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Abstract

We study robustly optimal mechanisms for selling multiple items. The seller
maximizes revenue against a worst-case distribution of a buyer’s valuations
within a set of distributions, called an “ambiguity” set. We identify the exact
forms of robustly optimal selling mechanisms and the worst-case distributions
when the ambiguity set satisfies various moment conditions on the values of
subsets of goods. The analysis reveals general properties of the ambiguity
set that justifies categorical bundling, which includes separate sales and pure
bundling as special cases.

1 Introduction
How should a seller sell multiple goods to a buyer? The answer to this seemingly sim-
ple question remains elusive. Unlike the single-good case, the optimal selling mech-
anism for multiple goods is difficult to identify. Traditional Bayesian approaches
often lead to intricate mechanisms that are highly sensitive to the buyer’s value dis-
tribution, as highlighted by Daskalakis et al. (2017) and Manelli and Vincent (2007).
Moreover, simple mechanisms like item pricing or bundled pricing can significantly
underperform compared to these theoretical optima (Briest et al. (2010); Hart and
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Nisan (2013)), and it is challenging to identify when such simple approaches are
effective (see Daskalakis et al. (2017), Manelli and Vincent (2006)).

Relaxing the Bayesian assumptions yields different optimal simple mechanisms in
specific scenarios. Carroll (2017) demonstrates that, when the seller knows only the
marginal distributions of item values, separate sales at monopoly prices maximize
worst-case revenue. In a concurrent study, Deb and Roesler (2023) show that selling
a grand bundle is optimal for worst-case revenue when the seller knows the value
distribution but lacks information about the buyer’s knowledge.

In practice, product bundling exhibits greater complexity. Sellers rarely offer all
products individually or as a single grand bundle. Instead, they commonly group
products into distinct categories and sell them as (separate) bundles.1 Video stream-
ing and cable TV services exemplify this, offering bundles of channels categorized by
genre, such as news, entertainment, or sports. Similarly, investment banks and finan-
cial companies bundle assets into securities based on sectors like technology, energy,
or healthcare.

In line with recent literature, this paper adopts a robustness approach by departing
from Bayesian assumptions. Our distinctive contribution lies in characterizing the
seller’s knowledge structure that directly results in a specific pattern and scope of
product bundling. Through this analysis, we provide unified insights into two extreme
scenarios: full separation (selling all goods individually) and pure bundling (selling
only a grand bundle). We achieve this by identifying the precise knowledge structures
that underpin these contrasting bundling mechanisms.

The seller in our model has n ě 2 heterogeneous goods to sell to a buyer. The
buyer has a quasilinear utility function additive in his valuations pv1, ..., vnq P Rn

` of
the goods. The valuations are the buyer’s private information, unobserved by the
seller. In modeling a seller’s information, we focus on the realistic scenario in which
the seller accesses basic summary statistics such as means and variances of valuations
along several categories of goods. The goods are partitioned into categories K P K,
where K is an arbitrary partition, such that the seller knows only the means and some
convex dispersion moments (to be defined) of each category value—the total valuation
1Also common is the bundling of complementary products such as computer hardware and software,
hotels and flights, razors, and razor blades. While our main model focuses on the additive value
setting, we show in Corollary 3 that such complementarity can be easily incorporated into our
model and is inconsequential for the prediction.
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of the goods in each category. The partition structure describes the granularity of the
seller’s data, representing the smallest groups of goods on which the seller may infer
about the group-level valuation. Meanwhile, the dispersion moments describe the
precision of the seller’s inference of the summary statistics, generating “confidence
intervals” for valuation estimates.

We study the robustly optimal selling mechanism that maximizes the seller’s ex-
pected revenue under the worst-case joint distribution consistent with the moment
conditions. For analysis, we consider a zero-sum game played by the seller seeking to
maximize her revenue and the adversarial nature seeking to minimize it. The equi-
librium of this game, or a saddle point, identifies the optimal revenue guarantee for
the seller.

Our first main result, Theorem 1, shows that the robustly-optimal mechanism
consists of K-bundled sales: each bundle K P K of items is sold separately at an
independently distributed random price, or equivalently via a menu of lotteries with
distinct prices. As a direct corollary, a separate selling mechanism and a pure bundling
mechanism are robustly optimal when K are the finest partition and the coarsest
partition, respectively. The intuition for Theorem 1 is that our seller faces three layers
of uncertainties, and the K-bundled sales mechanism hedges against each. First, the
independent pricing of alternative categories guards the seller against the first layer
of ambiguity concerning the correlation of their valuations across categories. Then,
the bundling of each product category hedges against the second layer of ambiguity
concerning how the value of each category is divided across its constituent items.
Finally, the randomization of bundle prices, or a menu of prices for each bundle,
hedges against the distributional ambiguity of each category value, consistent with
moment conditions.2

Our second main result, Theorem 2, shows that the K-bundling structure is not
only sufficient but also necessary for the robust optimality of the mechanism: it is
not robustly optimal either to separate items within each product category K P K
2The intuition behind the first layer of uncertainty aligns with Carroll (2017), where each item
represents a distinct category and only marginal distributions are known. Without the other two
layers of ambiguity, this naturally leads to full separation as the optimal mechanism. Meanwhile,
the insights related to the second and third layers resonate with those provided by Deb and Deb and
Roesler (2023). They demonstrate that similar uncertainties, arising from the buyer’s information
instead, justify pure bundling when the first layer of uncertainty is absent.
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or to bundle multiple product categories in K. These other mechanisms may also
be optimal against the distribution that justifies the use of K-bundled sales. What
fails them is robustness: they perform poorly against a different “counterfactual”
distribution, the analysis of which reveals the seller’s true motive for the use of K-
bundled sales. Specifically, a bundled sale of items within each category is motivated
by the fear that a certain negative correlation across values would lead to revenue loss
if items were sold separately. This finding harks back to the classic insight by Adams
and Yellen (1976). By contrast, separation across distinct categories is motivated by
the fear of asymmetric distributions of the buyer’s valuations across categories. If
different categories are bundled, the bundle screens the buyer symmetrically across
distinct categories, which results in screening inefficiency and revenue loss under the
counterfactual distribution.

We explore two extensions of our baseline model in Sections 5 and 6. The first
extension adapts our framework to study “informational ambiguity,” where the seller
has an unambiguous prior about the buyer’s valuations but faces ambiguity with
regard to the information the buyer has on his own valuations. Such informational
ambiguity is characterized by a collection of convex moment conditions, rendering our
framework readily applicable. We show that if the valuation distribution is stochas-
tically comonotonic, i.e., they are obtainable by a suitable garbling of comonotonic
distribution, then the worst-case signal that the buyer may have coincides with the
worst-case distribution that justifies the use of pure bundling. Consequently, pure
bundling is informationally robust. The second extension goes beyond the moment
restrictions assumed in the baseline model and characterizes (more general) distribu-
tional restrictions, called K-Knightian ambiguity, that justify the use of K-bundled
sales. These two extensions demonstrate that the insights obtained from our analysis
apply more broadly and resiliently beyond the specific settings considered in Section 3.

The current paper intersects with two broad strands of literature. First, it con-
tributes to the multiproduct monopoly literature and, more broadly, the multidi-
mensional screening and mechanism design literature. Representative works include
McAfee and McMillan (1988), Armstrong (1996, 1999), Manelli and Vincent (2006,
2007), Rochet and Chone (1988), Daskalakis et al. (2013, 2017), Hart and Reny (2015,
2019), Menicucci et al. (2015), and Haghpanah and Hartline (2021). The current pa-
per departs from this literature by taking a robustness approach.

Second, the current paper contributes to the literature on robust mechanism de-
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sign. Many authors study optimal mechanisms under the worst-case distribution of
states. To the best of our knowledge, Scarf (1957) was the first to adopt this approach
in inventory management. Carroll (2015, 2019) apply the approach to contracting set-
tings. Bergemann and Schlag (2011) and Carrasco et al. (2018) solve the single-item
monopoly problem with neighborhood restrictions and moment conditions, respec-
tively. Koçyiğit et al. (2019), Brooks and Du (2021a), He and Li (2022) and Che
(2022) extend the framework to the multi-buyer auction setting, but still with one
item. As already discussed, Carroll (2017) applies the robust mechanism design ap-
proach to a multi-item sale problem with known marginals, making it the closest
antecedent of the current paper. We develop his framework further and provide a
robustness-based rationale for general forms of categorical bundling, which include
separate sales and pure bundling as special cases.3 In addition, to our knowledge, our
necessity result of a robustly optimal mechanism is new to the literature.

Recent authors have also studied the optimal mechanism in the worst-case sce-
nario in terms of the information possessed by agents; see Du (2018), Bergemann
et al. (2016), Brooks and Du (2021a,b, 2023), and Deb and Roesler (2023). These
papers assume that a seller is ambiguous about the buyer’s information regarding the
values of items and chooses an optimal mechanism robust with respect to the buyer’s
information.4 Such a model can be seen as a robust mechanism design problem in
which the ambiguity set is determined by the seller’s prior belief in a particular way.
Among them, Deb and Roesler (2023) deals with the multi-item selling problem. They
show that pure bundling is informationally robust when the prior belief is exchange-
able across alternative items. We identify a more general stochastic comonotonicity
3Although worst-case revenue maximization is a natural way to extend the standard Bayesian frame-
work, several authors have also considered other notions of robustness in mechanism design. Berge-
mann and Schlag (2008), Guo and Shmaya (2023) and Koçyiğit et al. (2021) study the minimization
of regret—namely, a revenue shortfall of the chosen mechanism relative to the complete-information
optimal mechanism. In particular, Koçyiğit et al. (2021) finds a regret-minimizing mechanism for
selling multiple items with known means and rectangular domain, which parallels the case treated
in Appendix B.6. Another objective popular in algorithmic mechanism design is the revenue ratio
of simple mechanisms (often separate sales and pure bundling) to all mechanisms across all or a
restricted set of valuation distributions. As the number of items grows large, the ratio tends to zero
when the distributed is unrestricted (Briest et al. (2010); Hart and Nisan (2013)) and is bounded
away from zero when item values are independently distributed (Babaioff et al. (2014); Hart and
Nisan (2012); Li and Yao (2013)).

4Brooks and Du (2021a) employs both distributional and informational uncertainties.
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condition for the informational robust optimality of pure bundling, which nests the
exchangeable prior assumption as a special case but also permits highly asymmetric
priors.5 Brooks and Du (2023) proves that in multi-item auctions, informational am-
biguity implies the robust optimality of indirect mechanisms with one-dimensional
message space.

The rest of the paper is organized as follows. Section 2 introduces a model of
multi-item sale and defines a notion of robust optimality. Section 3 considers an am-
biguity set defined by a combination of moment conditions and establishes the robust
optimality of K´bundled sales, which specialize to separate sales and pure bundling
when K are the finest and coarsest partitions, respectively. Section 4 establishes
that the main qualitative features of K-bundled sales are necessary. Sections 5 and 6
extend the optimality of K-bundled sales to a setting with informational ambiguity
and a setting with more general distributional ambiguity, respectively. Section 7
concludes.

2 Model
A seller wishes to sell n items to a single buyer. The buyer has values v :“ pv1, ..., vnq
for the items whose distribution is unknown to the seller.6 The seller simply knows
that the distribution lies within some ambiguity set F Ă ∆pRn

`q defined by a set of
moment conditions.

Moment conditions: The moment conditions are defined in terms of means and
dispersions on a joint distribution. To define them, fix any joint distribution F P
∆pRn

`q. First, we assume the seller has some knowledge about the means of item
values. Given F , let µipF q :“ EF rvis denote the mean value of item i. Next, the
seller has some knowledge about the dispersion of values of arbitrary subsets of items.
Specifically, let K be an arbitrary partition of the goods, with its element K P K
5Deb and Roesler (2023) also explores the buyer-optimal information structure facing a Bayesian
seller, which is not the main focus of our paper.

6To be precise, the “values” v :“ pv1, ..., vnq need not be true values but rather the estimates the
buyer assigns to items. In this sense, the ambiguity the seller faces is ultimately an informational
one, arising from her ignorance of what the buyer “knows.”
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interpreted as a product category. For each product category K P K, we let

σKpF q :“ EF rφK přiPKviqs

be the dispersion of category K’s value under F , where φK : R` Ñ R` is a twice-
differentiable convex function satisfying φ2

K ě ε for some ε ą 0. We will refer to such
a function as convex moment function.

We assume that the seller knows item value means and dispersion lie in some
arbitrary nonempty convex and compact set Ω Ă Rn`|K|

` .7 Formally, the seller faces
an ambiguity set

F :“
!
F P ∆pRn

`q : pµipF q,σKpF qqiPN,KPK P Ω
)
. (1)

An example, which will be used throughout, illustrates the nature of ambiguity
facing the seller.

Example 1 Suppose the seller has 3 goods with N “ t1, 2, 3u. The seller does not
know the distribution of the items’ valuations to the buyer except that she knows the
means Erv1s “ 0.5, Erv2s “ Erv3s “ 0.3, and variances Vrv1s “ Vrv2 ` v3s “ 0.1

for two categories, given by the partition K “ tt1u, t2, 3uu. In this case, the convex
moment functions are φt1upvq “ φt2,3upvq “ v2, and the moment constraint set is
Ω “ tp0.5, 0.3, 0.3, 0.35, 0.46qu.

Feasible mechanisms: The seller is free to choose any selling mechanism. By
the revelation principle, it is without loss to focus on direct revelation mechanisms,
denoted by M “ pqpvq, tpvqq, where the allocation rule q : v ÞÑ r0, 1sn specifies the
probability of allocating each item to the buyer, and the payment rule t : v ÞÑ R`

specifies the expected payment received from the buyer, both as Borel measurable
functions of the vector v of values reported by the buyer. The mechanism satisfies
incentive compatibility and individual rationality:

v ¨ qpvq ´ tpvq ě sup
v1PRn

`
v ¨ qpv1q ´ tpv1q (IC)

v ¨ qpvq ´ tpvq ě 0 (IR)
7Given the linearity of a mean, our ambiguity set allows a mean condition to apply to the value of
each category, instead of the value of each item. As is clear from the proof of Theorem 1, this has
no effect for the qualitative features of the robustly optimal mechanism.
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for each v P Rn
`. Let M denote the set of all direct mechanisms satisfying the pICq

and pIRq constraints—called feasible mechanisms.8

K-bundled sales: Among the feasible mechanisms, certain types of mechanisms
will be of special interest to us. Consider the partition K. The seller may bundle each
category K P K of items and sell that bundle separately from the other categories of
items. For each item i, let Kpiq be the category K P K containing it. Formally, we
say a feasible mechanism M :“ pq, tq P M is a K-bundled sales mechanism if, for each
K P K, there exists a feasible (one-dimensional) mechanism qK : R` Ñ r0, 1s and
tK : R` Ñ R such that tpvq “ ř

KPK tKpřjPK vjq and qipvq “ qKpiqp
ř

jPK vjq.That is,
the mechanism sells each bundle K with probability qK and collects expected payment
tK . Let MK denote the set of all feasible K-bundled sales mechanisms.

In our leading example, the K-bundled sales mechanism involves two bundles: the
first bundle is good 1 only and the second bundle comprises goods 2 and 3, priced
independently according to distributions g1 and g23.

K-bundled sales include two canonical mechanisms as special cases. When K is
the finest partition, namely when K “ tt1u, ..., tnuu, K-bundled sales reduce to selling
each item separately; we will refer to this as a separate sales mechanism. When K
is the coarsest partition, namely when K “ tt1, ..., nuu, K-bundled sales reduces to
selling all items as a single grand bundle; we will call such a mechanism pure bundling.

Robustness solution concept: The seller’s revenue from a mechanism M P M
given value distribution F is RpM,F q :“

ş
tpvqF pdvq.9 Let R P R be a revenue

guarantee if there exists a mechanism M P M such that RpM,F q ě R for all F P F .
The seller’s objective is to maximize the revenue guarantee. Let

R˚ :“ sup
MPM

inf
FPF

RpM,F q

8 It is without loss to require pICq and pIRq for all types in Rn
`, rather than only for v P

Ť
FPF supppF q. Proposition B.1 shows that, for any feasible mechanism defined on

Ť
FPF supppF q,

one can find a Borel measurable extension that satisfies pICq and pIRq for all types in Rn
` and

implements the same outcome for the types in the original domain.
9Here, we implicitly assume that the seller values each item at zero. This is without loss. If there
are unit costs c “ pciq ě 0 for the items, then the problem facing the seller is exactly the same
as in our model in which she faces w “ v ´ c as the buyer’s valuations and zero costs. Robustly
optimal mechanisms are then obtained upon an appropriate change of variables. Specifically, a
saddle point pM˚, F˚q in our original model without costs remains a saddle point in terms of w in
the new model.
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be the optimal revenue guarantee, and we say the mechanism attaining R˚ is robustly
optimal.

2.1 Discussions of Model
The main elements of the model are motivated as follows.

Partitional knowledge structure: As illustrated in the introduction, the parti-
tion of goods K describes the granularity of the seller’s knowledge about the value
distribution. In practice, the partitional structure of knowledge often reflects the
intrinsic characteristics of goods. For instance, a financial broker may categorize
stocks according to the sector possibly because stocks within a sector are influenced
by common factors, making them more comparable to each other than to stocks from
different sectors. Similarly, in media and entertainment, products such as movies,
music, and books are grouped by genres, acknowledging the shared preferences of
consumers for content within the same genre. Wholesale distributors who supply
many goods to retail grocers categorize goods according to their industry, brand,
and grade. Market research then employs this categorization to derive key summary
statistics, such as the mean and variance of consumer valuations for these product
clusters, resulting in a partitional knowledge structure.

K´bundled sales in practice: Besides the two extreme cases (fully separation and
pure bundling), bundled sales with a non-degenerate partition structure are widely
adopted in practice. Intriguingly, they are commonly adopted in the examples we
introduced where the seller’s knowledge exhibits the partitional structure. Content
providers often sell bundled subscriptions based on the genres of the content. For
example, the Wall Street Journal offers their professional clients six bundles of news
partitioned based on the industry.10 Similarly, cable TVs and video streaming services
typically categorize their channels into three bundles news, sports, and movies. In
the supply chain of groceries, a wholesale distributor often offers a menu consisting
of product lines, each of which is a bundle of commodities of a specific brand.
10See https://wsjpro.com/.

9

https://wsjpro.com/


Moment conditions: We consider the ambiguity set defined by moment conditions
because moments (such as mean and variance) are the most natural information the
seller may receive in practice. However, our assumption on F covers more than
conventional moment conditions.

First, we consider a general convex moment function φ, instead of conventional
power moment functions (e.g. Carrasco et al. (2018)). This generality enables us to
extend our results to other types of ambiguities. In Section 5, we demonstrate that
the so-called informational ambiguity—the seller being ambiguous about what the
buyer knows about—can be represented as a dispersion condition corresponding to
a particular convex moment function. Additionally, in Appendix B.6, we show that
the case of domain restriction, where the value of each bundle K P K,

ř
iPK vi, lies in

some interval r0, vKs, can also be analyzed as a limiting case of convex moments.
Second, the generality of the “confidence set” Ω allows us to capture a wide range

of scenarios regarding the seller’s ambiguity. For instance, Ω could be arbitrarily close
to R|K| when projected to the last |K| dimensions, in which case the convex moments
would be unrestricted.11 At the other extreme, Ω could be a singleton; the seller then
knows the exact means and dispersion of individual item values. As another example,
Ω could be characterized by a system of inequalities: ψjpµ1pF q, ..., µnpF qq ě 0, for
some concave functions ψj, j “ 1, ..., n. This allows for cases in which the seller
knows the average values of subsets of items.12 Generally, one can view the size of
Ω as capturing the magnitude of ambiguity the seller faces concerning the relevant
bundle values.

Robustness solution concept: Throughout the paper (except Section 6) we find
the robustly optimal mechanism by solving a simultaneous-move zero-sum game. The
equilibrium pM˚, F ˚q P pM,Fq of the zero-sum game is a saddle point; i.e., @M P M,
@F P F ,

RpM,F ˚q ď RpM˚, F ˚q ď RpM˚, F q. (2)

It is well-known that a saddle point gives rise to an optimal revenue guarantee (see Os-
borne and Rubinstein (1994), Proposition 22.2-b) and the guarantee does not change
11In this special case, the ambiguity set is compatible with any arbitrary partition K1. Our Theorem 1

would then imply that all bundling structures (including pure bundling and full separation) are
robustly optimal.

12For instance, we could have
ř

iPK EF rvis “ mK for each K P K.
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with the order of moves:

RpM˚, F ˚q “ max
MPM

min
FPF

RpM,F q “ min
FPF

max
MPM

RpM,F q “ R˚. (3)

3 Robust Optimality of K-bundled sales
In this section, we solve for the robustly optimal selling mechanism for the seller who
faces the ambiguity set indexed by an arbitrary partition K and the set Ω of possible
moments. We begin with the main theorem:

Theorem 1 It is robustly optimal for the seller to use a K-bundled sales mechanism.

Proof: See Appendix A.1.

To prove Theorem 1, we construct a K-bundled sales mechanism M˚ P M together
with the distribution F ˚ P F such that they form mutual best responses. Here, we
illustrate the main economic intuition behind the construction using Example 1; the
general construction of pF ˚,M˚q and proof appear in Appendix A.1.

Construction of F ˚: Recall that in Example 1, K “ tt1u, t2, 3uu, with the ambi-
guity set F constrained in terms of means and variances of valuations along two cat-
egories, t1u and t2, 3u, of goods. Nature chooses F ˚ P F that has a one-dimensional
support depicted in Figure 1: the support forms a ray emanating from the origin
and contains a vertical segment toward the end. Specifically, nature draws a one-
dimensional random variable X distributed from r1,8q according to cdf

Hpxq :“ 1 ´ 1{x,

(i.e. Pareto distribution). The valuation of each good i “ 1, 2, 3 is then determined
as

vi “ mintαiX, βiu,

where pαi, βiq’s are chosen (uniquely) to satisfy the moment conditions (i.e., Erv1s “
0.5, Erv2s “ Erv3s “ 0.3, and variances Vrv1s “ Vrv2 ` v3s “ 0.1).

There are two properties notable about F ˚. The first is that the support is
comonotonic within each category; see, for example in Figure 1, its projection onto the
pv2, v3q space. As will be explained in Section 4, this property incentivizes the seller to
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Fig. 1: The solid curve is the support of the joint distribution F ˚. The dashed curves are
its projections to the subspaces.

bundle each category of goods. Second, F ˚ is designed to suppress the seller’s revenue
as much as possible. To see this, note first that, since F ˚ is one-dimensional, the
seller’s mechanism design problem reduces to a standard one-dimensional screening
problem (with multi-dimensional allocations). The virtual value of each item (as a
function of x) is

Jipxq “ Vipxq ´ V 1
i pxq1 ´ Hpxq

hpxq “

$
&

%
0 if x ă βi{αi

βi if x ě βi{αi

.

In words, nature “levels” the seller’s virtual valuation. The “flat” virtual value
function means that all mechanisms that allocate each item i to buyer type with
valuation βi are optimal. Since any K´bundled sales mechanism that sets bundle
t1u’s price in rα1, β1q and bundle t2, 3u’s price in rα2`α3, β2`β3q, respectively, satisfy
this property, M˚ constructed below is optimal given F ˚. The resulting revenue is
precisely what the seller receives by charging the lowest prices in the support of F ˚,
i.e., α1 ` α2 ` α3.13

Mechanism M˚: The optimal K-bundling mechanism sells the two categories t1u
13This property of the Pareto distribution has been exploited in other papers, Carrasco et al. (2018)

and Roesler and Szentes (2017), in the single-good case. Unlike the latter paper, the seller does
not choose the lowest price in the support of the worst-case distribution but instead mixes over
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and t2, 3u as two separate bundles, and prices the respective bundles independently
and randomly according to density functions:

g1ppq “ 2λ1 ¨ β1 ´ p

p

on support rα1, β1s, and
g23ppq “ 2λ23 ¨ β23 ´ p

p

on support rα23, β23s, where α23 “ α2 ` α3 and β23 “ β2 ` β3, and λ “ pλ1,λ23q are
scale factors chosen so that the densities integrate to ones.

Intuitively, the K-bundling mechanism is designed to “hedge” against possible
deviation by nature away from F ˚. To see this, let us recall what nature is capable of
doing. First, nature can freely shift values across items within the bundle t2, 3u, as the
moment condition only constrains its total value. Second, nature can freely correlate
the values of categories t1u and t2, 3u. Third, nature can redistribute the value of
each bundle—bundle 1 and bundle t2, 3u—while maintaining the same dispersion
measures.

Our mechanism makes it unprofitable for nature to deviate along these three
channels. First, the bundling of items 2 and 3 makes their valuations perfectly sub-
stitutable from the revenue standpoint; hence, nature has no incentive to redistribute
values within the t2, 3u bundle. Second, the independent pricing of the two bundles
means that nature never gains from manipulating the correlations of values across
the bundles. Finally, the prices of the two bundles are randomized according to the
particular hyperbolic forms of the densities precisely to eliminate any incentive by
nature to redistribute value within each bundle.

The construction and the argument generalize naturally to an arbitrary K, lead-
ing to a pair of K-bundled sales mechanisms M˚ and a one-dimensional valuation
distribution F ˚ that constitute a saddle point. Two questions remain. First, how do
we pin down the parameters α,β and λ, especially under the general set Ω? Second,
why are different mechanisms not robustly optimal? We relegate the answer to the
first question in the formal proof in Appendix A.1. The second question is addressed
in Section 4.

the support to guarantee revenue. The role of the Pareto distribution here is therefore to keep the
seller’s revenue at the level she would enjoy by setting the lowest prices in the support.

13



3.1 Implications of Theorem 1
Theorem 1 implies a few immediate corollaries. First, we provide a rationale for the
use of both separate sales and pure bundling as special cases.

Corollary 1 If the seller faces the ambiguity set in (1) where K is the finest parti-
tion, then separate sales of individual items are robustly optimal. If the seller faces
ambiguity set in (1) where K is the coarsest partition, then a sale of the grand bundle
is robustly optimal.

The next corollary expands the applicability of Theorem 1 beyond the ambiguity
set F in (1).

Corollary 2 Suppose pM˚, F ˚q is a saddle point given an ambiguity set F . If rF Ă F
such that F ˚ P rF , then, pM˚, F ˚q is a saddle point given the ambiguity set rF .

Proof: The result follows since RpM˚, F ˚q ď RpM˚, F q for any F P rF Ă F .

This corollary states that F ˚ remains robustly optimal within any ambiguity set
rF if it is in turn a subset of F defined in (1). This simple corollary, reminiscent
of a revealed preference argument, turns out to be quite useful. For instance, one
may find it plausible that item values are positively correlated so that the correlation
coefficient between any pair of item values exceeds some number θ P r0, 1q. Since
F ˚ exhibits high correlation across all the vi’s (they are perfectly correlated in the
interior support), it will satisfy this additional restriction for θ small enough, so one
may conclude that the mechanism identified in Theorem 1 continues to be robustly
optimal given the correlation condition.

Next, we can extend Theorem 1 to allow for the types of complementarities con-
sidered by Deb and Roesler (2023).

Corollary 3 Suppose the buyer’s value of each subset of items, J (not necessarily
an element of K), is given by uJ ¨ řiPJ vi, for some uJ P r0, 1s, and exhibits com-
plementarity: uJ “ 1 if J P K. Then, a K-bundled sales mechanism is robustly
optimal.

Proof: See Appendix A.1.1.

In the corollary, the value of all bundles except for those in K can be discounted by
a factor of uJ ď 1 and K-bundled sales remains robustly optimal. This generalization
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is straightforward since the revenue from K-bundled sales is not affected by such
complementarity, while all other mechanisms only under-perform.

How does the seller’s revenue guarantee vary with the seller’s knowledge? Such
comparative statistics is interesting in their own right since these parameters may
be ex-ante controlled via market research efforts. For instance, one may increase the
precision of market forecast by reducing the dispersion; it would be interesting to
know how such an investment may improve the revenue guarantee. Thanks to our
complete characterization, such comparative statics can be readily performed.

Corollary 4 Suppose Ω “ tpm, squ. Let R˚pm, sq denote the optimal revenue guar-
antee as a function of pm, sq. Let mK “ ř

iPK mi.
$
’’&

’’%

dR˚pm, sq
dmK

“ λKφ
1
KpβKq ą 0;

dR˚pm, sq
dsK

“ ´λK ă 0,

(4)

where λK ą 0, βK ą mK are parameters pinned down in the proof of Theorem 1.

Proof: See derivation in Appendix B.1.

Without loss, we can normalize φK so that it is centered at mK (i.e. φ1
KpmKq “

0), then φ2
K ą 0 implies φ1

KpβKq ą 0. We obtain a complete comparative statics
result when Ω is a singleton: The optimal revenue guarantee decreases strictly in
the dispersion of the valuation distribution and increases strictly in the mean of the
valuation.

Moreover, for general Ω, (4) quantifies the tradeoff between the revenue guarantee
gain from improving the “precision of estimation” for different summary statistics.
Consider the special case when Ω is a product set—the seller knows a confidence
interval for each mean and moment estimation—then, (4) implies that φ1

KpβKq is
exactly the marginal rate of substitution between shrinking the confidence interval of
the mean versus the dispersion moment of a product group.14

14More precisely, lowering the upper bound of dispersion sK by a unit is revenue-equivalent to an
increase in the lower bound of the mean mK by φ1

KpβKq units.
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4 Necessity of K-bundled sales
Theorem 1 establishes the robust optimality of a K-bundled sales mechanism. How-
ever, it leaves open the possibility that another mechanism may attain that same
revenue guarantee. We next show that this is not the case and therefore the main
qualitative feature of K-bundled sales is essential for achieving that optimal revenue
guarantee. This analysis also reveals what motivates the seller to choose the predicted
mechanism.

Theorem 2 Fix an ambiguity set F defined relative to the partition K.
1. Suppose there is K P K with |K| ě 2. Then, for any nonempty sets

J, J 1 Ă K with J X J 1 “ H, no mechanism in MK1 is robustly optimal if
K1 separates J and J 1; i.e., J, J 1 P K1.

2. Let α,β be the parameters derived in Theorem 1. Suppose there are
K,K 1 P K such that βK{αK ‰ βK1{αK1 (as defined in (6) and (7)). Then,
no mechanism in MK1 is robustly optimal if K1 bundles K and K 1 together;
i.e, K Y K 1 P K1.

While we relegate the formal proof of Theorem 2 to Appendix A.2, we illustrate the
intuition of the proof via Example 1, where K “ tt1u, t2, 3uu. In this case, theorem 2
rules out two alternative types of mechanisms: the fully separated mechanism (cor-
responding to K1 “ tt1u, t2u, t3uu) and the pure bundling mechanism (corresponding
to K2 “ tt1, 2, 3uu). Recall that, given F ˚, any mechanism that allocates item i

when vi “ βi with probability 1 is optimal. Therefore, the two types of candidate
mechanisms are optimal when the prices are chosen not too high. However, they are
not robustly optimal, as each of them is susceptible to a type of deviation by nature
that lowers the revenue guarantee. These deviations reveal the potential distribution
F that motivates the seller to choose the “correct” K-bundled sales.

Why is full separation not robustly optimal? Suppose instead of the tt1u, t2, 3uu-
bundling, the seller sells all three goods separately, in particular, separating items 2
and 3. The separate sale is vulnerable to the following deviation by nature. Consider
a distribution F̃ , which is the same as F ˚, except that a small mass ε is transferred
from pβ1, 12β23, 12β23q (the point mass at the top) to pβ1, β23, 0q and pβ1, 0, β23q, each
with respective masses of 1

2ε. See Figure 2.
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v1

v2

v3

0

Ervs

Fig. 2: The solid curve is the support of distribution F̃

This change keeps all constraints satisfied and does not alter the revenue of M˚

since the distributions of v1 and v2`v2 remain the same. Yet the change has increased
the dispersion of each individual item value in a way that makes separate sales less
profitable. For ε sufficiently small, the seller will never wish to charge prices 0 or β23
for either item 2 or item 3. For any other price in the support, the seller loses revenue
p ¨ 1

2ε, when compared with bundling items 2 and 3. Consequently, facing distribution
F̃ , the seller earns strictly below α1 ` α23 by selling the three items separately. In
essence, the fear of this “negatively-correlated” counterfactual distribution motivates
the seller to bundle goods 2 and 3.

Why is pure bundling not robustly optimal? Suppose now the seller bundles
all three items. As observed earlier, given the same F ˚, the grand bundle yields the
same optimal revenue when it is sold at price p within

“
α1 ` α23, β23

´
1 ` α1

α23

¯ ‰
; see

Figure 3. However, the same figure hints at why selling the grand bundle is not
robustly optimal. Suppose the seller charges an even higher price p ą β23

´
1 ` α1

α23

¯

for the bundle. Then, the revenue would be strictly lower! This is because bundling
entails inefficient screening at that price, specifically in the vertical segment of the
support depicted in Figure 4: the purchases of all goods are now tied so that the
buyer will refuse to buy the bundle even when he has the highest value β23 for the
bundle t2, 3u, if his value of good 1 is less than p´β23, resulting in the seller not being
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able to sell goods 2 and 3 in that case. This is clearly inefficient and this inefficiency
never occurs under separate sales of t1u and t2, 3u, since the seller would never charge
more than β23 for the bundle t2, 3u.

profit

price
α1 ` α23 β23

´
1 ` α1

α23

¯

Fig. 3: Profit from pure bundling mechanism un-
der F ˚ (dashed) and F̃ (solid)

v1

v2

v3

0

α1

β1

Ervs

α̃1

Fig. 4: The support of distribution F ˚

(dashed) and F̃ (solid)

Nature can exploit this “weakness” of the grand bundling by shifting mass toward
that vertical segment. Consider a new distribution F̃ supported on the solid curve in
Figure 4. Compared with F ˚, this new distribution lowers the infimum of v1 from α1

to α̃1, thus lowering the value V1psq of good 1 on the interior segment of the support.
This reduces the revenue the seller can collect by charging a low bundle price p. Of
course, nature cannot lower the value of good 1 uniformly across the board, because
this will violate the mean condition. To satisfy the latter, F̃ must therefore put larger
mass at its supremum value β1 of good 1. The seller cannot take advantage of this
increased mass at β1 under pure bundling since the profit at p in the neighborhood of
β1 `β23 was strictly lower than α1 `α23, as can be seen in Figure 3.15 Hence, the new
distribution keeps the seller’s revenue strictly below α1 ` α23 no matter the price of
the bundle. Intuitively, the distribution F̃ exacerbates the ex ante asymmetry across
the two bundles, and the fear of such an asymmetric distribution motivates the seller
to choose separate sales mechanism.

Analyzing the counterfactual suboptimal mechanisms teaches us two important
lessons about the robustly optimal mechanism. First, it is well known that negatively-
correlated item values make bundling desirable in the standard Bayesian context (see
15The robust optimality of M˚ means that the seller would receive at least α1 `α23 from M˚ given
F̃ .
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Adams and Yellen (1976)). In light of this, one may find it surprising that the item
values under distribution F ˚ are instead positively correlated. Theorem 2-1 clarifies
this issue: it is a possible negative correlation “off the path” that motivates the seller to
use bundling in the current environment.16 Second, it is also well-known that perfectly
correlated (comonotonic) item values are the worst-case distribution that justifies full
separation under correlational ambiguity (see Carroll (2017)). Theorem 2-2 further
explains what deters bundling: nature may “deviate” to distributions that are still
comonotonic but strongly asymmetric, which requires the seller to screen different
dimensions asymmetrically to attain the maximal revenue.

5 Informational Robustness
A rather surprising application of our analysis is informational ambiguity, where the
source of ambiguity for the seller is not the prior on the buyer’s valuations but rather
the information the latter has about the valuations. A growing number of recent
papers study mechanisms that are robust with respect to such ambiguity; see, for
example, Du (2018); Brooks and Du (2021b,a); Roesler and Szentes (2017); Ravid
et al. (2022); Bergemann et al. (2019).

To fix the idea, suppose the seller has prior distribution G P ∆pRn
`q on the valu-

ations of the goods, but she has ambiguity on the information the buyer himself has
about the valuations. By Blackwell (1951), a possible signal the buyer may have is
characterized by a mean-preserving contraction of G. Hence, one can describe the
seller’s ambiguity by a set of convex moment constraints:

FG :“
␣
F P ∆pRn

`q
ˇ̌
EF rφpvqs ď EGrφpvqs, @φ convex

(
. (5)

A robustly optimal mechanism given the ambiguity set FG in (5) is then called infor-
mationally robust. Formulated in this manner, our analysis can be readily applied
to find an informationally robust mechanism. Consider the following assumption on
the prior distribution G.

Assumption 1 (Stochastic Comonotonicity) There exists pξ1, ..., ξnq P Rn
` with

16When we state “off-the-path”, we are invoking the definition of R˚: the seller acts first, knowing
nature’s response.
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ř
i ξi “ 1 such that for each i “ 1, ..., n

E
”
vi

ˇ̌
ˇ
řn

j“1vj
ı

“ ξi
´řn

j“1vj
¯
.

Stochastic comonotonicity means that the expected value of each item conditional
on the total value of all items is simply a fixed fraction of the latter. Geometrically,
the conditional mean of each item value forms a linear ray, as depicted in Figure 5. Ef-
fectively, the condition means that the item values are a garbling—a mean-preserving
spread—of such a ray, as illustrated in Figure 5.

Value of Good 1

Va
lu

e
of

G
oo

d
2

Fig. 5: The solid circle (triangle/square) is the conditional expectation of the values, condi-
tional on the total value being the same as the solid circle, illustrated by the hollow circles
(triangles/squares). In this example, such conditional expectations are aligned on the ray
v2 “ 2v1.

Theorem 3 If the seller’s prior distribution G is stochastically comonotonic, then
pure bundling is informationally robust.

To prove Theorem 3, we invoke Theorem 1 with K “ tNu. The application is not
trivial, however, since the ambiguity set FG requires a collection of convex moment
conditions instead of a single convex moment condition as required by the ambiguity
set in (1). Consequently, in order to apply Theorem 1, we identify a single “binding”
convex moment function of the form φN—namely, one that applies to the total sum
of values—out of all convex moment conditions in FG. Let F be the ambiguity
set that results from imposing only that binding condition. Then, F conforms to
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the form assumed in (1) with K “ tNu, so Theorem 1 can be applied against the
ambiguity set F . This means that if the seller were to face F as the ambiguity set,
then pure bundling is robustly optimal against the worst-case distribution F ˚, which
has comonotonic support.

Note, however, that F is not the true ambiguity set; instead, the seller’s ambiguity
set is FG, a subset of F . Here is where the stochastic comonotonicity of G is required.
If G is stochastically comonotonic, then G is a mean preserving spread of F ˚ (see
Figure 5 for an illustration), so FG does indeed contain F ˚. This means that the pure
bundling that forms a saddle point along with F ˚ given F also forms a saddle point
given FG (by Corollary 2), which proves that it is max-min optimal against FG.

Stochastic comonotonicity is fairly general. In particular, it accommodates ex-
changeable prior as a special case. To see this, suppose G is exchangeable; namely,
for all permutations pi1, . . . , inq of p1, . . . , nq, Gpv1, . . . , vnq “ Gpvi1 , . . . , vinq. Then,
for each i,

E
”
vi

ˇ̌
ˇ
řn

j“1vj
ı

“ 1

n

ř
kE

”
vk

ˇ̌
ˇ
ř

jvj
ı

“ 1

n
E

”ř
kvk

ˇ̌
ˇ
ř

jvj
ı

“ 1

n

řn
j“1vj,

so G is stochastically comonotonic with ξi “ 1{n for all i. Therefore, Theorem 3
nests Theorem 1 of Deb and Roesler (2023), which proves the same result under ex-
changeable prior. This generalization is relevant both from conceptual and practical
perspectives. It is analytically important since it speaks to the essential feature of the
prior that makes pure bundling informationally robust. The reader of Deb and Roesler
(2023) may conclude that the exchangeability of the prior, with all the restrictions it
involves, may be crucial for the result. In particular, one may wonder if symmetry is
an important driver of what makes pure bundling robustly optimal.17 Our analysis
shows that the symmetry implied by an exchangeable prior is not crucial for pure
bundling to be robustly optimal. As is clear, stochastic comonotonicity allows for
arbitrary asymmetry in terms of the mean values. In this sense, our theorem uncov-
ers the fundamental property of the prior that makes pure bundling informationally
robust.
17 Deb and Roesler (2023) study two extensions that permit asymmetry across items. They show

that (i) pure bundling is still robustly optimal when the value of a proper subset B Ĺ N of items
can be lower than

ř
iPB vi, and (ii) bundling a proper subset B Ĺ N is robustly optimal when

the values are “exchangeable” only within B. Nevertheless, both extensions rely on the symmetry
of all items within the considered bundle. Our Theorem 3 can be easily extended to obtain (i)
analogously to Corollary 3 and to obtain (ii) as is explained in the subsequent paragraphs.
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Second, the generality gained from stochastic comonotonicity is not just signif-
icant, it is also practically relevant. Stochastic comonotonicity is consistent with
many simple models or heuristics used in various settings. For instance, consider an
investment bank’s problem in pricing the assets. There are n assets, all belonging to
a sector N . The capital asset pricing model (CAPM) implies a prior distribution of
the asset values consistent with stochastic comonotonicity. To be concrete, suppose
the bank subscribes to the model that assesses the return of each of n assets as:

ri “ βi ¨ rm ` ei,

where the random variable rm is the “market return” of the sector, a constant βi is the
“beta” of the asset and ei is the idiosyncratic risk satisfying

ř
ei “ 0 and Erei|rms “ 0.

Since Erri|
ř

j rjs “ βi
ř

j rj, such a model satisfies stochastic comonotonicity. If the
investment bank is concerned with informational ambiguity, the max-min optimal
policy would be to sell its bundle as an asset.

Finally, while Theorem 3 only covers the case of K “ tNu, with pure bundling
as the optimal solution, it is not difficult to generalize the theorem to obtain partial
bundling as an informationally robust policy by expanding the nature of ambiguity.
For any arbitrary partition K, suppose that the seller only knows the marginal dis-
tribution GK for each (partial) bundle K of items, without knowing anything at all
about the correlation of the values across different K’s within K. Further, the seller
does not know the information the buyer may have about the item values. In this
case, the seller faces both distributional and informational ambiguity. Applying The-
orem 1, one can show that the seller facing such ambiguity will find K-bundled sales
as a robustly optimal strategy. See Che and Zhong (2022) for details. Cast in the
investment banker example, if her prior is given by the sector-specific CAPM model,
then an informationally robust strategy calls for bundling all assets in each sector K

and selling the alternative bundles separately. In other words, the optimal menu of
portfolios contains the market return (i.e. a market index) for each sector.

6 General Distributional Ambiguity
We have so far focused on ambiguity sets characterized by moment conditions. In this
section, we go beyond moment conditions and identify a general structure of ambiguity
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sets that would give rise to the robust optimality of K-bundled sales. Special cases
will identify the conditions that justify separate sales and pure bundling.

To state the general condition on the ambiguity set, we first define an operator
ΥK : F ÞÑ ∆pR`q|K|:

ΥKpF q :“
!

pFKqKPK P ∆pR`q|K| : @K P K, @z P R`, FKpzq :“ PF třjPK vj ď zu
)
,

where PF t¨u :“ EF r111t¨us. In words, ΥKpF q calculates the marginal distribution of the
total value of each bundle K P K, given the initial distribution F . ΥKpF q is called
the K-marginals of F .

Definition 1 Fix any arbitrary partition K of N . An ambiguity set F Ă ∆pRn
`q

exhibits K-Knightian ambiguity if F “ Υ´1
K ˝ ΥKpFq.

The notion of K-Knightian ambiguity assumes two types of ambiguity. First, the
seller has arbitrary knowledge about the K-marginals; thus, all K-marginals pFKq in
ΥKpFq are considered possible. Second, for each tuple of K-marginals that the seller
considers possible, she faces full ambiguity about the joint distribution; thus, all joint
distributions in Υ´1

K ppFKqq are considered possible. In particular, this means she faces
ambiguity on a) the correlation of total values of product groups K’s across those in
K and b) the distribution of values across items within each product group K P K.

A special case of K-Knightian ambiguity is the case studied in Section 2 where the
seller knows only moments of the K-marginals. But there are many other examples.
For instance, K-marginals may be constrained such that pFKqKPK P G Ă ∆pR`q|K|,
for some arbitrary set G. We list specific examples of K-Knightian ambiguity:

• For each K, the ambiguity set may include every FK within a distance, say δK ą
0, from some reference marginal distribution F 0

K the seller finds plausible.18

Bergemann and Schlag (2011) formulated ambiguity in this sense.

• For each K, the ambiguity set may require FK ďSO FK ďSO FK for some
benchmark distributions FK , FK and some arbitrary stochastic order ďSO that
is closed under convex combinations. Examples of such stochastic orders are

18The metric could be sup norm or Levy-Prokhorov, among others.
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First-Order Stochastic Order, Second-Order Stochastic Dominance, Lehmann,
Supermodularity, or combinations thereof.19

In addition to the knowledge specified by F , we allow the seller to have arbitrary
knowledge about the means of item values. Specifically, consider a set

pF :“ tF P ∆pRn
`q : pµ1pF q, ..., µnpF qq P Ωu,

where Ω is an arbitrary nonempty subset of Rn
``. We then assume that the seller’s

ambiguity set is given by F
Ş pF . Clearly, when Ω “ Rn

`, the constraint specified by
pF has no bite at all.

The main result requires some technical assumptions. We say a set F 1 of distri-
butions is regular if F 1 is nonempty, convex, closed under weak topology, tight, and
has bounded expectation.20 Our main theorem then follows:

Theorem 4 Fix any partition K of N . Suppose the seller faces a regular ambiguity set
F
Ş pF , where F exhibits K-Knightian ambiguity. Then, a K-bundled sales mechanism

is robustly optimal in the sense that

sup
MPM

inf
FPF Ş pF

RpM,F q “ sup
MPMK

inf
FPF Ş pF

RpM,F q.

Proof: See Appendix A.4.

K-Knightian ambiguity crystallizes the insight that gives rise to separation and
bundling in the earlier section. Specifically, the concept captures the ambiguity about
how the values of alternative bundles in K are correlated and the ambiguity about
how a given value of a bundle K P K is distributed across items within K. The former
gives rise to the separation of sales across alternative bundles in K whereas the latter
ambiguity gives rise to the bundled sales of items within each K.
19Recall, however, from Section 5 that the Second-Order Stochastic Dominance Order, or equiv-

alently the Mean Preserving Spread Order, can be handled by dispersion moment conditions
involving particular (piece-wise linear) convex moment functions.

20A set of measures on Rn
` is tight if for any ϵ ą 0 there is a compact subset S Ă Rn

` whose measure
is at least 1 ´ ϵ. All other notions are standard.
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As special cases, the theorem provides conditions for the robust optimality of two
canonical sales mechanisms:21

Corollary 5 The seller’s ambiguity set F exhibits K-Knightian ambiguity.
1. If K is the finest partition of N and F is regular, then separate sales are

robustly optimal.
2. If K is the coarsest partition of N and F

Ş pF is regular, then pure bundling
is robustly optimal.

Theorem 4 identifies K-Knightian ambiguity as a fundamental general condition
for K-bundled sales to be robustly optimal. To the best of our knowledge, this condi-
tion provides for the most general characterization of the extent to which items should
be bundled or separated. Since K-Knightian ambiguity holds under the moment re-
strictions considered in Section 3, this condition can be seen as responsible for the
robust optimality found in that section.22 Nevertheless, Theorem 4 does not make
that section superfluous. Note that the current theorem does not identify the exact
form of the optimal mechanism or the worst-case distribution, whereas the additional
structure given by moment restrictions allowed us to identify them in Theorem 1.
Not only is the exact identification of the mechanism and distribution important and
useful of its own right, it enables us to go beyond K-Knightian ambiguity, which is
sufficient but not necessary for K-bundled sales to be robustly optimal. For instance,
as noted by Corollary 2 and Theorem 3, the exact solution of the joint distribution en-
ables us to identify a robustly optimal mechanism—i.e., K-bundled sales—even when
the ambiguity set F̃ fails K-Knightian ambiguity. Finally, the worst-case distribution
21Corollary 5 part 1 formalizes the conjecture in p. 481 of Carroll (2017): when G “ ΥKpFq is “well-

behaved enough to contain a single worst marginal distribution,” then separate sale is robustly
optimal. Indeed, even when the seller’s ambiguity set contains a non-singleton set of marginal
distributions, if it admits a unique saddle point, then the optimal mechanism in the saddle point
must be robustly optimal against the exact marginal distributions associated with that saddle
point, so the mechanism must be separating, following Theorem 1 of Carroll (2017). However, it
is not easy to guarantee existence or uniqueness of a saddle point. For instance, our regularity
condition does not necessarily lead to the existence of a saddle point or its uniqueness. We therefore
did not follow Carroll (2017)’s conjectured recipe of establishing (unique) saddle points for each
item. Our regularity condition, although not sufficient for existence of a saddle point, guarantees
the robust optimality of K-bundled sales mechanisms, following a minimax argument.

22 The moment conditions required by F in Section 3 clearly satisfies K-Knightian ambiguity. We
prove in Appendix B.5 that F considered in Section 3 is regular.
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found in Theorem 1 plays a crucial part in the proof of Theorem 4, which makes the
former indispensable for obtaining the current generalization.

7 Concluding Remarks
The current paper has characterized robustly optimal mechanisms for selling multiple
goods for a monopolist faced with ambiguity on the buyer’s private valuations of
the goods. The nature of the robustly optimal mechanism depends on the type
of ambiguity facing the seller. We have identified moment conditions as well as
general distributional conditions leading to the robust optimality of a K-bundled
sales mechanism, which includes the commonly used sales mechanisms of separate
sales and pure bundling as two special cases. The distributional condition that we
identify, namely, K-Knightian ambiguity, is the most general kind known to date that
rationalizes these sales mechanisms. More importantly, the concept captures the clear
economic insights that give rise to separation and bundling of items in a (robustly)
optimal sale. As argued in detail, ambiguity about the correlation of values across
items/bundles leads to separation of items/bundles, whereas ambiguity about across-
items value dispersion leads to the bundling of items in the sale. In particular, the
latter ambiguity features the threat of negatively-correlated item values as a reason
for favoring a bundled sales, thus connecting with the classic insight provided by
Adams and Yellen (1976).

Carrying the theme of Carroll (2017) to its fruition, the current paper thus pro-
vides a general robustness perspective on the rationale for alternative canonical sales
mechanisms. As such, it offers a complementary as well as an alternative perspective
on the subject matter which has so far been approached almost exclusively from a
Bayesian mechanism design perspective.

There are at least two avenues along which one could further extend the current
paper. First, our model, like all other papers on the subject matter, assumes a single
buyer, and naturally, one might consider introducing multiple buyers into the model.
Two concurrent papers have made progress under such generality; however, there
is still no general answer.23 He et al. (2024) provide a limiting result that as the
23A few papers identify robustly optimal mechanisms in single-item auctions. Brooks and Du (2021a)

finds a robustly optimal auction mechanism, when robustness is required with respect to value dis-
tributions with known means and common domain, buyers’ high-order beliefs, and to equilibrium

26



number of ex-ante identical buyers grows large, it is asymptotically robustly optimal
to auction off via a second-price format the robustly optimal bundle identified in
the current paper. Brooks and Du (2023) provide a duality result that enables the
calculation of the informationally robust revenue guarantee via linear programming
and show that it is without loss to consider an auction format with one-dimensional
message space.

Second, while the current paper offers a robustness-based rationale for separate
sales and pure bundling as well as more general K-bundling, we do not offer a ra-
tionale for so-called “mixed-bundling,” i.e., a menu of options for buying goods both
separately and a bundle. Although the nature of ambiguity that would justify such
a mechanism remains unknown, we hope our current paper will offer useful insights
for future inquiry into this topic.
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A Appendix: Proofs

A.1 Proof of Theorem 1
Proof: We prove Theorem 1 by explicitly constructing a K´bundled sales mech-
anism M˚ and a valuation distribution F ˚ and verify that they constitute a saddle
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point.
Construction of F ˚. We first construct F ˚, nature’s choice of distribution.

This involves two steps. We first fix an arbitrary pair pm, sq P Ω and construct
a distribution F pm,sq with means and dispersion characterized by pm, sq. We later
describe how pm, sq is chosen. To begin, let mK :“ ř

jPK mj for each K P K, and let
Kpiq “ tK P K : i P Ku denote the bundle containing item i.

Let X be a random variable distributed from r1,8q according to a cdf H:

Hpxq :“ ProbrX ď xs “ 1 ´ 1

x
.

Then, the value of item i P K, for K P K, is given by:

VipXq :“ min tαKX, βKu ¨ mi

mK
,

where, for each K P K, the parameters 0 ă αK ă mK ă βK satisfy:
ż βK

αK

1

αK

x
dx ` αK “ mK ; (6)

ż βK
αK

1

φKpαKxq
x2

dx ` φKpβKqαK

βK
“ sK . (7)

In short, the total value of each product group K P K rises co-monotonically and
linearly with the common random variable X at rate αK ; the value of each item i is
then determined in proportion to its mean mi relative to the total mean of the group
value. The parameters pαK , βKqKPK are in turn determined to satisfy the moment
conditions with respect to the sum of means mK and dispersion sK . Lemma A.1
guarantees that such a pair exists for any pmK , sKq " p0,φKpmKqq.

By continuity of pαKqKPK and compactness of Ω, there exists

pm, sq “ arg min
pm̃,s̃qPΩ

ÿ

KPK
αKpm̃K , s̃Kq.

Setting F ˚ :“ F pm,sq completes the construction of nature’s choice of distribution.
Construction of M˚. Next, we define the candidate optimal mechanism M˚.

In a nutshell, the seller sells each bundle K separately at a random price distributed
according to GK . The corresponding direct mechanism is:

$
’’&

’’%

q˚
i pvq “ GKpiq

´ř
jPKpiqvj

¯
,

t˚pvq “
ÿ

KPK

ż

pďř
jPK vj

pGKpdpq.
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The cdf GK is defined via the density function:

gKpvq :“ λK ¨ φ
1
KpβKq ´ φ1

K pvq
v

on rαK , βKs and zero elsewhere, where λK :“ 1{r
şβK
αK

φ1
KpβKq´φ1

Kpxq
x dxs normalizes the

density so that it integrates to one. As is illustrated in Example 1, gK is constructed
so that the revenue from selling bundling K is an affine transformation of the moment
function φK .

Verification of saddle point We first compute the value RpM˚, F ˚q. For any v

in the support of F ˚,

t˚pvq “
ÿ

KPK

ż ř
jPK vj

αK

pgKpdpq

“
ÿ

KPK
λK

!
φ1
KpβKq

´ř
jPKvj ´ αK

¯
´ φK

´ř
jPKvj

¯
` φKpαKq

)
.

Hence,

RpM˚,F ˚q“
ż
t˚pvqF ˚pdvq

“
ÿ

KPK
λK

"
φ1
KpβKqpmK´αKq`φKpαKq´

ż ´
φK

´ř
jPKvj

¯¯
F ˚pdvq

*

“
ÿ

KPK
λKtφ1

KpβKqpmK´αKq`φKpαKq´sKu

“
ÿ

KPK

φ1
KpβKqαK logpβK{αKq´αK

şβK
αK

φ1
Kpxq
x dx

şβK
αK

φ1
KpβKq´φ1

Kpxq
x dx

“
ÿ

KPK
αK . (8)

The first three equalities are straightforward. The fourth equality follows from (6)
and (7) and from recalling that λK “ 1{r

şβK
αK

φ1
KpβKq´φ1

Kpxq
x dxs.

Next, we show that M˚ P argmaxMPM RpM,F ˚q. Fix any M “ pq, tq P M. Since
the support of F ˚ is a parametric curve V pxq, the mechanism M can be represented
equivalently via pψpxq, τpxqq :“ pqpV pxqq, tpV pxqqq. Since M satisfies pICq, it must
satisfy the envelope condition:

τpxq “ψpxq ¨ V pxq ´
ż x

1

ψpzq ¨ V 1pzqdz.
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Hence,

RpM,F ˚q “
ż
τpxqHpdxq

ď sup
ψp¨q

ż
ψpxq ¨

ˆ
V pxq ´ V 1pxq1 ´ Hpxq

hpxq

˙
Hpdxq

“ sup
ψ

ÿ

i

ż βKpiq
αKpiq

1

ψipxq ¨ 0Hpdxq `
ż 8

βKpiq
αKpiq

ψipxq ¨ γi ¨ βKpiqHpdxq

ď
ÿ

i

γi ¨ βKpiq ¨ αKpiq
βKpiq

“
ÿ

KPK
αK “ RpM˚, F ˚q, (9)

where γi :“ miř
jPN mj

. The second inequality follows from ψi ď 1. The third equality
follows from

ř
iPN γi “ 1. The last equality follows from (8).

Finally, we show that F ˚ P argminFPF RpM˚, F q. To this end, observe

t˚pvq ě
ÿ

KPK
λK

!
φ1
KpβKq

´ř
jPKvj ´ αK

¯
´ φK

´ř
jPKvj

¯
` φKpαKq

)
.

To see why this inequality holds, observe first that t˚pvq “ RHS when
ř

jPK vj P
rαK , βKs (recall the very first displayed equation in the proof). Outside that region,
t˚pvq is constant in v, while the RHS is strictly decreasing in

ř
jPK vj when

ř
jPK vj ą

βK and strictly increasing in
ř

jPK vj when
ř

jPK vj ă αK . It then follows that, for
any F P F ,

RpM˚,F q“
ż
t˚pvqF pdvq

ě
ż ÿ

KPK
λK

!
φ1
KpβKq

´ř
jPKvj´αK

¯
´φK

´ř
jPKvj

¯
`φKpαKq

)
F pdvq

“
ÿ

KPK
λK

!
φ1
KpβKq

´ř
jPKEF rvjs´αK

¯
`φKpαKq

)
´

ÿ

KPK
λK

ż
φK

´ř
jPKvj

¯
F pdvq

“
ÿ

KPK
λK

␣
φ1
KpβKqpmK´αKq`φKpαKq´sK

(

l jh n
A

´
ÿ

KPK
λK

"
φ1
KpβKqpmK´ř

jPKEF rvjsq`
ż ´

φK

´ř
jPKvj

¯
´sK

¯
F pdvq

*

l jh n
B

.

Note that (6) and (7), together with λK “ 1{r
şβK
αK

φ1
KpβKq´φ1

Kpxq
x dxs, imply that

A “ ř
KPK αK “ RpM˚, F ˚q.
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The above inequalities imply that RpM˚, F q ě RpM˚, F ˚q´B. If F has the same
moments as F ˚, then B “ 0, so we are done. Hence, assume F has different moments
than F ˚. Suppose for the sake of contradiction that RpM˚, F q ă RpM˚, F ˚q. Since
F is a convex set, if we define F δ “ F ˚ ` δpF ´ F ˚q, then F δ P F for any δ P r0, 1s.
Since RpM˚, F q is linear in F , we must then have dRpM˚,F δq

dδ

ˇ̌
δ“0

ă 0. In particular,
this implies that dB

dδ

ˇ̌
δ“0

ą 0. However, one can show that

dB

dδ

ˇ̌
ˇ
δ“0

“ ´ d
ř

KPK αK

dδ

ˇ̌
ˇ
δ“0

. (10)

(see Appendix B.1 for the details). Hence, dB
dδ

ˇ̌
δ“0

ą 0 means that F δ entails a smaller
value of

ř
αK relative to F ˚, and thus lower revenue, for sufficiently small δ. However,

this contradicts the fact that
ř
αK is minimized at pm, sq. Therefore, we conclude

that RpM˚, F q ě RpM˚, F ˚q.

Lemma A.1 For any pmK , sKq " p0,φKpmKqq for each K P K, there exists a unique
pair pαK , βKq satisfying (6) and (7). The mapping pmK , sKqK ÞÑ pαKqK is continuous.

Proof: From (6), we can solve for βK “ αKe
mK´αK

αK . Substituting this into (7), its
LHS becomes a continuous function of αK . It is strictly decreasing in αK for any
αK ă βK :

dLHS of (7)
dαK

“
ˆ

φKpβKq
pβK{αKq2 ´ φKpβKq

pβK{αKq2
˙

¨dpβK{αKq
dαK

`
ż βK

αK

1

φ1
KpαKxq

x
dx`φ1

KpβKqαK

βK
¨dβK
dαK

“
ż βK

αK

1

φ1
KpαKxq

x
dx´φ1

KpβKqmK´αK

αK

“φ1
KpβKq

˜ż βK
αK

1

φ1
KpαKxq

xφ1
KpβKqdx´mK´αK

αK

¸

ăφ1
KpβKq

ˆ
logβK´logαK´mK´αK

αK

˙

“0,

where the strict inequality follows from the convexity of φ, and the last equality is
from substituting βK “ αKe

mK´αK
αK .

Observe next that the LHS of (7) is strictly less than its RHS when αK “ mK . It
is strictly greater than the RHS when αK is sufficiently low. To see this, note

ż βK
αK

1

φKpαKxq
x2

dxě
ż βK

αK

1

ˆ
φKp0q
x2

`φ1
Kp0qpαKxq

x2
`1

2
ε

pαKxq2
x2

˙
dx
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“φKp0q
ˆ
1´αK

βK

˙
`φ1

Kp0qαKplogβK´logαKq`1

2
εαKpβK´αKq

ě´|φKp0q|`φ1
Kp0qpmK´αKq`1

2
εα2

K

ˆ
e

mK´αK
αK ´1

˙
.

The last line tends to 8 as αK Ñ 0.
Collecting the observations so far, we conclude that there exists a unique pair

pαK , βKq satisfying (6) and (7).
It is easy to see that both sides of (6) and (7) are continuous in pαK , βK ,mK , sKq.

Therefore, αK and βK each as a correspondence of pmK , sKq has a closed graph. Since
we have shown that αKpmK , sKq is a function, it is continuous.

A.1.1 Proof of Corollary 3

Let pM˚, F ˚q be the saddle point pinned down in Theorem 1. It is straightforward
that F ˚ remains optimal within F because M˚ remains incentive compatible as the
values for all bundles within K remain unchanged. Then, the revenue from M˚ does
not change with uK for any F .

Now, we prove that M˚ remains optimal. Note that since buyer’s value is no longer
additive, the definition of an allocation should be generalized to ψ : x Ñ r0, 1s2N , i.e.
probability of allocating each bundle, subject to @i,řKQi ψKpxq ď 1. Then, given
M “ pψpxq, τpxqq the envelope condition implies:

τpxq “
ÿ

KP2N
uK ¨ ψKpxq ¨

ÿ

iPK
Vipxq ´

ż x

x

ÿ

KP2N
uK ¨ ψKpzq ¨

ÿ

iPK
Vipzqdz

ùñ RpM,F ˚q ď sup
ψp¨q

ż ÿ

KP2N
uK ¨ ψKpxq ¨

ÿ

iPK

ˆ
Vipxq ´ V 1

i pxq1 ´ Hpxq
hpxq

˙
Hpdxq

“ sup
ψp¨q

ÿ

i

ż 8

βKpiq
αKpiq

ÿ

KQi
ψKpxquKγiβKpiqHpdxq

ď
ÿ

i

γiαKpiq “ RpM˚, F ˚q.

The second inequality is from
ř

KQi ψKpxq ď 1 and uK ď 1.

A.2 Proof of Theorem 2
(Part 1) Fix any nonempty J, J 1 Ă K for some K P K such that J X J 1 “ H. We
show that it is never robustly optimal to separate J and J 1. To this end, it suffices
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to find rF P F such that sup
MPMK1

RpM, rF q ă RpM˚, F ˚q, for any partition K1 such that

tJ, J 1u Ă K1.
We construct rF as follows. Define CDF H and pαK , βKq as in Theorem 1. Recall

X „ H. Define a new binomial random variable Y whose value is zero with probability
mJ1

mJYJ1 and one with probability mJ
mJYJ1 . Let 0 ă ε ă minK

αK
βK

. The distribution rF is
then defined by the item values:

VipX,Y q “

$
’’’’’’’’’’&

’’’’’’’’’’%

min
␣
αKpiqX, βKpiq

(
¨ mi

mKpiq
if i R J Y J 1

min
␣
αKpiqX, βKpiq

(
¨ mi

mKpiq
if i P J Y J 1 and X ď 1{ε

βKpiq ¨ mi

mKpiq
¨ mJYJ 1

mJ
¨ Y if i P J and X ą 1{ε

βKpiq ¨ mi

mKpiq
¨ mJYJ 1

mJ 1
¨ p1 ´ Y q if i P J 1 and X ą 1{ε,

where recall Kpiq :“ K P K such that i P K. In words, the values of items i R J Y J 1

are distributed same as F ˚. The values of j P J Y J 1 are also distributed same as F ˚

conditional on X ă 1{ε, an event that occurs with probability Hp1{εq “ 1 ´ ε. In
the complementary event, the value of good j P J becomes either βKpiq ¨ mi

mKpiq
¨ mJYJ1

mJ1

or zero. Effectively, mass ε of value βKpiq ¨ mi
mKpiq

is split into a higher value and zero
so that the expected value remains the same. Note that j P J 1 is split in the same
fashion but in a way perfectly negatively correlated as the value of item i P J . The
negative correlation means that the dispersion of values of group K remains the same;
recall both J and J 1 are in K. Hence, all moment conditions of (1) continue to be
satisfied (since F ˚ satisfies them). Therefore, rF P F .

Since the mechanism M separates J and J 1, one can write:

M “
˜
q´JYJ 1pvi,iRJYJ 1q, t´JYJ 1pvi,iRJYJ 1q, qJp

ÿ

iPJ
viq, tJp

ÿ

iPJ
viq, qJ

1p
ÿ

iPJ 1
viq, tJ

1p
ÿ

iPJ 1
viq

¸
.

In words, groups J and J 1 are each bundled separately, and the mechanism can
be arbitrarily defined on all other items. The IC and IR conditions imply that
pq´JYJ 1

, t´JYJ 1q, pqJ , tJq and pqJ 1
, tJ

1q should each satisfy IC and IR. For pq´JYJ 1
, t´JYJ 1q,

since the random vector V is effectively uni-dimensional for i R J Y J 1, the envelope
condition implies:

ż
t´JYJ 1pvqF pdvq ď sup

ψ

ÿ

iRJYJ 1

ż βKpiq
αKpiq

0

ψipxq ¨ 0Hpdxq `
ż 8

βKpiq
αKpiq

ψipxqφiβKpiqHpdxq
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ď
ÿ

iRJYJ 1
αKpiq

mi

mKpiq
.

The sub-mechanisms pqJ , tJq and pqJ 1
, tJ

1q sells bundles J and J 1 separately. For
ε ą 0 sufficiently small, it is suboptimal to charge price 0 for each bundle. However,
charging any other price that leads to positive probability of sales generates revenue
of

αK
mJ

mK

ˆ
1 ´ mJ 1

mJYJ 1
ε

˙

from the sale of bundle J (where J Ă K). Likewise, the sale of bundle J 1 results in
the revenue at most of

αK
mJ 1

mK

ˆ
1 ´ mJ

mJYJ 1
ε

˙
.

Therefore,

RpM, rF q ă
ÿ

iRJYJ 1
αKpiq

mi

mKpiq
` αK

mJ

mK
` αK

mJ 1

mK

“RpM˚, F ˚q.

(Part 2) For each K P K, let ℓK :“ βK
αK

. Suppose there are K,K 1 P K such that
ℓK ‰ ℓK1 . We will show that it is never robustly optimal for the seller to bundle goods
in K Y K 1. It suffices to find rF P F such that supMPMK1 RpM, rF q ă RpM˚, F ˚q, for
all K1 such that K Y K 1 P K1. This will imply that the revenue guarantee will be
strictly lower for any selling mechanism that bundles the groups K and K 1.

We construct rF as follows. Without loss, assume ℓK ą ℓK1 and let ℓ P pℓK1 , ℓKq.
Let Hε be given by:

Hεpxq :“

$
’’&

’’%

Hpxq x ď ℓ ´ ε

Hpℓ ´ εq x P pℓ ´ ε, ℓq,
Hpx ´ εq x ě ℓ.

First, we define two parameters αε and ℓε based on ℓ and ε:

ż ℓε

1

pαεxqHεpdxq ` pαεℓεqp1 ´ Hεpℓεqq “ mK ; (11)
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ż ℓε

1

φKpαεxqHεpdxq ` φKpαεℓεqp1 ´ Hεpℓεqq “ sK . (12)

Denote the LHS of (11) and (12) by f 1
Kpαε, ℓε, εq and f 2

Kpαε, ℓε, εq, respectively. When
ε is sufficiently small, ℓε is close to ℓK and is thus strictly larger than ℓ.

Therefore, we compute the Jacobian matrix of the functions fK :“ pf 1
K , f

2
Kq with

respect to pαε, ℓεq:

Jαε,ℓεfKpαε, ℓε, εq

“
« şℓε

1 xHεpdxq ` ℓεp1 ´ Hεpℓεqq αεp1 ´ Hεpℓεqq
şℓε
1 φ

1
KpαεxqxHεpdxq ` φ1

Kpαεℓεqℓεp1 ´ Hεpℓεqq φ1
Kpαεℓεqαεp1 ´ Hεpℓεqq

ff

ùñ Jαε,ℓεfKpαε, ℓε, εq
ˇ̌
ε“0

“
« şℓK

1 xHpdxq ` ℓKp1 ´ HpℓKqq αKp1 ´ HpℓKqq
şℓK
1 φ1

KpαKxqxHpdxq ` φ1
KpαKℓKqℓKp1 ´ HpℓKqq φ1

KpαKℓKqαKp1 ´ HpℓKqq

ff
;

Meanwhile, the partial derivative of fK with respect to ε is:

JεfKpαε, ℓε, εq

“
«

αεεhpℓ ´ εq ` αε
şℓε
1 hpx ` εqdx

pφKpαεℓq ´ φKpαεpℓ ´ εqqqhpℓ ´ εq ` αε
şℓε
1 φ

1
Kpαεxqhpx ` εqdx

ff

ùñ JεfKpαε, ℓε, εq
ˇ̌
ε“0

“
«

αKpHpℓKq ´ Hp1qq
αK

şℓK
1 φ1

KpαKxqHpdxq

ff
.

By the inverse function theorem,

dαε

dε

ˇ̌
ˇ
ε“0

“ ´Jαε,ℓεf
´1
K ¨ JεfK

ˇ̌
ˇ
ε“0

“ ´
şℓK
1 pφ1pαKxq ´ φ1pαKℓKqqHpdxq

şℓK
1 pφ1

KpαKxq ´ φ1
KpαKℓKqqxHpdxq

ă 0,

Therefore, for ε sufficiently close to 0, αε ă αK . Let X be the random variable
distributed according to CDF H. Define rV :“ prV1, ..., rVnq, where

rVi “

$
’’&

’’%

mi

mJ
min tαJX,αJℓJu if i P J ‰ K

mi

mK
min

␣
αεpX ` ε1tXąℓ´εuq,αε, ℓε

(
if i P J “ K.
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Note that by definition, X ` ε1tXąℓ´εu is distributed according to Hε. Let rF be the
distribution of rV .

Now, consider any mechanism M that bundles K Y K 1. M can be written as
pψpxq, τpxq, rψpxq, rτpxqq, where pψpxq, τpxqq is the allocation and the payment for items
i R K Y K 1 and p rψpxq, rτpxqq is the allocation and the payment for items i P K Y K 1,
all as functions of x, the report of X. Note this formalism does not imply that the
sales of items i R KYK 1 is separated from those of i R KYK 1. The envelope theorem
implies

RpM, rF q ď sup
ψp¨q, rψp¨q

˜
ÿ

iRKYK1

ż
ψipxqprVipxq ´ rV 1

i pxq1 ´ Hpxq
hpxq qHpdxq

`
ż

rψpxq
ÿ

iPKYK1
prVipxq ´ rV 1

i pxq1 ´ Hpxq
hpxq qHpdxq

¸

ď
ÿ

JPK,J‰K,K1
αJ ` sup

x

˜
ÿ

iPKYK1

rVipxqp1 ´ Hpxqq
¸

“
ÿ

JPK,J‰K,K1
αJ ` sup

x
pαK1 min tx, ℓK1u p1 ´ Hpxqq ` αεmin tx, ℓεu p1 ´ Hεpxqqql jh n

Apxq

.

The second inequality is from the definition of αJ ’s and the fact that rψ equivalently
characterizes a mechanism that bundles K Y K 1. For x ď ℓ ´ ε, Hεpxq “ Hpxq, but
αε ă αK , so

Apxq “ αK1 ` αε ă αK1 ` αK .

For x P pℓ ´ ε, ℓεs, x ą ℓK1 when ε is chosen sufficiently small. Therefore,

Apxq “αK1
ℓK1

x
` αε

x

x ´ ε

ăαK1
ℓK
ℓ ´ ε

` αε
ℓ ´ ε

ℓ ´ 2ε
.

As ε Ñ 0, the latter expression tends to αK`αK1 ℓK
ℓ ă αK`αK1 . Combining both case

proves that when ε is sufficiently small, RpM, rF q ă ř
αJ “ RpM˚, F ˚q. Therefore,

sup
MPMK

RpM, F̃ q ă RpM˚, F ˚q,

as was to be shown.
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A.3 Proof of Theorem 3
Proof: Fix any prior G P ∆pRn

`q that is stochastically monotonic with sharing pa-
rameters ξ “ pξ1, ..., ξnq P Rn

` with
ř

i ξ1 “ 1. We prove the theorem by construction
and verification. We would like to invoke Theorem 1 for the case of K “ tNu. We
begin by identifying a relaxed ambiguity set. For all v P Rn

`, let v “ pv1, ..., vnq. For
any z ą 0, consider an ambiguity set

Fz “
␣
F P ∆pRn

`q|EF rvs “ EGrvs and EF rφzpvqs ď EGrφzpvqs
(
,

indexed by z, where φzpvq :“ max tz ´ ř
i vi, 0u. More importantly, the associated

condition captures the second-order stochastic dominance order with respect to the
total sum of item values: namely, the random variable

ř
i vi distributed according to

F second-order stochastically dominates (SOSD) the corresponding random variable
distributed according to G if EF rφzpvqs ď EGrφzpvqs for all z ą 0.24

Observe that φz is not twice-differentiable, as is required by Theorem 1. Nev-
ertheless, it is piecewise linear with only one kink; hence, the saddle point can be
explicitly constructed following the same procedure as in Theorem 1, denoted by
pFz,Mzq, where Mz is a pure bundling mechanism. Let αz be the parameter defining
Fz, indexed by z. Then, let z˚ minimizes αz while maintaining

EFαz
rφz1pvqs ď EGrφz1pvqs

holds for all z1 P R`. Define F ˚ :“ Fz˚ , M˚ :“ Mz˚ .25

We are now ready to prove our statement: pM˚, F ˚q is a saddle point under
ambiguity set FG, defined in (5). To this end, note first that FG Ă Ş

zą0 Fz Ă Fz˚

(since pφzqzą0 comprises only a subset of all possible convex functions). In light of
Corollary 2, it suffices to show F ˚ P FG, since that will imply that M˚ is maxmin
optimal given ambiguity set FG.
24This can be seen upon integration by parts:

ż

ř
i viďz

F pvqdv “
ż

ř
i viďz

pz ´
ÿ

viqF pdvq “ EF rφzpvqs ď EGrφzpvqs “
ż

ř
i viďz

Gpvqdv,

where the inequality is from F P Fz.
25The formal construction of the saddle point and the identification of z˚ is relegated to Ap-

pendix B.4.
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To show F ˚ P FG, fix any arbitrary convex function φ : Rn
` Ñ R. Let m “

pm1, ...,mnq, where mi :“ EGrvis “ EGrξip
ř

jvjqs.

EGrφpvqs “EG

”
Erφ pvq |řivis

ı

ěEG

“
φ

`
Erv|řivis

˘‰

“EG

“
φ pξ ¨ řviq

‰

ěEF˚
“
φ pξ ¨ řviq

‰

“Ex„H

„
φ

ˆ
min

"
αNx,αKe

ř
mi´αN
αN

*
¨ mř

mi

˙ȷ

“EF˚ rφpvqs .

The first inequality follows from the convexity of φ. The second equality follows
from stochastic comonotonicity of G; i.e., G satisfies Assumption 1 for some ξ “
pξ1, ..., ξnq P Rn

` with
ř

i ξ1 “ 1. To understand the second inequality, observe first
that the composition function φ ˝ ξ is convex in

ř
i vi, the total sum of all item

values. Next, recall that the total sum of all item values distributed according to F ˚

SOSD the total sum of item values distributed according to G—a fact implied by
F ˚ P Ş

z Fz. Hence, the second inequality follows. The last two equalities follow from
the definition of F ˚ given in Section 3. Since φ is an arbitrary convex function, we
have shown that F ˚ P FG, and the proof of Theorem 3 is complete.

A.4 Proof of Theorem 4
Proof: Observe

sup
MPMK

inf
FPF Ş pF

RpM,F q “ inf
FPF Ş pF

sup
MPMK

RpM,F q

“ inf
pFKqPΥKpFq

inf
FPΥ´1

K ppFKqqŞ pF
sup

MPMK

RpM,F q

ě inf
pFKqPΥKpFq

sup
MPMK

inf
FPΥ´1

K ppFKqqŞ pF
RpM,F q

“ inf
pFKqPΥKpFq

sup
MPM

inf
FPΥ´1

K ppFKqqŞ pF
RpM,F q

ě sup
MPM

inf
pFKqPΥKpFq

inf
FPΥ´1

K ppFKqqŞ pF
RpM,F q

“ sup
MPM

inf
FPF Ş pF

RpM,F q.
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The first equality follows from Lemma B.1 proven in Appendix B.2, where G “
F
Ş pF . The two inequalities are min-max inequalities. The third equality follows

from Lemma A.2. Since MK Ă M, the above inequalities yields the desired state-
ment.

Lemma A.2 Fix any K-marginals pFKqKPK and any pF , and let F :“ Υ´1
K ppFKqKPKqŞ pF ‰

H. Then, K-bundled sales is robustly optimal in the sense that

sup
MPMK

inf
FPF

RpM,F q “ sup
MPM

inf
FPF

RpM,F q.

Proof: We first construct the worst case F ˚ P ∆pRn
`q. To this end, we imagine

a hypothetical problem in which the seller sells k “ |K| goods and faces full am-
biguity given the knowledge of the marginal distributions FK of the values of each
item K P K. (That is, we interpret bundle K as a single item in this hypothetical
problem.) This is precisely what Carroll (2017) analyzed. To recast his result in the
current setup for this hypothetical problem, let Mk be the set of feasible mechanisms
in this hypothetical problem with k items, and RkpM,Gq denote the revenue the
seller collects from a mechanism M P Mk facing distribution G P ∆pRk

`q. (The cor-
responding notations for our original problem would then have superscript n, which
we suppress for convenience.) Consider Mk

H, where H is the finest partition of K.
Then Mk

H is the set of all “separate sales” mechanisms in this hypothetical problem.
Theorem 1 of Carroll (2017) then proves that there exists G˚ P Υ´1

H ppFKqKPKq Ă
∆pRk

`q and

sup
MPMk

H

RkpM,G˚q “ sup
MPMk

RkpM,G˚q. (13)

Now we construct F ˚ P ∆pRn
`q using G˚ P ∆pRk

`q. Choose any F 1 P F “
Υ´1

K ppFKqqŞ pF (which we assumed to be nonempty). For each i, let

αi :“
EF 1rvisř

jPKpiq EF 1rvjs
.

Let X be a k-dimensional random vector distributed according to G˚, and let V “
pViq be a n-dimensional random vector defined by

VipXq :“ αiXKpiq,
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for each i. Let F ˚ be the distribution of V .
We now prove F ˚ P Υ´1

K ppFKqqŞ pF . Since G˚ P Υ´1
H ppFKqq, by construction,

F ˚ P Υ´1
K ppFKqq. Since F 1 P Υ´1

K ppFKqq,

PF 1

!ř
jPKvj ď y

)
“ PG˚ tXK ď yu “ PF˚

!ř
jPKvj ď y

)
,

for each K P K and y P R`. Hence, EF 1rřjPK vjs “ EG˚rXKs “ EF˚rřjPK vjs.
It further follows that EF 1rvjs “ EF˚rvjs. Hence, F ˚ P pF . We thus conclude that
F ˚ P F .

We next prove that

sup
MPMk

RkpM,G˚q ě sup
MPM

RpM,F ˚q. (14)

To see this, fix any mechanism M “ pq, tq P M in our original problem. We now
construct another mechanism M̃ “ pq̃, t̃q P Mk for the hypothetical k-item problem
as follows:

$
’&

’%

q̃Kpxq “
ÿ

jPK
αjqjpV pxqq,

t̃pxq “ tpV pxqq.

Observe that @x,x1,

x ¨ q̃px1q ´ t̃px1q “
ÿ

KPK
xK

ÿ

jPK
αjqjpV px1qq ´ tpV px1qq

“
ÿ

i

Vipxq
αi

αiqipV px1qq ´ tpV px1qq “ V pxq ¨ qpV px1qq ´ tpV px1qq.

Therefore, pICq and pIRq of M on supppF ˚q imply pICq and pIRq of M̃ on supppG˚q.
Hence, M̃ P Mk. Moreover, given G˚, M̃ yields the same expected revenue as M

given F ˚. Since one can find such M̃ for each M P M, (14) follows.
We next prove

sup
MPMK

RpM,F ˚q ě sup
MPMk

H

RkpM,G˚q. (15)

Indeed, for any M̃ P Mk
H, we can construct a K-bundled sales mechanism xM “

ppq,ptq P MK, where

pqipvq :“ q̃Kpiqp
ř

jPKpiqvjq and ptpvq :“
ÿ

KPK
t̃KpřjPKvjq.
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Whenever v “ V pxq, řjPK vj “ ř
jPK αjxK “ xK . So, xM given F ˚ is payoff equiv-

alent to M̃ given G˚. Since M̃ P Mk
H, satisfying pIRq and pICq on supppG˚q, xM

satisfies pICq and pIRq on supppF ˚q.
Combining (15), (13), and (14), we obtain

sup
MPMK

RpM,F ˚q ě sup
MPMk

H

RkpM,G˚q “ sup
MPMk

RkpM,G˚q ě sup
MPM

RpM,F ˚q. (16)

Finally, fix any mechanism M P MK. For any F P F “ Υ´1
K ppFKqqŞ pF ,

RpM,F q “
ż
tpvqF pdvq “

ÿ

KPK

ż
tpřjPKvjqF pdvq “

ÿ

KPK

ż
tpxqFKpdxq,

where the first equality follows from the fact that M P MK and the second fol-
lows from F P Υ´1

K ppFKqq. In other words, RpM,F q “ RpM,F 1q for any F, F 1 P
Υ´1

K ppFKqqŞ pF “ F , as long as M P MK. Hence, it follows that

sup
MPMK

inf
FPF

RpM,F q “ sup
MPMK

RpM,F ˚q. (17)

Combining (17) with (16), we get

sup
MPMK

inf
FPF

RpM,F q “ sup
MPMK

RpM,F ˚q ě sup
MPM

RpM,F ˚q ě sup
MPM

inf
FPF

RpM,F q.

Since MK Ă M, the reverse inequality also holds, so we have the desired conclusion.
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