alternative, distributions G̃i can

be specified such that for all i:

p̃i ≡ G̃
(
Ui ≥ −Xib̃ | Xn

)
= 1/2. (4.11)

In particular, this is achieved by allocating all mass to regions on which |Ui| ≥ |Xib̃|, while
obeying the constraint P (Ui ≥ 0 | Xn) = 1/2.19 Such a combination of

(
b̃, G̃

)
under the

alternative hypothesis yields p̃i = 1/2 for all i. This conclusion holds irrespective of the

hypothesized value of b̃ in (4.5). Indeed it also holds for the value of β = b hypothesized

under the null. Correspondingly the least favorable {p̄i : i = 1, ..., n} under the null given

by (4.6) when all p̃i = 1/2 is given by p̄i = 1/2 for all i. Thus from Theorem 6 we have the

following implications for the two-sided test of β = b against β = b̃.

19If the distribution of Ui were restricted to have positive density on R, then Gi could be specified to
allocate probability 1− ϵ to {ui : |ui| ≥ |Xib

′|} for any small ϵ > 0.
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Corollary 3. Let Assumptions 1 and 2 hold. The least favorable pair of {p̄i : i = 1, ..., n}
and {p̃i : i = 1, ..., n} for the test (4.5) is given by p̄i = 1/2 for all i and p̃i = 1/2 for all i.

Moreover, since the conclusion holds for any b and b̃, this is also the least favorable pair for

the two-sided hypothesis test of β = b in (3.1).

This corollary is a direct implication of Theorem 6. While it may be conceptually ap-

pealing to construct a minimax optimal likelihood ratio test for the two-sided test (4.10)

based on the least favorable pair, we see from (4.7) and (4.8) that this results in a test which

rejects the null hypothesis with probability α irrespective of the data. This is because the

hypothesis β = b always includes the distribution under which p̄i = 1/2 for all i, for any

hypothesized value of b. Thus the sets of feasible conditional distributions of (Y1, ..., Yn)

given Xn compatible with each of the two hypotheses, β = b and β = b̃ overlap. Therefore,

parameter values b and b̃ are potentially observationally equivalent, as defined in Chesher

and Rosen (2017), even if b̃ lies outside the set of conditionally observationally equivalent

parameters, and hypothesis test (4.10) is not robustly testable in the sense of Kaido and

Zhang (2019). In words, under both hypotheses there exists a specification for the nuisance

distribution that produces p̄i = 1/2 for all i.20 Under this conditional distribution of Yi

given Xn the hypotheses are indistinguishable, and a test that rejects with probability α

independent of the data is then most powerful.

4.4 Profile Log-Likelihood and Maximum Score

In this section we shift attention from characterizing minimax optimal tests to the study

of the likelihood ratio test statistic, which comprises the ratio of profile log-likelihoods re-

stricted by the null and alternative hypotheses. When considering the null hypothesis β = b,

the profile log-likelihood imposes β = b and achieves the maximal log-likelihood over all

possible values of the nuisance parameter G0.
21 Namely, the profile log-likelihood is given

by ℓ(Y1,...,Yn)(b), where

ℓ(y1,...,yn)(b) ≡ sup
G∈G

logG(1{Xib+ Ui ≥ 0} = yi for all i | Xn). (4.12)

The function ℓ(Y1,...,Yn)(b) has a closed-form expression as given in the next theorem.

20In fact, there exists distributions of (U1, ..., Un) given Xn that produce p̄i = 1/2 for all i irrespective
of whether β = b or β = b̃, namely those distributions that allocate all mass to regions on which |Ui| ≥
max

{
|Xib|, |Xib̃|

}
while also satisfying P (Ui ≥ 0 | Xn) = 1/2.

21Recall that G0 denotes the joint distribution of U1, ..., Un conditional on Xn. Our analysis thus dif-
fers from results of Cosslett (1983) and Manski and Thompson (1989) providing comparisons of maximum
score estimation of β to maximum likelihood estimators constructed under the additional assumptions that
U1, ..., Un are identically and independently distributed with Ui and Xi independent for all i.
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Theorem 7. Let Assumption 1 hold. Then:

ℓ(Y1,...,Yn)(b) =
n log(2)

2
(S̃n(b)− 1), (4.13)

where

S̃n(b) ≡
1

n

n∑
i=1

(1 {(2Yi − 1)Xib > 0} − 1 {(2Yi − 1)Xib ≤ 0}).

The function S̃n(b) closely resembles Manski’s (1985) maximum score objective function:

Sn(b) ≡
1

n

n∑
i=1

(2Yi − 1)sgn(Xib) with sgn(Xib) ≡ 1 {Xib ≥ 0} − 1 {Xib < 0} .

Since

Sn(b) = S̃n(b) +
2

n

n∑
i=1

1{Xib = 0, Yi = 1},

the difference between S̃n(b)and Sn(b) lies only in how each function treats observations

with Xib = 0.22 Note however that under Manski’s conditions for point identification Xib is

continuously distributed for any b, so that Xib = 0 occurs with zero probability. Thus we

have the following Corollary.

Corollary 4. Suppose that P(Xib = 0) = 0 for all i. Then argmax
b∈B

Sn(b) = argmax
b∈B

ℓ(Y1,...,Yn)(b)

almost surely.

Evidently, under the usual conditions imposed for point identification in the literature, an

estimator that maximizes the profile log-likelihood ℓ(Y1,...,Yn)(b) is a maximum score estimator,

and vice versa. Moreover the likelihood ratio statistic is

LR(b) = 2
(
ℓ(Y1,...,Yn)(β̂MS)− ℓ(Y1,...,Yn)(b)

)
= 2n log(2)

(
S̃n(β̂MS)− S̃n(b)

)
, (4.14)

where β̂MS is a maximum score estimator, i.e. any element of the set maximizers of S̃n(b).

Note that for any b ̸= β there exists a distribution G of (U1, ..., Un) given Xn such that

U1, ..., Un are independent given Xn and that

G
(
Ui < max

i
max (|Xiβ|, |Xib|) | Xn

)
= G

(
Ui > max

i
max (|Xiβ|, |Xib|) | Xn

)
=

1

2
.

22Indeed Manski (1985) combines the two implications of Med(U |X) = 0: (1) xβ > 0 ⇐⇒
E [2Y − 1|X = x] > 0 and (2) xβ = 0 ⇐⇒ E [2Y − 1|X = x] = 0 to xβ ≥ 0 ⇐⇒ E [2Y − 1|X = x] ≥ 0.
He notes that the former implication is stronger, but the latter is more convenient, and he further notes that
the convention that sgn(0) = 1 is “convenient and inconsequential”, see Manski (1985), pages 2–3. In his
analysis, by virtue of the conditions shown to ensure point identification, Xb is continuously distributed for
all b ∈ B so that Xb = 0 is a probability zero event.
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If any such distribution is the population conditional distribution of (U1, ..., Un) given Xn,

then LR(b) = 0 in accordance with our finding that there exist least favorable distributions

of GU |Xn for which any test has trivial power.

It is possible to construct a critical value for LR(b) similarly to (3.6) as follows. Let

(Y ∗
1 , ..., Y

∗
n ) be independent (conditional on Xn) random variables with P(Y ∗ = 0 | Xn) =

P(Y ∗ = 1 | Xn) = 1/2. Using (Y ∗
1 , ..., Y

∗
n ) in place of (Y1, ..., Yn), we can construct the

likelihood ratio test statistic LR∗(b). Then a valid critical value is obtained by doing this

for a large number of repetitions, and using the conditional 1 − α quantile of LR∗(b) given

Xn across repeated samples as the critical value for LR(b). However, this is computationally

demanding because it computes maximum score estimators repeatedly, one for each sample

of (Y ∗
1 , ..., Y

∗
n ). Furthermore, Figure 9 in Appendix E shows that in the simulation designs of

Section 5 with sample size of 100, the test proposed in Section 3 is more powerful than the

test based on LR(b) for all designs considered, while both approaches achieve finite sample

size control.

5 Monte Carlo Experiments

In this section we present Monte Carlo results that illustrate the relative performance of our

test compared to three other available inference methods. Specifically, in addition to our

approach, we consider inference using the smoothed maximum score estimator introduced

by Horowitz (1992), moment inequality inference proposed by Chen and Lee (2018), and

inference using the bootstrap for cube root asymptotic developed by Cattaneo, Jansson, and

Nagasawa (2020).23

We employ four different data generation processes in our simulations each for covariates

of dimensions K = 2 and K = 5. Our simulation designs are the same as Horowitz (1992)

when K = 2, see also Horowitz (2002) and Cattaneo, Jansson, and Nagasawa (2020). In

this case the true parameter value is specified as β = (1, 1)′ with X bivariate normal such

that X1 ∼ N(0, 1) and X2 ∼ N(1, 1), independent of one another. When K = 5, we extend

the K = 2 design by specifying that β = (1, 1, 0, 0, 0)′ and that X = (X1, ..., XK) is a

vector of uncorrelated normal random variables with E[Xk] = 1{k ̸= 1} and V ar(Xk) = 1

for k = 1, ..., K. In all cases the first component of β is normalized to one, and in the

simulations inference is conducted for different values of the second component.

The distribution of unobservable U in each design is as follows, with U independent of

X in designs 1-3 and V independent of X in design 4.

23As mentioned at the end of the previous section, in Appendix E we also provide a brief comparison in a
subset of the cases considered here to finite sample inference based on the likelihood ratio statistic.

28



• Design 1: U is distributed logistic with mean zero and variance normalized to one.

• Design 2: U is uniformly distributed on [−
√
3,
√
3].

• Design 3: U is distributed Student-t with three degrees of freedom, normalized to have

variance one.

• Design 4: U = 0.25(1 + 2Z2 + Z4)V where Z = X1 + · · · + XK and V is distributed

logistic with mean zero, normalized to have variance one.

We report the results of conducting tests of the null hypothesis β = b against the al-

ternative hypothesis β ̸= b, where b = (1, b2)
′ for K = 2 and b = (1, b2, 0, 0, 0)

′ for K = 5.

Figures 1-6 present non-rejection frequencies in which the value of b2 ranges from −1 to 3 in

increments of 0.1 with intermediate values interpolated for illustration. The nominal signif-

icance level of the test in all cases is α = 0.1. For each of the four designs for U , and both

specifications for covariates of dimension K = 2 and K = 5, we report results for samples of

size n ∈ {100, 250, 1000}. All results for all cases are based on 500 simulation draws.

The results in the figures are labeled RU, CL, HSA, HSB, and CJN for (1) Rosen and Ura,

(2) Chen and Lee, (3) Horowitz smoothed asymptotic, (4) Horowitz smoothed bootstrap,

and (5) Cattaneo, Jansson, and Nagasawa, respectively. The details of each procedure used

are outlined below, before then discussing the results shown in Figures 1-6.

To implement our procedure (RU) we followed the implementation steps described in

Section 3.2. For computation of Vu and Vl we use one set V for both. When K = 2, we

analytically enumerate all cells induced by the hyperplane arrangement
{
v ∈ RK : Xiv = 0

}
,

as described in Appendix C. When K = 5, we use the first 500 representatives produced by

the Rada and Černý (2018) algorithm for computational simplicity, as described in Section

2.3.24 For computation of the critical value we used r = 500 samples of Bernoulli(1/2)

variables (Y ∗
1 , ..., Y

∗
n ).

For the implementation of CL, we follow the Index approach used by Chen and Lee (2019)

in their simulation studies, using the inference procedure described in their Section 4. To

follow Chen and Lee (2019) as closely as possible, we translated the Gauss code for their

simulations to R. The approach applies intersection bound inference from Chernozhukov, Lee,

and Rosen (2013) to a double index representation of the conditional moment inequalities

implied by the binary response model, using kernel functions. To compute their statistic,

we took the minimum value of the conditional moments over 500 randomly drawn values

24As noted in footnote 14, as a sensitivity check to this choice we also provide a comparison to using the
first 1000 representatives produced by the Rada and Černý (2018) algorithm in Appendix E, and find only
minor difference; see Figures 10 – 12.
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for the conditioning index, matching the number of representative points V used with our

approach, and to compute critical values we used 500 draws of n standard normal random

variables, matching our use of 500 draws of Y ∗
1 , ..., Y

∗
1 . for our critical values.

The smoothed maximum score estimator introduced by Horowitz (1992) estimates β by

maximizing
∑n

i=1 (2Yi − 1)K(Xib/σn) over b, where K(·) is a kernel function and σn is the

bandwidth.25 Inference using smoothed maximum score was conducted using both asymp-

totic critical values (HSA) and bootstrap critical values (HSB). For inference using asymp-

totic critical values we used the asymptotic normal approximation afforded by Horowitz

(1992) Theorem 2, while bootstrap critical values were implemented following Horowitz

(2002). The results reported in this paper use an undersmoothing factor of 1/2. We used

a fourth-order kernel function as also used in the Monte Carlo simulations in both of those

earlier papers.

Bootstrap-based inference for cube root asymptotics (CJN) was implemented following

Section 4.1 of Cattaneo, Jansson, and Nagasawa (2020), in which they applied their method

to inference on the maximum score estimated. We used their plug-in estimator for the

Hessian of the expected score criterion, which they denoted H̃MS
n . Their code applies to the

case in which K = 2, and we thus only include illustrations for the performance of CJN in

these cases.

Figures 1-6 present non-rejection frequencies for b2 ranging from −1 to 3 for α = 0.10.

Figures 1-3 show the results with K = 2, and Figures 4-6 show the results with K = 5. Our

construction of the critical value is guaranteed to achieve finite sample size control (for any

given n), while the other methods have been previously shown to achieve asymptotic size

control. The simulation results in this section confirm these theoretical results. We see that

when the null hypothesis is correct (b2 = 1) RU achieves finite sample size control in every

design and for all sample sizes. HSB performs very well for our simulation designs, nearly

achieving finite sample size control for all cases. Its improved performance relative to HSA

aligns with the earlier observations from Horowitz (1992, 2002).

Looking first at Figures 1-3, we see that the methods based on asymptotic approximation

generally perform better for larger sample sizes, as we might expect. HSA and CJN both

over-reject the null at these sample sizes, but to a progressively lesser degree as we move

from n = 100 in Figure 1 to n = 1000 in Figure 3.26 CL achieves size control for all sample

25The smoothed maximum score objective function is not convex, and to the best of our knowledge there
is no guaranteed algorithm for computing its exact global maximizer. For the results in this section, we use
the NLOPT LD TNEWTON algorithm from Dembo and Steihaug (1983) implemented in NLopt, Johnson
(2007–2019), executed through R’s nloptr package, Ypma (2018), using the true parameter value as a starting
value and the parameter space {1} × [−1, 3]K−1.

26In unreported results with n = 2000 we found continued improvement in the performance of CJN
consistent with asymptotic theory, with non-rejection probability achieving the 90% target for b2 = 1 in
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sizes for designs 1–3, but not for design 4, which features heteroskedasticity. The overall

pattern is similar when K = 5, as shown in Figures 4–6, although the performance of HSA

in general and CL in design 4 is not as good as with K = 2. We conjecture here that this

could be because with more covariates a larger sample size is required for the asymptotic

approximations to work well.

Overall we find that the performance of our proposed inference approach held up well

in comparison to the different methods considered. We conclude that no single approach

dominates. CL performs well in designs 1–3. In some of these cases, depending on K and

n it is outperformed by RU, and in some cases it performs better than RU, while in design

4 CL did not perform well at these sample sizes. HSB generally performed very well in all

designs, but from the figures we see that it does not dominate either RU or CL. It is also

important to note that asymptotic theory for smoothed maximum score invokes stronger

assumptions than Assumptions 1 and 2 in this paper, and these additional assumptions hold

in the data generating processes used in these illustrations.27

Finally, we note an asymmetry in power shared by our method and Chen and Lee (2019).

Among the alternatives plotted in our figures, our method and CL are more powerful for

b2 < 1 than for b2 > 1, where 1 is the true parameter value for the second component of

β. This asymmetry in power reflects the reliance of both methods on moment inequalities

that measure the disagreement between the sign of Xβ and Xb. In these designs there is an

inherent asymmetry in P(Xβ < 0 < Xb or Xb < 0 < Xβ) between b2 < 1 and b2 > 1, and

this is precisely what the asymmetry in the figures reflects. To illustrate this point, Figure

7, plots P(Xβ < 0 < Xb or Xb < 0 < Xβ) for different values of b2.
28 The figure illustrates

the stark difference in P(Xβ < 0 < Xb or Xb < 0 < Xβ) on either side of b2 = 1. This

asymmetry is a consequence of the particular hypothesized values for b that are tested and

for which non-rejection frequencies are plotted in the figures.

In terms of computation time, testing a single parameter value as implemented here

took roughly 0.6 seconds (23 seconds for 41 points) for a single parameter value in the most

demanding case considered, in which n = 1000 andK = 5.29 By way of comparison, testing a

design 4.
27Assumption 9 of Horowitz (1992) imposes that the function z 7→ P(U ≤ −z | Xβ = z, X̃) is differentiable

where X̃ is defined such that (Xβ, X̃) has the same information asX. In unreported Monte Carlo simulations
of designs 1–4 modified such that the unobserved variable U was right-censored at 0 (i.e., changing the value
of U to zero when U ≥ 0) we found that HSB did not control size in some cases. For brevity we do not include
these results here, as it is not surprising that tests employing HSB may not always perform well under a
violation of the stated assumptions from Horowitz (1992). Nonetheless we note that our inference method is
robust to violations of those additional assumptions. We thank an anonymous reviewer for suggesting such
a comparison.

28Note that P(Xβ < 0 < Xb or Xb < 0 < Xβ) is the same across designs 1-4 and K = 2, 5.
29Specifically, this computation time was obtained on a MacBook Air (M1, 2020) with 16 GB Memory.
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Figure 1: Non-rejection frequencies with 1 − α = 90% with n = 100 and K = 2. RU, CL,
HSA, HSB, and CJN stand for (1) Rosen and Ura, (2) Chen and Lee, (3) Horowitz smoothed
asymptotic, (4) Horowitz smoothed bootstrap, and (5) Cattaneo, Jansson, and Nagasawa,
respectively.

single parameter value using our implementation of CL took roughly 1.8 seconds (72 seconds

for 41 points).

6 Empirical Application

In this section, we apply the proposed inference method to the empirical application of

Horowitz (1993). The dataset comprises a cross section of observations of 842 randomly

sampled individuals from the Washington DC area transportation study. The outcome

variable is an indicator of transportation choice between automobile (Y = 1) and public

transit (Y = 0) as a method of commuting. The set of covariates is the number of cars

in a household (CARS), the difference in the commuting cost (DCOST ) in dollars, the

difference in out-of-vehicle travel time in minutes (DOV TT ), and the difference in in-vehicle

Using computers with different specifications or computing clusters will of course impact computation time.
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Figure 2: Non-rejection frequencies with 1 − α = 90% with n = 250 and K = 2. RU, CL,
HSA, HSB, and CJN stand for (1) Rosen and Ura, (2) Chen and Lee, (3) Horowitz smoothed
asymptotic, (4) Horowitz smoothed bootstrap, and (5) Cattaneo, Jansson, and Nagasawa,
respectively.

travel time in minutes (DIV TT ). All differences are given by the amount for public transit

minus that for automobile. Table 1 reports summary statistics for the variables. All the

covariates are normalized to mean zero in the following analysis.

In the application of our inference method, we consider the analysis separately for house-

holds with 0, 1, and 2 cars, for which there are 79, 302, and 316 observations, respectively.

This allows each of the other variables to affect these households differently. When comput-

ing the critical value for our test, we draw r = 500 sequences of n independent Bernoulli

variables. We use α = 0.1 as the nominal significance level of our test throughout.

We first conduct a hypothesis test for the joint significance of all covariates by testing

H0 : β = 0 againstH0 : β ̸= 0. This is done separately for each value of CARS, by computing

the test statistic in (3.2) and the critical value q1−α(b) in Section 3. The results are reported

in Table 2. For all three groups, the null hypothesis of H0 : β = 0 is rejected. The

usual conditions from the literature that ensure point identification as well as the standard
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Figure 3: Non-rejection frequencies with 1− α = 90% with n = 1000 and K = 2. RU, CL,
HSA, HSB, and CJN stand for (1) Rosen and Ura, (2) Chen and Lee, (3) Horowitz smoothed
asymptotic, (4) Horowitz smoothed bootstrap, and (5) Cattaneo, Jansson, and Nagasawa,
respectively.

normalizations imposed require that β has at least one non-zero component. Inference

methods that rely on point identification as a condition for asymptotic inference assume

that H0 : β = 0 is false. Our inference method allows us to test this hypothesis directly, and

it in fact provides a finite sample exact test when this hypothesis is correct.30

For a scale normalization one can restrict either the norm of the parameter vector or the

magnitude of an individual parameter component to a constant. We normalize the magnitude

of the intercept to one.31 The conditional probability of Y = 1 given CARS = 0 is 0.21,

30Note that our test is calibrated to a least favorable configuration, which for any β is a DGP in which
U has mass sufficiently far in the tails such that the sign of Y agrees with the sign of U almost surely. The
sign of Y is also completely determined by that of U when β = 0.

31Horowitz (1993) normalizes the coefficient of DCOST to one under the assumption that it is positive.
The sign of this coefficient is difficult to determine from this dataset. When we use all observations, the
score function takes a maximum of 0.906 if we normalize the coefficient of DCOST to 1, whereas it takes
a maximum of 0.899 if we normalize the coefficient of DCOST to -1. We have thus chosen an alternative
normalization, although it is reasonable to expect preference for automobiles to be increasing in DCOST .
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Figure 4: Non-rejection frequencies with 1 − α = 90% with n = 100 and K = 5. RU, CL,
HSA, and HSB stand for (1) Rosen and Ura, (2) Chen and Lee, (3) Horowitz smoothed
asymptotic, and (4) Horowitz smoothed bootstrap, respectively.

which is less than 1/2, so we normalize the intercept in this case to −1. For CARS = 1 and

CARS = 2 the conditional probabilities are 0.85 and 0.95, respectively, so we normalize the

intercept in these cases to +1. For all other parameter components, we set the parameter

space for β to be the rectangle spanning from −10 to 10 in each dimension. We also compute

the set of maximum score estimators, argmaxb∈B Sn(b). In Table 3, we report projections

of this set onto each parameter component. For computation we used Florios and Skouras’

(2008) exact characterization of weighted maximum score estimators using mixed-integer

linear programming.32

We construct 90% confidence intervals for each parameter component βk by inverting our

test from Section 3 and reporting the endpoints of the resulting confidence region

{bk : b ∈ B and Tn(b) ≤ q1−α(b)}. (6.1)

32For solving mixed integer programs we used the Gurobi optimizer (Gurobi Optimization, LLC (2023)).
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Figure 5: Non-rejection frequencies with 1 − α = 90% with n = 250 and K = 5. RU, CL,
HSA, and HSB stand for (1) Rosen and Ura, (2) Chen and Lee, (3) Horowitz smoothed
asymptotic, and (4) Horowitz smoothed bootstrap, respectively.

In order to scan the parameter space appropriately when performing test inversion, we

first used a quadratic mixed-integer program that characterizes a superset of our confidence

region, and thus itself provides a conservative 1−α confidence interval for each component.

Specifically, we solve the quadratic mixed-integer program:

maximize/minimize bk (6.2)

over (b, {(Zui, Zli) : i = 1, ..., n}) ∈ B × {0, 1}2n subject to

Xib ≤ CZui,−Xib ≤ CZli, Zui + Zli = 1 for every i = 1, ..., n; (6.3)

−
√
n

En [(2Y − 1)1{Xv < 0}Zu]√
En [1{0 > Xv}Zu]− (En [(2Y − 1)1{Xv < 0}Zu])2

≤ c̄v for every v ∈ Vu; and

(6.4)
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Figure 6: Non-rejection frequencies with 1 − α = 90% with n = 1000 and K = 5. RU,
CL, HSA, and HSB stand for (1) Rosen and Ura, (2) Chen and Lee, (3) Horowitz smoothed
asymptotic, and (4) Horowitz smoothed bootstrap, respectively.

−
√
n

En [(1− 2Y )1{Xv > 0}Zl]√
En [1{0 < Xv}Zl]− (En [(1− 2Y )1{Xv > 0}Zl])2

≤ c̄v for every v ∈ Vl, (6.5)

where C is a sufficiently large positive number. Lemma 2 in the Appendix formally shows

that this mixed-integer program yields a superset of {bk : b ∈ B and Tn(b) ≤ c̄v}, where c̄v

is the maximum value of q1−α(b) over b ∈ B. This mixed-integer program differs from, but

is inspired by that developed by Florios and Skouras (2008) for estimation.33

Table 4 reports the 90% region based on the above mixed-integer program. We con-

structed the regions separately according to the value of CARS. Regarding computation

time, it took 17.9 seconds to make Table 4 for CARS = 0, 137.9 minutes for CARS = 1,

and 55.3 minutes for CARS = 2.

Table 5 reports the resulting endpoints of the projection of a 90% confidence region

33For the sake of computation we use the first 500 representatives produced by the Rada and Černý (2018)
algorithm, compute the critical value for each of the first 500 values produced, and set c̄v to the maximum.
As in the previous section, we use these same 500 values as Vl and Vu. When we conduct test inversion as
described by (6.1), we use 10000 uniform random draws from the rectangular region reported in Table 4.
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Figure 7: The proportion of observations for which Xβ ̸= Xb.

CARS = 0 CARS = 1 CARS = 2
mean std. dev. mean std. dev. mean std. dev.

Y 0.21 0.41 0.85 0.36 0.95 0.22
DCOST -20.97 39.46 -16.45 36.99 -10.55 39.00
DOV TT 7.51 7.88 12.91 10.27 13.61 10.24
DIV TT 12.63 14.38 16.52 16.19 17.38 19.16

Table 1: Summary statistics for the covariates.

(α = 0.1) onto each parameter component βk using test inversion as described by (6.1), again

separately for each value of CARS. Regarding computation time, it took 3.9 minutes to make

Table 5 for CARS = 0, 19.2 minutes for CARS = 1, and 16.7 minutes for CARS = 2.

Overall, Tables 3 and 5 deliver mixed results. The interval estimates reported in Table

3 suggest that the coefficients on DCOST and DOV TT are both positive, while that for

DIV TT is negative for CARS = 0 and positive for CARS = 1. The interval estimates

for each non-normalized coefficient cross zero for CARS = 2, so the implied sign in this

case is ambiguous. This is not surprising given that 90% of individuals with CARS = 2

report commuting by automobile. Comparing the confidence intervals in Table 5 to the

interval estimates in Table 3 for CARS = 0 and CARS = 1, we see that we cannot sign any

parameter components at the 90% level. The confidence intervals for CARS = 0 are very

wide, which makes sense since there were only 79 households in the sample with no cars.
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CARS = 0 CARS = 1 CARS = 2
Test statistic 8.15 20.20 37.19
Critical value 3.24 3.02 3.14

Table 2: Hypothesis tests for β = 0 with α = 0.1.

Covariate CARS = 0 CARS = 1 CARS = 2
lower upper lower upper lower upper

Intercept -1 -1 1 1 1 1
DCOST 0.0235 0.0277 0.0075 0.0108 -0.0110 0.0114
DOV TT 0.0312 0.2403 0.0284 0.0475 -0.0343 0.0600
DIV TT -0.0684 -0.0106 0.0009 0.0133 -0.0129 0.0199

Table 3: Lower and upper bounds on each parameter component in the maximum score set
estimate. The intercept is normalized to −1 for CARS = 0 and 1 for CARS = 1, 2.

Comparing the sets reported in Tables 3 and 5 is also useful for getting a sense for

the relative effect of the size of set estimates versus sampling uncertainty. We see that in

some cases the confidence intervals are substantially wider than the set estimates, while in

other cases they are fairly close. For example, for CARS = 1 the interval estimate for the

coefficient on DCOST has length 0.0033 while the corresponding confidence interval has

length 0.0380. For CARS = 2 the interval estimate and confidence interval are much closer

with lengths 0.0224 and 0.0309, respectively. Interestingly, the confidence intervals produced

by the mixed-integer program (6.2) – (6.5) are not much wider than those obtained by test

inversion.

7 Conclusion

In this paper we proposed an approach to conduct finite sample inference on the parameters

of Manski’s (1985) semiparametric binary response model, for which the maximum score esti-

mator has been shown to be cube-root consistent with a non-normal asymptotic distribution

when there is point identification. Our approach circumvents the need to accommodate the

complicated asymptotic behavior of this point estimator. Since our goal was finite sample

inference, we considered the problem of making inference conditional on the n covariate vec-

tors observable in a finite sample. With covariates taking only a finite number of observed

values, the parameter vector β is not point identified. We therefore employed moment in-

equality implications for β for the sake of constructing our test statistic for inference, as the

moment inequalities are valid no matter whether β is point identified. In order to exposit

what observable implications can be distilled on only the basis of exogenous variables ob-
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Covariate CARS = 0 CARS = 1 CARS = 2
Intercept -1 -1 1 1 1 1
DCOST -3.6578 10.0000 -0.0200 0.0233 -0.0178 0.0158
DOV TT -10.0000 10.0000 -0.0573 0.1220 -0.0511 0.0928
DIV TT -6.2916 10.0000 -0.0445 0.0599 -0.0300 0.0515

Table 4: Confidence intervals based on (6.2)-(6.5) for the coefficients with 1−α = 90%. The
intercept is normalized to −1 for CARS = 0 and 1 for CARS = 1, 2.

Covariate CARS = 0 CARS = 1 CARS = 2
lower upper lower upper lower upper

Intercept -1 -1 1 1 1 1
DCOST -3.1418 9.9983 -0.0161 0.0219 -0.0164 0.0145
DOV TT -9.8789 9.9982 -0.0512 0.1106 -0.0477 0.0783
DIV TT -5.3020 9.9981 -0.0416 0.0548 -0.0239 0.0476

Table 5: Confidence intervals for coefficients based on test inversion with 1−α = 90%. The
intercept is normalized to −1 for CARS = 0 and 1 for CARS = 1, 2.

served in the finite sample, we defined the notion of the set of conditionally observationally

equivalent parameters B∗
n. We showed how to make use of the full set of observable impli-

cations conditional on the size n sequence of exogenous variables in our construction of a

test statistic Tn(b). Finite sample valid critical values were established, and were shown to

be easily computed by making use of many simulations of size n sequences of independent

Bernoulli variables. A finite sample power (lower) bound was also presented and the results

of some Monte Carlo experiments were reported, illustrating the performance of the test.

Several interesting directions for future research are possible. First, further study of the

relative costs and benefits of using more values of v, and possibly using the full set of repre-

sentative points afforded by cell enumeration, remains an open line of investigation. While a

sharp moment inequality representation of B∗
n requires use of an exhaustive set of representa-

tives, this may not be optimal for conducting inference. This parallels an earlier observation

in the literature on partial identification, namely that it is possible that incorporating re-

dundant or imprecisely-estimated moments into test statistics that use moment inequalities

can result in less precise inference even when those moments are implied by identification

analysis. Moreover, using more values of v increases computational requirements.

Second, the maximum score estimator is one of several estimators in the econometrics

literature that consistently estimate a model parameter that may only be identified under

support conditions that can never be satisfied by an empirical distribution based on a finite

sample. Some such estimators, like the maximum score estimator, exhibit slower than n−1/2
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convergence rates. Other such estimators, such as the maximum rank correlation estimator

of Han (1987) achieve the parametric rate. In this paper we have exploited the particular

structure of the semi-parametric binary response model, but there may nonetheless be po-

tential to extend ideas in this paper to such settings to alleviate dependence on conditions

not satisfied by empirical distributions that result from finite data.

A third possible avenue pertains to optimal testing. One direction could be to exploit the

likelihood ratio test analysis in this paper to consider minimax testing rates as n → ∞ under

additional assumptions on the distribution of Ui.
34 Minimax optimal estimation has recently

been investigated in a setting with high-dimensional covariates by Mukherjee, Banerjee, and

Ritov (2021) in an asymptotic framework under sufficient conditions for point identification.

Investigation of minimax optimal estimators and tests could be interesting to consider when

conditions for point identification are not guaranteed to hold. More generally, in future work

we aim to continue to explore the interplay between partial identification and testability,

and in particular the implications of not having point identification based on an underlying

discrete data distribution, as one always has when using the empirical distribution obtained

in a finite data set.

Data Availability Statement The data and code underlying this research is available on

Zenodo at https://doi.org/10.5281/zenodo.14156677.
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