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We develop a method of solving rational expectations models with dispersed
information and dynamic strategic complementarities. In these types of models, the
equilibrium outcome hinges on an infinite number of higher-order expectations which
require an increasing number of state variables to keep track of. Despite this complication,
we prove that the equilibrium outcome always admits a finite-state representation when
the signals follow finite ARMA processes. We also show that such a finite-state result may
not hold with endogenous information aggregation. We further illustrate how to use the
method to derive comparative statics, characterize equilibrium outcomes in HANK-type
network games, reconcile with empirical evidence on expectations, and integrate incomplete
information with bounded rationality in general equilibrium.
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1. INTRODUCTION

In many economic problems, agents’ decisions hinge on expectations about other agents’
decisions. For example, when a manager resets their product’s price, she needs to take
into account their competitors’ pricing strategy in the future; when a consumer plans how
much to consume, she needs to form expectations about her future income, which in turn
depends on future aggregate expenditure. With heterogeneous information among agents,
the coordination motive makes aggregate outcomes depend on higher-order uncertainty,
or beliefs about others’ beliefs. In these environments, what are the macroeconomic
effects of incomplete information? How do they interact with the general equilibrium
consideration?

In this paper, we propose a method that helps solve and characterize the equilibrium
in models featuring dispersed information and dynamic strategic interactions among
agents. We prove that when signals follow ARMA processes, aggregate outcomes
permit a tractable finite-state representation despite the vast complexity of higher-order
expectations. We show that the interaction between informational frictions and dynamic
complementarities can be summarized by a single equation, the roots of which shape
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2 REVIEW OF ECONOMIC STUDIES

the propagation mechanism in the equilibrium. These results further yield a sequence of
applied lessons.

Framework. We consider the following baseline framework, in which an individual
agent i’s best response is

ait=Eit[ξt]+Eit[β(L)ait]+Eit[γ(L)at],

where ξt is some exogenous economic fundamental, at is the aggregate outcome. The
lag operator function β(L) captures the dependence on the agent’s own past and future
actions. Importantly, we allow γ(L) to capture dependence on others’ actions or the
dynamic complementarities, and agents may not share a common information set. This
framework nests a variety of applications with incomplete information, including the
monetary model as in Maćkowiak and Wiederholt (2009), the asset pricing model as
in Allen et al. (2006), the New Keynesian model as in Nimark (2008), and so on.
In a macroeconomic setting, β(L) effectively summarizes the partial equilibrium (PE)
consideration, while γ(L) summarizes the general equilibrium (GE) consideration.

The joint presence of incomplete information and strategic interactions implies
that the outcome relies not only on first-order expectations, but also on higher-
order expectations. Accommodating such higher-order uncertainty is important in
macroeconomics: it makes room for forces akin to animal spirits (Lorenzoni, 2009),
modifies relative strength between GE and PE (Angeletos and Lian, 2018), induces
dynamics that are empirically relevant (Woodford, 2003), and many others.

However, when strategic interactions are intertemporal or heterogeneous cross-
sectionally, the types of higher-order expectations involved can be quite complex. With
persistent information, keeping track of these higher-order expectations may require the
entire history of signals, known as the infinite regress problem (Townsend, 1983). Whether
there exists a small set of sufficient statistics to summarize the relevant information in
equilibrium is unknown ex ante, which is in contrast with models with perfect information
where the state variables are typically straightforward to identify. This explains the
complexity of solving and understanding these types of models.

Inference Problem. To overcome this difficulty, we propose a joint use of the Wiener-
Hopf prediction formula and the Kalman filter. The Wiener-Hopf prediction formula
allows one to forecast the aggregate outcome without specifying the set of state variables
(Hansen and Sargent, 1981; Whiteman, 1983; Kasa, 2000; Rondina, 2008; Kasa et al.,
2014). However, it still requires a fundamental representation of the signal process so
that a new set of transformed shocks contain the same amount of information as the
signals.1 Under the assumption that signals follow ARMA processes, the steady-state
Kalman filter is ready to provide such representation. Our contribution is bridging
the Kalman filter with the Wiener-Hopf prediction formula, which makes the inference
problem tractable even for complicated signal structures and allows us to derive the
theoretical results in a general model environment.

With the help of these tools, we first derive the optimal forecasting rule for an
arbitrary random variable in the frequency domain by applying the Wiener-Hopf

1. The original representation of the signal process typically has the feature that shocks contain
more information than signals, so agents need to solve a signal extraction problem to infer the underlying
shocks.
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prediction formula. In the end, solving for the equilibrium policy rule boils down to
finding a fixed point in the space of analytic functions. The transformation from the
time domain to the frequency domain avoids the task of looking for an infinite sequence
of coefficients that map the entire history of signals to the current outcome, and it yields
a much simpler characterization of the equilibrium than one may expect.

Finite-State Representation. Our main result is that the equilibrium outcome always
permits a finite-state representation, despite all the complications due to higher-order
expectations. This result holds when signals follow ARMA processes, a condition that can
be guaranteed when the information flow is exogenously determined. The key observation
is that recording all higher-order expectations indeed requires an infinite number of state
variables, but the equilibrium outcome only depends on a weighted average of them
which surprisingly collapses to a low dimensional object. We provide an explicit solution
formula and the associated condition that determines the uniqueness and existence of
the equilibrium.

An important feature of models with incomplete information is the sluggish response
due to the fact that higher-order expectations are more anchored than first-order
expectations (Woodford, 2003; Nimark, 2008; Angeletos and Huo, 2021). We show that
the parameters that characterize the additional persistence of the outcome are the outside
roots of a single polynomial equation involving four elements: (1) the informational
friction captured by the covariance structure of the signal process, (2) the information
incompleteness captured by the presence of private signals, (3) the partial equilibrium
consideration β(L), and (4) the general equilibrium consideration γ(L). These roots hinge
on the interaction between the informational friction and the coordination motive only
if elements (2) and (4) are simultaneously present, or when higher-order expectations
play a role in determining the outcome. The properties of the forecasts determined
by informational friction itself do not directly transmit to the endogenous outcome
(which would be the case when information heterogeneity or coordination motive was
eliminated). Instead, the underlying informational friction may loom larger according
to the dynamic complementarities and the amount of information in the public domain
relative to that in the private domain. Particularly, in static and forward-looking models,
the equilibrium outcomes can often be represented by the full-information solution with
a simple adjustment capturing the effects of incomplete information, in which case the
aforementioned roots of the polynomial equation simultaneously shape the modification
of magnitude and the additional persistence relative to the full-information benchmark.

One may note that the nature of the competitive equilibrium concept allows agents
to treat the law of motion of the aggregate outcome as given, without considering
all the higher-order expectations. Our strategy in solving the equilibrium follows this
logic by solving for the fixed point directly. Ex post, the finite-state result implies
a purely statistical observation: a weighted sum of infinite higher-order expectations
obeys a finite-order ARMA process. This result reconciles the disparity between the
complex higher-order expectations considered by economists and the simple equilibrium
law of motion considered by agents within the model. With static strategic concern, this
type of dimension reduction takes a particularly sharp form where the sum of higher-
order expectations is identical to a more noisy first-order expectation (Huo and Pedroni,
2020).2

2. With static complementarity, the infinite sum of higher-order expectations is equivalent to the
first-order expectation with the precision of private shocks discounted by the degree of complementarity.
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Our main result can also be extended to a class of models with network structure.
In this context, agents may differ from each other in terms of how their payoff depends
on the activities of different groups as well as their signal structures. This connects to
the literature on network games with incomplete information but static information
(Bergemann et al., 2017; Golub and Morris, 2020), and a growing literature that
emphasizes the interaction between the network structure of the macroeconomy and
the informational friction (Auclert et al., 2020; La’O and Tahbaz-Salehi, 2022; Chahrour
et al., 2021).

Applications. Through a sequence of applications, we demonstrate how our results
can help develop applied lessons and illustrate the role of higher-order uncertainty in
shaping equilibrium outcomes. Our first application shows that our method facilitates
closed-form solutions and proofs of comparative statistics. We revisit the classical beauty-
contest models à la Woodford (2003) and Angeletos and La’O (2010) with both private
and public signals. In response to both the fundamental shock and the common noise, the
outcome displays additional persistence, which encapsulates the effects of all the higher-
order expectations. Thanks to the analytical solution, we prove that this endogenous
persistence is increasing in both the informational friction and the degree of strategic
complementarity. We further prove that the volatility of the outcome driven by the
fundamental is decreasing in the degree of complementarity, but the outcome driven by
the common noise is instead increasing in the degree of complementarity.

In the second application, we extend our analysis to a HANK-type model with
incomplete information (Auclert et al., 2020; Angeletos and Huo, 2021). In this model, the
interdependence among different consumers amounts to a network game. The analytical
solution allows us to characterize the interaction of three types of heterogeneity among
consumers: marginal propensity to consume (MPC), income exposure to output, and
informational frictions about the underlying fundamental. We show sequentially that (1)
with common information structure among consumers, increasing high MPC consumers’
income exposure to output amplifies the effects of incomplete information; (2) fixing the
average informational friction in the economy, a reduction of the information received
by high MPC consumers has a larger quantitative bite. Notably, these results can be
understood via a small number of statistics that govern both the impact and dynamic
effects, which complement the recent work that studies the full-blown HANK model
without imposing full-information and rational expectations (Pfäuti and Seyrich, 2023;
Guerreiro, 2023; Gallegos, 2023).

In the third application, we compare our solution under rational expectations with
that under certain bounded rationality, and discuss how to distinguish them using
the evidence on forecasts. We extend the decentralized-trading model as in Angeletos
and La’O (2013) to an environment with persistent sentiment shocks. With rational
expectations, the persistence of the equilibrium outcome is always smaller than that of
the exogenous sentiment, a footprint of the general equilibrium force. In Angeletos and
La’O (2013), a heterogeneous prior approach is adopted,3 which significantly simplifies
the dynamics of the higher-order expectations at the cost of individual rationality. In
this case, the persistence of the equilibrium outcome is always identical to that of the
sentiment shock. To distinguish these alternative approaches, we consider the regressions
proposed by Coibion and Gorodnichenko (2015) and Bordalo et al. (2020) that estimate

3. With heterogeneous prior, shocks are perfectly observed but agents believe that all others
observe biased signals.
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the predictability of forecast error using forecast revision at the aggregate and individual
level, respectively. With rational expectations, the regression coefficient at the aggregate
level is positive and is larger than that at the individual level, broadly consistent with
the empirical regularities. However, under heterogeneous prior, these two regression
coefficients become identical and negative.

In the forth application, we show how our method can help integrate incomplete
information with belief distortions in a general equilibrium setting. To illustrate, we
extend the beauty-contest model to allow diagnostic expectation à la Bordalo et al.
(2020). In Bordalo et al. (2020), the process of the variable to be forecast is specified
exogenously. In contrast, in our environment, the outcome is determined in equilibrium
and is the result of agents’ expectations. Despite the deviation from strict rationality,
the finite-state result still applies, and the interaction between the general equilibrium
consideration and the belief distortion jointly determines the equilibrium outcome.
Relative to the case with rational expectations, the diagnostic expectation modifies both
the impact response and the propagation later on, but nevertheless leaves the long-term
persistence the same. This approach complements the literature that studies the general
equilibrium implication of diagnostic expectations but focuses on environments with
common information (L’Huillier et al., 2023; Bordalo et al., 2021; Bianchi et al., 2024).

Endogenous Information. Lastly, we consider the environment with endogenous
information, that is, the signals may contain aggregate outcomes determined in
equilibrium, such as outputs or prices. Our preferred interpretation of the endogenous
information equilibrium consists of two parts: (1) competitive agents take the signal
process as exogenously given, and choose their actions according to their best response
function; (2) the law of motion of the implied aggregate outcome is the same as the
perceived one that enters the signal process. The first part corresponds to an exogenous-
information equilibrium and therefore our previous results can still apply, while the
second part imposes an additional fixed point problem. Conceptually, the endogenous-
information is a particular exogenous-information equilibrium, where the signal process
satisfies additional restrictions. However, with such endogenous signal processes, the
finite-state result may not be true. We offer an example that naturally extends previous
models, but the equilibrium law of motion cannot be represented by a finite ARMA
process.4

Related literature. This paper directly complements the literature that studies
models with exogenous dispersed information. Our results explain why the previously
used guess-and-verify method works as in Woodford (2003) and Angeletos and
La’O (2010). Our explicit characterization further demonstrates how different forces
involving general equilibrium consideration and incomplete information interact with
each other. Moreover, our approach provides a systematic way to solve more complex
models with dynamic strategic complementarities, network structures, and bounded
rationality, which are important aspects in quantitative analysis. While in these types
of environments, making a correct conjecture of the laws of motion to apply the
guess-and-verify method becomes much more difficult.

4. In a different environment, Makarov and Rytchkov (2012) also show that the equilibrium does
not admit a Markovian dynamics with a different proof strategy.
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This paper also builds on the literature that studies rational expectations models
using the frequency domain approach.5 A number of papers (Kasa, 2000; Acharya, 2013;
Kasa et al., 2014; Tan and Walker, 2015; Rondina and Walker, 2021; Acharya et al., 2021;
Chahrour and Jurado, 2023) explore models with endogenous information aggregation.
This line of work typically focuses on the case where the number of signals is the same as
the number of shocks and the fundamental representation can be obtained using Blascke
matrices. Under certain conditions, it yields closed-form solutions even with endogenous
information. Our findings on exogenous information do not nest the aforementioned
results, while our infinite-state result on endogenous information suggests such a closed-
form solution is possible only with a restrictive information structure.6

When there are more shocks than signals, Taub (1989), Rondina (2008) and Miao
et al. (2021) obtain the fundamental representation through a canonical factorization
(Rozanov, 1967). Our approach instead relies on the steady-state Kalman filter to obtain
the fundamental representation, which avoids the case-by-case algebraic operation. From
a theoretical perspective, this is essential for the derivation of our finite-state result and
its implications in a general setting. From an applied perspective, it has an attractive
feature that even for large scale state-space systems, the steady-state Kalman filter can
be computed in a fast and robust way.

Our work is complementary to the literature that solves models with endogenous
information numerically. To maintain the number of state variables to be finite, one
common approach is to keep track of a finite number of signals (Townsend, 1983; Hellwig,
2002; Lorenzoni, 2009; Venkateswaran, 2014). Nimark (2017) and Melosi (2014) instead
approximate the equilibrium outcome with a finite number of higher-order expectations.
Sargent (1991) uses a lower-order ARMA process to approximate the true equilibrium
process. Differing from the literature, our numerical strategy relies on combining the
Kalman filter with the Wiener filter. By solving an exogenous-information equilibrium
in each iteration, it helps reduce the number of state variables and increase the rate of
convergence. Relatedly, Han et al. (2022) develops a toolbox that combines the frequency
domain method with Fourier transformation. Their results further demonstrate that
the proposed strategy of combining the two different filters is useful in a variety of
quantitative applications with endogenous information. Chiang (2022) instead extends
the analysis beyond linear models to accommodate the effects of dispersed information
on higher-order moments.

This paper contributes to the large literature that accommodates incomplete
information in a macroeconomic environment, which could be traced back to Lucas
(1972). On the theoretical side, it builds on the studies on beauty-contest games (Morris
and Shin, 2002; Angeletos and Pavan, 2007; Bergemann and Morris, 2013) and extends
the analysis to models with intertemporal coordination and persistent information. On
the applied side, it complements a large amount of work on the effects of monetary shocks
(Woodford, 2003; Mankiw and Reis, 2002; Maćkowiak and Wiederholt, 2009; Hellwig and
Venkateswaran, 2009; Melosi, 2016), the non-fundamental driven aggregate fluctuations
(Lorenzoni, 2009; Angeletos and La’O, 2010; Barsky and Sims, 2012; Angeletos and
La’O, 2013; Nimark, 2014; Benhabib et al., 2015; Huo and Takayama, 2022; Chahrour

5. With complete information, Hansen and Sargent (1981) and Whiteman (1983) provide a general
solution formula for linear models with rational expectations.

6. Huo and Pedroni (2023) shows that even with a square information structure, a closed-form
solution may not be possible. Chahrour and Jurado (2023) also proves the infinite-state result with
non-square information structure in a more involved dynamic model.



i
i

“RESTUD_manuscript” — 2024/9/21 — 2:21 — page 7 — #7 i
i

i
i

i
i

HUO & TAKAYAMA RE MODELS WITH HIGHER-ORDER BELIEFS 7

and Jurado, 2018), and the propagation mechanism of business cycle fluctuations with
imperfect information (Bacchetta and van Wincoop, 2006; Graham and Wright, 2010;
Venkateswaran, 2014; Maćkowiak and Wiederholt, 2015; Angeletos and Lian, 2018;
Chahrour and Gaballo, 2021).7 The equilibrium characterization provided in this paper
can also be applied to many of the model economies in the aforementioned papers.
Particularly, the finite-state result implies that the guess-and-verify approach used in
Woodford (2003) and Angeletos and La’O (2010) works beyond their specific choice of
the information process.

Another line of research our work connects with is to use survey data on forecasts
to discipline the expectation formation process. Coibion and Gorodnichenko (2015) and
Kohlhas and Walther (2021) test the predictability of aggregate forecasts error, and
provide evidence that supports different models with rational expectations and dispersed
information. Bordalo et al. (2020), Broer and Kohlhas (2022), and Fuhrer (2018) instead
propose various deviations from rationality to account for salient patterns in individual
forecasts. The method in our paper can be combined with different types of bounded
rationality and helps to explore their general equilibrium implications, as demonstrated
in Angeletos et al. (2021).

2. AN ILLUSTRATIVE EXAMPLE

In this section, we present a relatively simple beauty-contest model similar to the one
considered in Morris and Shin (2002) and Woodford (2003). In this model, higher-order
expectations play an important role in shaping aggregate outcomes and the infinite
regress problem naturally arises. We use this model to illustrate how our method works.

Consider an economy with a continuum of agents. Agent i’s best response in period
t, ait, is a weighted average of her forecast of an exogenous fundamental, ξt, and the
aggregate outcome at

ait=(1−α)Eit[ξt]+αEit[at], where at=

∫
ait. (2.1)

The parameter α∈(−1,1) determines the degree of strategic complementarity (α>0)
or substitutability (α<0) between agents’ actions.8 The operator Eit[·] denotes the
expectation conditional on agent i’s information set which will be specified shortly.

We assume that the fundamental ξt follows AR(1) process

ξt=ρξt−1+ηt, ηt∼N (0,1),

and in each period, agents receive a private signal about the fundamental

xit=ξt+uit, uit∼N (0,σ2). (2.2)

The information set of agent i contains all the signals up to time t, Iit={xit,xit−1,...}.
We purposely choose a relatively simple fundamental and signal process that is sufficient

7. See Angeletos and Lian (2016) for a more comprehensive review of the literature.
8. With α>1, there could be multiple equilibria if the action is bounded. By assuming α∈(−1,1),

we can guarantee the existence of a unique equilibrium that can be represented by the sum of infinite
higher-order expectations, which satisfies the ‘global stability under uncertainty’ condition provided by
Weinstein and Yildiz (2007).
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to illustrate the key idea of our method, and the analysis will be extended to allow for
much more general information structures in Section 3. Also note that the information
here is exogenous, in the sense that its informativeness does not depend on endogenous
objects determined in equilibrium. We will discuss the case with endogenous information
later in Section 5.

Complete Information Benchmark. In this economy, the variance of the idiosyncratic
noise, σ2, determines the degree of information frictions. Suppose, momentarily, agents
observe the fundamental perfectly (σ=0), and this fact is common knowledge. It is then
immediate that we return to the representative-agent case and the outcome is pinned
down solely by the fundamental

a∗t =ξt.

Furthermore, the strategic complementarity α is irrelevant in determining the equilibrium
outcome.

Incomplete Information and Higher-Order Expectations. When σ>0, the fundamen-
tal can no longer be observed perfectly and agents need to solve a signal extraction
problem to infer the fundamental, which represents first-order uncertainty. More
importantly, information is dispersed and there is a lack of common knowledge. To infer
others’ actions, an individual agent also needs to infer other agents’ beliefs, other agents’
beliefs about other agents’ beliefs, and so on, which represents higher-order uncertainty.

In fact, the aggregate outcome can be expressed as a function of higher-order
expectations. By aggregation, condition (2.1) becomes

at=(1−α)Et[ξt]+αEt[at], (2.3)

where Et[·] stands for the average expectation in the cross-section of the population.
Iterating the above condition once, we have

at=(1−α)Et[ξt]+(1−α)αEt
[
Et[ξt]

]
+α2Et

[
Et[at]

]
,

in which the dependence of the aggregate outcome on the second-order expectation
appears. By repeatedly iterating condition (2.3), the aggregate outcome can be expressed
as a function of the infinite hierarchy of expectations about the fundamental

at=(1−α)

∞∑
k=0

αkEk+1
t [ξt], (2.4)

where the higher-order expectation is defined recursively as Ek+1
t [X]≡Et

[
Ekt [X]

]
.

This higher-order expectation representation remains to be true regardless of the
information structure. With complete information, the law of iterated expectations
applies and all higher-order expectations are identical to the first-order expectation,
in which case at=Et[ξt]. In contrast, when information is incomplete, higher-order
expectations differ from first-order expectations and the equilibrium outcome inherits
the properties of all these different expectations. Meanwhile, with dynamic information,
the laws of motion of higher-order expectations become increasingly complex as the order
increases, which amounts to a computational challenge.
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Though expressing the aggregate outcome in terms of higher-order expectations can
be helpful for economists to understand the effects of incomplete information,9 it is not
necessary for agents in the economy to compute them when choosing the best action.
Similar to the case with perfect information, it is sufficient for agents to obtain the
law of motion of the aggregate outcome at the fixed point, and they may bypass the
computation of higher-order expectations. In fact, this is the approach that will be taken
in this paper.

To solve the equilibrium with incomplete information, the difficulty lies in identifying
the right state variables that summarize the past information. In standard complete-
information models, it is typically straightforward to find the state variables, such as
capital and TFP in real-business-cycle models. In contrast, with dispersed information,
the entire history of signals is potentially relevant, and it is not even clear whether there
exists such finite-dimensional state variables or not.10 In what follows, we will explain in
detail how to overcome this difficulty.

Inference. To provide a road map, we start with the well-known Kalman filter
to obtain the forecast rule for the fundamental. We then derive the fundamental
representation of the signal process based on the previous forecast rule, which in turn
facilitates the use of the Wiener filter to obtain the forecast rule for the aggregate
outcome. The equilibrium is obtained by solving a fixed point problem in the end.

By the Kalman filter, the first-order expectation about the fundamental ξt is given
by

Eit[ξt]=ρEi,t−1[ξt−1]+

(
1− λ

ρ

)
(xit−ρEi,t−1[ξt−1])=

(
1− λ

ρ

)
1

1−λL
xit. (2.5)

Condition (2.5) is simply the optimal Bayesian updating: the forecast is a weighted
average between the prior mean and the new signal. The weight on the new signal, 1− λ

ρ ,
is the familiar Kalman gain where

λ=
1

2

(1

ρ
+ρ+

1

ρσ2

)
−

√(
1

ρ
+ρ+

1

ρσ2

)2

−4

. (2.6)

However, the Kalman filter cannot be directly used to forecast the aggregate outcome
at. Due to the linear-Gaussian framework, the optimal action ait is a linear function
of current and past signals. Denote the policy function as ait=h(L)xit, where h(L)=∑∞
k=0hkL

k. As idiosyncratic shocks wash out in aggregate, the law of motion of the
aggregate outcome is then

at=h(L)ξt=
h(L)

1−ρL
ηt.

A prerequisite for applying the Kalman filter is that the law of motion of at is known
ex ante, but h(L) is the equilibrium object to be solved for. This constraint makes us

9. See Morris and Shin (2002), Woodford (2003), Angeletos and Lian (2018) for example.
10. In Woodford (2003) and Angeletos and La’O (2010), a guess-and-verify approach is used to solve

this type of problem by conjecturing a particular law of motion for the aggregate outcome. However,
it remains unclear whether a finite-state law of motion exists or not in general, and if so, what form it
takes.
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turn to the Wiener filter, with which the forecast of a variable does not require the exact
form of its law of motion. This property is particularly useful for the problem at hand.

A key step when applying the Wiener filter is to obtain a fundamental representation
of the signal process, xit=B(L)wit, where B(L) is invertible and wit is some serially
uncorrelated innovation. This is an alternative representation of the original signal
process with the property that the history of signals xti and the history of shocks
wti contain the same amount of information. Recall that with the original signal
representation (2.2), there are two shocks (ηt and uit), but only one signal. Therefore,
the underlying shocks contain strictly more information than the signals. This new
representation is necessary because the linear projection is ultimately on the space
spanned by shocks, which requires that the signals span exactly the same space.

To construct such a fundamental representation, we need to revisit the Kalman filter.
From the formula (2.5), the forecast error of the future signal is

wit+1≡xit+1−Eit[xit+1]=xit+1−ρEit[ξt]=
1−ρL

1−λL
xit+1. (2.7)

It follows that the signal can be expressed as a combination of the forecast errors

xit=B(L)wit≡
1−λL

1−ρL
wit, wit∼N

(
0,
ρσ2

λ

)
. (2.8)

Equation (2.8) is a fundamental representation and wit is the corresponding fundamental
innovation. The forecast error wit is orthogonal to the past signals {xit−1,xit−2,...} by
construction, and therefore it is uncorrelated with its own past values {wit−1,wit−2,...}.
Meanwhile, B(L) is invertible and the fundamental innovations wit can also be expressed
as a function of current and past signals, wit=B(L)−1xit. Hence, the signals and the
fundamental innovations contain the same amount of information.

To obtain the optimal forecast, it is useful to draw the analogy with an OLS estimator
with observations (Y,X), which is given by (X′X)−1X′Y. In our environment, X′Y
corresponds to the cross-covariance generating function ρax(L) between at and xit, and
X′X corresponds to the auto-covariance generating function ρxx(L) of xit, where ρax(L)
and ρxx(L) are11

ρax(L)=
h(L)

1−ρL

1

1−ρL−1
, and ρxx(L)=B(L)

ρσ2

λ
B(L−1).

One could arrive at the forecast formula Eit[at]=ρax(L)ρxx(L)
−1xit in parallel with an

OLS estimator, but this formula ends up using signals that realize in the future. The

11. Recall that at and xit can be written as at=
[

h(L)
1−ρL

0
][
ηt

uit
σ

]′ and xit=[
1

1−ρL
σ
][
ηt

uit
σ

]′, which gives ρax(L)=
[

h(L)
1−ρL

0
][

1
1−ρL−1 σ

]′
. Meanwhile, xit can be rewritten

as xit=B(L)

√
ρσ2

λ
wit

√
λ

ρσ2 , which gives ρxx(L)=B(L) ρσ
2

λ
B(L−1).
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forecast about at can only rely on information up to time t, and the following Wiener-
Hopf prediction formula provides the necessary modification to honor this constraint:

Eit[at]=
[
h(L)

1−ρL

1

1−ρL−1
B
(
L−1

)−1
]
+

λ

ρσ2
B(L)−1xit, (2.9)

=

[
h(L)L

(1−ρL)(L−λ)

]
+

λ

ρσ2
1−ρL

1−λL
xit, (2.10)

=
λ

ρσ2(1−λL)(L−λ)

(
h(L)L−h(λ)λ

1−ρL

1−ρλ

)
xit. (2.11)

When ignoring the annihilation operator, +, condition (2.9) is reminiscent of an OLS
estimator. The annihilation operator, however, excludes the use of the signals realized in
the future by eliminating L with negative powers. Proposition 1 in Section 3.2 provides
the general procedure for implementing this operation.12 Importantly, this step is valid
only if the last term, B(L)−1xit, is uncorrelated over time so that the best forecasts of
its future values are zero. This is indeed the case as by construction, B(L)−1xit=wit,
which are serially uncorrelated forecast errors, and it explains why the fundamental
representation is needed.

To obtain the forecast formula (2.11), it does not require the particular law of motion
of h(L). This allows us to proceed without specifying the state variables and to solve for
h(L) directly instead of a guess-and-verify approach. Notice that a new constant h(λ)
appears, the value of which remains unknown. It turns out that this constant plays an
important role in determining the existence and uniqueness of the solution.

Fixed Point Problem. Now we solve for the policy function h(L). Using the best
response function (2.1) and the forecast formulas (2.5) and (2.11), it follows that

h(L)xit=(1−α)

[(
1− λ

ρ

)
1

1−λL
xit

]
+α

[
λ

ρσ2(1−λL)(L−λ)

(
h(L)L−h(λ)λ

1−ρL

1−ρλ

)
xit

]
.

This condition needs to hold for all possible realizations of the signal xit. After combining
like terms, we have(

(L−λ)(1−λL)− αλ

ρσ2
L

)
h(L)=(1−α)

(
1− λ

ρ

)
(L−λ)− αλ2h(λ)(1−ρL)

ρσ2(1−ρλ)
. (2.12)

In condition (2.12), the constant h(λ) remains to be determined. There is a continuum
of potential solutions to h(L) indexed by the choice of h(λ). Meanwhile, note that the

12. In this example, the first term in (2.10) is[
h(L)L

(1−ρL)(L−λ)

]
+

=

[
1

L−λ

(
h(L)L

1−ρL
−
h(λ)λ

1−ρλ

)
+

1

L−λ
h(λ)λ

1−ρλ

]
+

=
1

L−λ

(
h(L)L

1−ρL
−
h(λ)λ

1−ρλ

)
.

Note that the 1
L−λ

is the only component that contains L with negative powers in expansion. In order
to remove L−λ in the denominator, one can subtract the constant h(λ)λ

1−ρλ
and make λ be a root of(

h(L)L
1−ρL

− h(λ)λ
1−ρλ

)
. As a result, after canceling L−λ, the expansion does not contain any L with negative

powers.
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term
(
(L−λ)(1−λL)− αλ

ρσ2L
)

on the left-hand side is a second-order polynomial in L

with two roots ϑ∈(0,1) and ϑ−1

ϑ=
1

2

(1

ρ
+ρ+

1−α

ρσ2

)
−

√(
1

ρ
+ρ+

1−α

ρσ2

)2

−4

.
To make sure h(L) is an analytic function without any pole inside the unit circle,13 the
constant h(λ) has to be set such that ϑ is a root of the right-hand side of equation (2.12)
as well, that is

(1−α)

(
1− λ

ρ

)
(ϑ−λ)−α

λ2

ρσ2(1−ρλ)
h(λ)(1−ρϑ)=0.

There exists a unique h(λ) satisfying this condition, which can then be substituted into
condition (2.12) to yield the policy function and the the law of motion of at14

h(L)=

(
1− ϑ

ρ

)
1

1−ϑL
, and at=ϑat−1+

(
1− ϑ

ρ

)
ξt. (2.13)

Now it is self-evident that the right state variables for economists to keep track of the
evolution of the aggregate outcome at are simply, (at−1,ξt), the current fundamental
and the outcome in the last period. The effects of all the higher-order expectations on
the equilibrium outcome are therefore incorporated in the variable ϑ, which we explore
further in Section 4.1.

This example provides an elementary illustration of the method for solving models
with dispersed information. The first key step is to connect the Kalman filter with the
Wiener filter in forecasting the endogenous aggregate outcomes, and the second key
step is to look for the policy rule in the space of analytic functions. In more general
settings considered in Section 3, both the information process and the type of strategic
interactions can become more involved. However, given that these primitive elements can
still be expressed as rational functions of L, the same insight developed in this illustrative
example continues to apply, which permits a finite-state representation of the equilibrium
and overcomes the difficulty in keeping track of all the higher-order expectations.

3. RATIONAL EXPECTATIONS MODELS WITH DISPERSED
INFORMATION

In this section, we extend the basic idea to models with much more general information
and payoff structures. We provide formula for the equilibrium policy rule and characterize
the equilibrium properties when informational frictions and strategic interactions are
jointly present.

13. With any pole inside the unit circle, the policy rule requires to use of future signals, which is
inconsistent with agents’ information constraint. For example, 1

1−ϑ−1L
xit=xit+ϑxi,t+1+ϑ

2xi,t+2+ ....

14. Rondina (2008) obtains a similar analytical solution for models with independent value best
response.
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3.1. Setup

We restrict our attention to models in which all the variables depend on the underlying
Gaussian shocks in a linear way. The input of the model includes two parts: the signal
process and a system of equations describing the conditions that the variables need
to satisfy. There are three types of variables involved here: an individual agent’s own
actions, the actions chosen by other agents, and some exogenous fundamentals.

Best Response. In each period t, individual agent i chooses r different actions,

ait≡
[
a1it ... a

r
it

]′
.

The best response is

ait=Eit[ξit]+Eit[β(L)ait]+Eit[γ(L)at]. (3.14)

The vector ξit is the vector of exogenous fundamental that may depend on agent i’s
individual states, and the vector at≡

∫
ait is the vector of aggregate outcomes in the

economy.
In condition (3.14), we allow β(L) and γ(L) to be two-sided polynomials in L. For

example, if γ(L) contains L with negative (positive) power, it implies agents’ action
depends on future (past) actions of others. In this specification, β(L) determines how
an agent’s action depends on her own future or past actions, which captures the partial
equilibrium (PE) considerations. On the other hand, γ(L) determines how an agent’s
action depends on the current, the past, or the future aggregate outcomes in the economy,
which captures the general equilibrium (GE) considerations. It nests the commonly used
best responses in the literature as special cases, and we further extend it to network
games in Online Appendix A.7.

Complex Types of Higher-Order Expectations. Similar to the static beauty-contest
game in Section 2, higher-order expectations naturally arise with incomplete information.
However, the types of higher-order expectations are much richer due to the dynamic
nature of strategic complementarities and the across-action dependence in multivariate
systems. To further appreciate the richness of various types of higher-order expectations
underneath condition (3.14), we look into the details of it in two special cases.

First, consider a univariate best response (r=1) with static and forward-looking
complementarity,

ait=Eit[ξt]+αEit[at]+βEit[ait+1]+γEit[at+1], (3.15)

where β(L)=βL−1,γ(L)=α+γL−1, and ξit=ξt. This type of best response nests the
incomplete-information version of the dynamic IS curve, the New Keyenesian Philips
curve, or the asset pricing equation, as in Allen et al. (2006), Nimark (2008), and
Angeletos and Huo (2021), and the commonly used static beauty contests. Let ζt≡

1
1−βLξt, the set of relevant higher-order expectations include

Et1 [Et2 [···[Eth [ζt+k]···]]],

for any k≥0, h∈{2,...,k}, and {t1,t2,...,th} such that t= t1<t2<...<th= t+k.
Considering the higher-order expectations on the future fundamental up to k periods
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ahead, there are k types of second-order expectations, plus k×(k+3)
2 types of third-order

expectations, plus (h−2)k(k+1)
2 +k types of h-th order expectations for all h≤k.

Second, consider a multivariate best response (r>1) where agent i’s multiple actions
are given by a

1
it
...
arit

=
ω1...
ωr

Eit[ξt]+
γ11 ... γ1r

... . . . ...
γ1r ... γrr


a

1
t
...
art

.
This type of best response can represent the incomplete-information NK model where the
aggregate demand and aggregate supply blocks interact with each other (Angeletos and
Lian, 2018), or an incomplete-information multi-sector production network model (La’O
and Tahbaz-Salehi, 2022). In matrix form, the aggregate outcomes can be expressed as

at=

∞∑
k=0

γkωEk+1
[ξt].

As an example, when ω=

[
1
0

]
, and γ=

[
0 α
α 0

]
, the relevant higher-order expectations are

{
E1

[ξt],E
3
[ξt],E

5
[ξt],...

}
, and

{
E2

[ξt],E
4
[ξt],E

6
[ξt],...

}
,

for a1t and a2t , respectively. As γkω can capture various types of weighted averages of
higher-order expectations, the outcomes therefore display much richer dynamics than
the single-action case in Section 2.

Information Structure. The process of the fundamental ξit is specified as

ξit=θ(L)sit=
θ̃(L)∏Nρ

k=1(1−ρkL)
sit, (3.16)

The auto-regressive parameters {ρk} with |ρk|<1 determine the persistence of the
fundamental and the external propagation of the equilibrium outcomes. The underlying
vector of Gaussian shocks sit∼N (0,I) is serially uncorrelated with length m, which
contains both common and idiosyncratic components. In our setup, the existence of the
idiosyncratic shocks is the root of information incompleteness. The aggregate outcome,
on the other hand, only depends on the common shocks as idiosyncratic shocks simply
wash out in aggregate.

Each period, instead of observing the fundamental directly, the individual agent i
receives a vector of signals about the underlying state of the economy. We denote the
stochastic process of the signals as follows

xit=M(L)sit, (3.17)

where xit is the vector of signals with length n. In this section, we focus on the exogenous-
information economy, in the sense that M(L) is exogenously specified. In contrast, when
signals contain variables that are determined in equilibrium, their information content is
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endogenous and the structure of M(L) is part of the equilibrium. However, it is important
to note that for an individual agent, she always takes the process M(L) as exogenously
given, regardless of whether it is determined in equilibrium or not, a point we revisit in
Section 5.

With all the elements in the environment specified, it is straightforward to define the
equilibrium of this economy.

Definition 1. Given the exogenous signal process (3.17), a Bayesian-Nash equilibrium
is a policy rule ait=h(L)xit that satisfies the best response condition (3.14), and where
the aggregate outcome is consistent with individual agents’ choice: at=

∫
ait.

As aforementioned, the entire history of signals could be relevant in forecasting the
fundamental and the aggregate outcome, and it is not clear ex ante whether there exists
a set of sufficient statistics to summarize the history. In this section, we impose the
assumption that the signals follow an ARMA process and the primitives in the best
response are rational functions of L. As we shall show momentarily, the policy rule
in equilibrium inherits this property and only a finite number of state variables are
required. As a by-product, the seemingly complex sum of the infinite dynamic higher-
order expectations follows a relatively simple process as well.

Assumption 1. The signal xit follows a finite ARMA process, and all the elements
in matrices β(L), γ(L), and θ(L) are rational functions of L.

3.2. Fundamental Representation and Wiener-Hopf prediction formula

Parallel to the analysis in Section 2, we start with inference problems using the Kalman
filter. This step helps construct the fundamental representation of the signal process,
which builds a bridge to the Wiener filter. Different from Section 2, we now allow a
multivariate system, resulting in a more involved procedure.

Given a signal process (3.17), there always exists an alternative representation of the
same signal process

xit=B(L)wit, (3.18)
such that B(L) is an invertible,15 and wit is a vector of serially uncorrelated Gaussian
shocks with covariance matrix V which can be constructed by the history of signals
wit=B(L)−1xit. This is the fundamental representation, which shares the same auto-
covariance generating function as the original representation

ρxx(L)=M(L)M′(L−1)=B(L)VB′(L−1).

The important property of the fundamental representation is that the sequence of the
signal xti contains the same amount of information as the sequence of the fundamental
innovations wti . With this representation, one can apply the following Wiener-Hopf
prediction formula.

Wiener-Hopf Prediction Formula. Let ft be a univariate co-variance stationary

15. This is equivalent to that B(L) is a square matrix and the determinant of B(L) does not contain
any roots within the unit circle.



i
i

“RESTUD_manuscript” — 2024/9/21 — 2:21 — page 16 — #16 i
i

i
i

i
i

16 REVIEW OF ECONOMIC STUDIES

process ft=ϕ(L)sit, where ϕ(L)=
∑∞
k=−∞ϕkL

k. The optimal prediction of ft is given
by

Eit [ft]=
[
ϕ(L)M′(L−1)B′(L−1)−1

]
+
V−1B(L)−1xit. (3.19)

Proof. See Online Appendix A.2 for the proof. ∥

Notice that the exact law of motion of ft is not required for the forecasting problem. This
is necessary for solving the equilibrium policy rule as the law of motion of the aggregate
outcome is not known ex ante.

One the one hand, the Kalman filter is inadequate for the forecasting problem as
it requires the exact law of motion ex ante. On the other hand, the Kalman filter
helps to construct the fundamental representation despite the additional complication
of a multivariate system. Towards this goal, it is necessary to set up the state-space
representation of the signal process.

Lemma 1. Under Assumption 1, the signal process admits a state-space representation
given by

zit=Fzit−1+Φsit, and xit=Hzit+Ψsit, (3.20)

where zit are the hidden states and the eigenvalues of F all lie inside the unit circle.

The following theorem then provides the desired fundamental representation based on
the steady-state Kalman filter.

Fundamental Representation. Given the state-space representation 3.20, there exist
matrices P and K that satisfy

P=F[P−PH′(HPH′+ΨΨ′)−1HP]F′+ΦΦ′, K=PH′(HPH′+ΨΨ′)−1. (3.21)

The fundamental representation is given by

B(L)=I+H[I−FL]−1FKL, B(L)−1=I−H[I−(F−FKH)L]−1FKL, (3.22)

associated with the co-variance matrix V

V=HPH′+ΨΨ′. (3.23)

Proof. See Chapter 13.5 in Hamilton (1994). ∥

In equation (3.21), K is the celebrated Kalman gain matrix. In equation (3.22), the
eigenvalues of F−FKH determine the persistence of prior about the underlying state,
which in turn shape the learning dynamics. To see this in a more explicit manner, we
unpack formula (3.19) when Assumption 1 holds.
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Proposition 1. Under Assumption 1 and assume that ft=ϕ(L)sit=
∑∞
k=0ϕksi,t−k.

The optimal prediction of ft is16

Eit[ft]=ϕ(L)M′(L−1)B′(L−1)−1VB(L)−1xit−
( u∑
k=1

1

L−λk

ϕ(λk)G(λk)

λv−uk

∏
τ ̸=k(λk−λτ )

+

v−u−1∑
k=0

1

k!Lv−u−k

[
ϕ(L)G(L)∏u
τ=1(L−λτ )

](k)
L=0

)
V−1B(L)−1xit. (3.24)

where {λk}uk=1 are non-zero eigenvalues of F−FKH which lie inside the unit circle, v
is the dimension of F, and G(L) is a polynomial matrix in L with finite degree derived
in Online Appendix A.4.

The component in the first line of (3.24) corresponds to the optimal forecast when
both past and future signals are available. The component in the second line of (3.24)
is the necessary adjustment due to the annihilation operator, +, when future signals
are prohibited. We provide the formula that implements the annihilation operator in
Online Appendix A.3. Note that B(L)−1 contains the component 1∏u

k=1(1−λkL)
, which

implies that the eigenvalues of F−FKH belong to the AR parameters of Eit[ft], adding
additional persistence due to learning.

An alternative way to construct the fundamental representation is to conduct spectral
factorization on the auto-covariance generating function proposed by Rozanov (1967),
which is used in Taub (1989), Rondina (2008), Miao et al. (2021), and so on. This
method requires to remove inside poles of B(L) by Gaussian elimination and polynomial
spectral factorization to make sure B(L) does not contain negative L in expansion, and
to sequentially remove inside roots of det[B(L)] by Blaschke factor matrices to make sure
that the spectral factorization is canonical (or B(L) is invertible).17 Our method has two
main advantages: first, the Kalman filter is easy and robust to implement numerically,
and therefore is better suited for quantitative analysis; second, the explicit representation
from the Kalman filter allows a general closed-form formula (3.24) for the forecasts. This
generality facilitates the proof of Theorem 1 and Corollary 1 for any stationary ARMA
signal process.

3.3. Equilibrium Policy Rule

In this subsection, we build on the tools developed earlier to solve for the equilibrium
policy rule. Supposing individual agents’ action is ait=h(L)xit, the aggregate outcome
can be expressed as

at=

∫
ait=h(L)M(L)Λsit, (3.25)

where Λ is the diagonal matrix that selects the common shocks, i.e.,
∫
sit=Λsit. When

Λ ̸=I, the information is dispersed in the economy.

16. In equation (3.24), we use [g(L)]
(k)
L=δ to denote the k-th derivative of g(L) evaluated at L=δ.

17. When M(L) is a square matrix, one only needs to use the Blaschke factor matrix to flip out the
inside roots of det[ρxx(L)], see Kasa (2000), Kasa et al. (2014), Rondina and Walker (2021), Acharya
et al. (2021) for example.
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Parallel to the analysis in Section 2, given a perceived law of motion (3.25), agents
can form expectations about the fundamentals, the individual actions, and the aggregate
outcome via the forecast rule (3.24). The best response then leads to a functional equation
for the equilibrium policy rule. Instead of looking for the sequences of infinite coefficients
on how to use the history of signals, we can look for a finite number of analytic functions,
as shown in the following proposition.

Lemma 2. If h(L) is an equilibrium policy rule, then it satisfies the following condition

T(L)vec[h′(L)]=D1(L)ψ+D2(L), (3.26)

where T(L) is an rn×rn matrix given by

T(L)≡(β(L)−I)⊗(M(L−1)M′(L))+γ(L)⊗(M(L−1)ΛM′(L)), (3.27)

D1(L) and D2(L) are exogenous matrices constructed in Online Appendix A.5, and ψ
is a vector of undetermined constants. Particularly, D1(L) is with full column rank Nψ.

The structure of the system (3.26) resembles that of the pure forecasting problem in
(3.24). On the left-hand side, T(L) captures both the intertemporal dependence on
an individual agent’s own action and the dynamic coordination with other agents’
actions. The right-hand side collects the forecasts of the fundamental and the necessary
adjustments due to the annihilation operator. Similar to the second line in (3.24), the
inference of the endogenous variables yields constants which are linear combinations of
h(λk),h

(τ)(0), and so on. There are Nψ such endogenous constants that remain to be
determined.

Condition (3.26) also helps better understand the role of Assumption 1. Directly, all
the elements in T(L) are rational functions in L by construction. Indirectly, the forecast
rule (3.24) reveals that all the elements in D1(L) and D2(L) are rational functions in L
as well. Even though ex-ante the form of h(L) is unknown, to satisfy condition (3.26),
it is clear that the elements in h(L) must inherit the property of the primitives and be
rational functions in L as well.

To obtain the policy rule, one may attempt to simply invert matrix T(L) in
condition (3.26)

vec[h′(L)]= adj[T(L)]

det[T(L)]
(D1(L)ψ+D2(L)).

This step is valid only if all elements of the policy rule h(L) is an analytic function in L
which does not contain any pole inside the unit circle, that is, agents only use current or
past signals. The set of constants ψ can be used to remove the inside roots of det[T(L)].18

As a result, the existence and the uniqueness of the equilibrium hinges on the number
of free constants versus the number of the inside roots of det[T(L)].

Among all the roots of det[T(L)], we denote

◦ {ζ1,...,ζNζ
} as the Nζ roots that lie inside the unit circle, and

◦ {ϑ−1
1 ,...,ϑ−1

Nϑ
} as the Nϑ roots that lie outside the unit circle.

18. As explained in Online Appendix A.5, the poles of h(L) cannot come from D1(L)ψ+D2(L).
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The equilibrium policy rule is then given below.

Theorem 1 (Solution) Generically, there exists a unique equilibrium iff Nψ=Nζ ,
which is given by

vec[h(L)]=T(L)−1(D1(L)ψ+D2(L)),

where ψ satisfies the condition that for i∈{1,...,rn} and j∈{1,2,...,Nψ},

det
[
T1(ζj) ... Ti−1(ζj) D1(ζj)ψ+D2(ζj) Ti+1(ζj) ... Trn(ζj)

]
=0.

Proof. See Online Appendix A.6 for the construction of ψ and a detailed description of
the condition for equilibrium existence and uniqueness. ∥

The condition for a uniqueness equilibrium is reminiscent of the one in Whiteman (1983),
and we generalize the model environment to incorporate dispersed information and
coordination. The main difficulty in solving the problem in the time domain is to identify
the right state variables that summarize the relevant history. By applying the Wiener
filter in the frequency domain, one does not need to identify the state variables ex-ante
and the task is transformed into solving for a particular analytic function. It turns out
that this problem remains tractable, and the dependence on the history is encoded in
{ϑ1,...,ϑNϑ

}.

Extension to Network Games. We conclude this subsection by pointing out an
important extension. So far, we have focused on environments in which agents’ actions
differ from each other only due to the realization of idiosyncratic shocks. However,
the method we have developed and the main theoretical results easily extend to
more complicated models where agents also differ in payoff structures and information
structures. For example, firms in different industries are interconnected through supply
chains, but they may not share the same information about the TFP growth in a
particular sector; savers’ and borrowers’ expenditures both depend on aggregate demand
and real interest rates, but they may have different expectations about the inflation rates.
Effectively, our method can be applied to these types of network games with dispersed
information, given that Assumption 1 holds for all agents. In Online Appendix A.7, we
show how to construct the counterpart of condition (3.26) in such network games with
a richer types of heterogeneities.19

3.4. Implications

In this subsection, we discuss further the implications of our results on the information
incompleteness, the GE feedback effects, and the dynamic properties of the equilibrium
outcomes.

Finite-State Representation. A direct implication of Theorem 1 is that the
equilibrium outcomes admit a finite-state recursive representation.

19. Angeletos and Huo (2021) utilize this result in the context of a HANK model with forward-
looking complementarities.
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Corollary 1 (Finite-state representation) The equilibrium outcome permits a
finite ARMA representation

ait=
a(L)∏Nϑ

k=1(1−ϑkL) ·
∏Nρ

k=1(1−ρkL)
sit, (3.28)

where a(L) is a lag polynomial matrix with a finite degree, {ϑk} is the vector of
endogenous coefficients, and {ρk} is the vector of exogenous coefficients from (3.16).

This result highlights that when signals follow finite ARMA processes, the equilibrium
outcome inherits this property. In contrast to the conventional wisdom that it is necessary
to keep track of the entire history of signals when information is dispersed and persistent
(Townsend, 1983), Corollary 1 instead shows that a finite number of statistics are
sufficient to summarize the history in equilibrium.

The propagation dynamics are determined by two sets of parameters: first, {ρk}
are the AR parameters of the exogenous fundamental, which can be viewed as the
external propagation mechanism; second, {ϑk} are determined in equilibrium, which
can be viewed as the endogenous propagation mechanism. It is important to note that
the parameters {λk} that determine the persistence of forecasts in (3.24) do not enter
the equilibrium outcome, though they show up for each of the higher-order expectations.
The seemingly magical cancellation of {λk} makes a finite-state representation possible
and reduces the dimension of state variables, a property we shall revisit in Section 5.2.

As a byproduct, Corollary 1 shows that the guess-and-verify approach in Woodford
(2003) works beyond the particular model environment. Furthermore, it helps researchers
to determine the right law of motion to conjecture if they pursue the guess-and-verify
approach for more general model economies.

Role of Incomplete Information and GE. Equation (3.27) summarizes how the PE
consideration, β(L), the GE consideration, γ(L), and the informational friction, M(L),
jointly shape the roots {ϑ1,...,ϑNϑ

}. The following result establishes the necessary
condition for their interactive effects.

Corollary 2 (Incompleteness and GE) The persistence of the equilibrium outcome
depends jointly on the informational friction and the payoff structure only if: (1)
information is incomplete, Λ ̸=I, and (2) the GE consideration is present, γ(L) ̸=0.

To better understand this result, consider the following special cases. First, suppose
that agents have perfect information, which corresponds to the frictionless case with a
representative agent. In this case, agents can observe all the shocks, or M(L)=I, which
implies

det[T(L)]=det[β(L)+γ(L)−I].

Therefore, only the payoff structure matters for the persistence, such as the magnitude
of adjustment costs or consumption habit.

Secondly, suppose that agents have common information (not necessarily perfect),
i.e., Λ=I, an assumption imposed by most DSGE literature. In this case, all agents are
identical to each other. Similar to the first case, the distinction between PE and GE
becomes irrelevant, and only the composite effects β(L)+γ(L) enters the determinant



i
i

“RESTUD_manuscript” — 2024/9/21 — 2:21 — page 21 — #21 i
i

i
i

i
i

HUO & TAKAYAMA RE MODELS WITH HIGHER-ORDER BELIEFS 21

of the matrix T(L)

det[T(L)]=det[β(L)+γ(L)−I] ·det[M(L−1)M′(L)].

Clearly, in this case, the roots of det[T(L)] are determined separately by the payoff
structure and the informational friction.

Thirdly, suppose the coordination motive or the GE feedback effect is muted, γ(L)=0,
but information may still be dispersed. In this case, agents only care about their own
fundamentals, and whether the information is private or not is irrelevant. Particularly,
the determinant of the matrix T(L) becomes

det[T(L)]=det[β(L)−I] ·det[M(L−1)M′(L)].

Corollary 2 underscores the importance of higher-order expectations in modifying
the equilibrium behavior. In the absence of either information incompleteness or GE
considerations, only first-order uncertainty matters for equilibrium outcomes, as in the
aforementioned special cases. The interactive effects take place exactly when higher-order
uncertainty is present.

Dimension Reduction of Higher-Order Expectations. The last implication can be
viewed independent of any equilibrium concept, but only as a property of the linear
projection. Essentially, the weighted average of infinite higher-order expectations can be
much simpler than it appears to be.

We impose the following condition on the primitives in the best response, which helps
guarantee the existence of a uniqueness equilibrium.

Assumption 2. Agents are forward-looking, that is, β(L)=
∑∞
k=0βkL

−k and γ(L)=∑∞
k=0γkL

−k. In addition, det[I−β(L)] only has inside roots, and all eigenvalues of
I−β(1)−γ(1) are inside the unit circle.

Corollary 3 (HOE) Under Assumption 1 and 2, the infinite sum of higher-order
expectations follows a finite ARMA process

at=

∞∑
k=0

Fkt [(I−β(L))−1ξit]=
a(L)∏Nϑ

k=1(1−ϑkL) ·
∏Nρ

k=1(1−ρkL)
Λsit,

where Fk+1
[X]=E[(I−β(L))−1γ(L)Fk[X]].

As already mentioned, the complexity of higher-order expectations is increasing with
its order in the sense that more state variables are required to describe their laws of
motion. To compute each of the infinite higher-order expectations independently, an
infinite number of state variables are needed. Corollary 3 shows that the infinite sum of
these higher-order expectations magically reduces to a much simpler object that follows
a finite ARMA process. In a special case where the strategic complementarity is static,
i.e., γ(L)=γ, this equivalence takes a particularly sharp form that the sum of higher-
order expectations is the same as its corresponding first-order expectation with more
noisy signals, as shown in Huo and Pedroni (2020).

This equivalence also helps reconcile two different perspectives on the rational
expectations equilibrium with dispersed information. On the one hand, an agent in



i
i

“RESTUD_manuscript” — 2024/9/21 — 2:21 — page 22 — #22 i
i

i
i

i
i

22 REVIEW OF ECONOMIC STUDIES

the economy only needs to know the law of motion of the aggregate outcome. On the
other hand, economists may find it more informative to think about all the higher-order
expectations, which are much more sophisticated than what agents need to make their
decisions. Corollary 3 connects the two approaches by showing the apparent complexity
in the latter approach reduces by a large extent at the fixed point.

4. APPLICATIONS

In this section, we demonstrate how our method developed in Section 3 can help obtain
applied lessons. We start by showing that the finite-state representation makes it possible
to derive closed-form solutions and prove comparative statics. We show the analysis can
be extended to a HANK-type model with incomplete information. We then contrast
our solution under rational expectations with an alternative approach in dealing with
heterogeneous beliefs both in terms of allocation and the properties on forecasts. We
also utilize the generality of the method to incorporate belief distortions into models
with incomplete information, which allows one to explore their general equilibrium
implications.

4.1. Deriving Comparative Statics

In this subsection, we revisit the beauty-contest model (2.1) introduced in Section 2

ait=(1−α)Eit[ξt]+αEit[at],

and extend it to allow agents to observe a public signal (x1it) in addition to the private
signal (x2it)

x1it=ξt+ϵt, and x2it=ξt+uit.

where ϵt∼N (0,τ−1
ϵ ) represents the common noise and uit∼N (0,τ−1

u ) is the private
noise.20 In a similar framework, Lorenzoni (2009) and Angeletos and La’O (2010) solve
the model numerically and highlight the response to the common noise. This generates
variations in the aggregate outcome that are independent of the fundamental, which can
be interpreted as animal spirits or sentiments. In our setup, applying Theorem 1 leads
to the following characterization of the equilibrium in closed form.

Proposition 2. The aggregate outcome is given by

at=

(
1− ϑ

ρ

)
1

1−ϑL
ξt+

τϵ
τϵ+(1−α)τu

(
1− ϑ

ρ

)
1

1−ϑL
ϵt, (4.29)

where the persistence ϑ∈ [0,ρ] is given by

ϑ=
1

2

(1

ρ
+ρ+

τϵ+(1−α)τu
ρ

)
−

√(
1

ρ
+ρ+

τϵ+(1−α)τu
ρ

)2

−4

. (4.30)

20. In Online Appendix A.11, we describe in details how to map the primitives in this model into
the general framework outlined in Section 3.
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Relative to the perfect information benchmark, a∗t =ξt, the incomplete-information
version (4.29) modifies it in the following way: (1) the response to the fundamental
shock displays a dampened impact effect and a more gradual build up, both of which are
governed by ϑ. (2) Besides the fundamental shock, the common noise also contributes
to aggregate fluctuations. Proposition 2 immediately reveals that the fluctuations due
to the common noise share the same persistence ϑ, but the impact response depends on
the amount of information in the public domain relative to that in the private domain.

The key variable that determines the dynamics of the aggregate outcome is ϑ, which
corresponds to the reciprocal of the outside root of det[T(L)]. Note that ϑ depends
on all the structural parameters, and it summarizes the interaction between incomplete
information and GE consideration. For example, the precision of the private signal, τu,
enters ϑ with an additional discounting according to 1−α. The coordination motive
makes the private signal less useful in inferring the aggregate outcome compared with
the public signal.

The closed-form solution facilitates a transparent comparative statics analysis. The
following proposition illustrates how the persistence and volatility of the aggregate
outcome vary with informational friction and GE consideration.

Proposition 3. 1. The endogenous persistence ϑ is increasing in α.
2. The endogenous persistence ϑ is decreasing in τu and τϵ. Furthermore, changes in τϵ
have a larger (smaller) impact on ϑ than τu when α>0(<0)

∂ϑ

∂τu
=(1−α)

∂ϑ

∂τϵ
.

3. The volatility of aggregate outcome driven by the common noise, V[at|ξt], is increasing
in α, while that driven by the fundamental, V[at|ϵt], is decreasing in α.

Part 1 of Proposition 3 shows that fixing the informational friction, the endogenous
persistence is increasing in the GE consideration α. Woodford (2003) emphasizes
that higher-order expectations respond more sluggishly compared with first-order
expectations, and the aggregate outcome may display a hump-shaped response when the
reliance on the former is sufficiently strong. This additional inertia is exactly captured
by the term 1

1−ϑL in condition (4.29).
Part 2 of Proposition 3 states that the endogenous persistence is amplified with a

higher degree of informational friction. However, changing the informational friction in
the public domain versus that in the private domain has differential impacts on ϑ, as the
relative dependence on the two signals is shaped by the need to be in line with others.

The last part of Proposition 3 looks into the conditional volatilities. As captured by
τϵ

τϵ+(1−α)τu , a larger α leads to more intensive use of public signal, and therefore a larger
loading on the common noise. At the same time, as captured by 1− ϑ

ρ , a larger α also
leads to more weight on higher-order expectations and a more dampened response overall.
Despite the presence of competing forces, the analytical result allows us to prove that
the volatility conditional on the fundamental (the noise-driven fluctuations) is always
increasing in α, and the volatility conditional on the common noise (the fundamental-
driven fluctuations) is always decreasing in α.
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4.2. HANK Model with Heterogeneous Information Structures

Beyond the univariate static beauty contest model, the analysis can be extended to
network games with incomplete information. Particularly, we focus on a HANK type
model with incomplete information (Angeletos and Huo, 2021; Auclert et al., 2020) and
explore how heterogeneities in MPC, income exposure, and informational friction interact
with each other.

Following Angeletos and Huo (2021), we consider a perpetual-youth, overlapping-
generations version of the HANK model. The perceived different mortality risks map to
different MPCs.21 Suppose that there are two groups of consumers indexed by g∈{1,2}
with mass πg, where group 1 stands for the high MPC group and group 2 stands for
the low MPC group. We denote the MPC as mg and the discount factor as 1−mg. In
addition, different groups can have different exposures to the business cycle (Patterson,
2023): the (log) income of group g is ygt =ϕgyt, where ϕg captures the group specific
income exposure to aggregate output.22.

The dynamics of the average consumption in group g can be expressed as

cg,t=−(1−mg)

∞∑
k=0

(1−mg)
kEg,t[rt+k]+mgϕg

∞∑
k=0

(1−mg)
kEg,t[yt+k], (4.31)

where Eg,t stands for the average expectation within group g, and the aggregate output
follows yt=

∑
gπgcg,t. Condition (4.31) can be viewed as a version of the Permanent

Income Hypothesis. The consumption is a function of the present discounted value of
income, incorporating variations in the real interest rate and incomplete information.
Note that it is the product of the MPC and the income exposure that determines
the strength of the general equilibrium consideration. Also note that condition (4.31)
together with the aggregate output effectively consists of a forward-looking network
game.

Assume that the central bank directly controls the real interest rate rt which follows
an AR(1) process, and an individual consumer i in group g observes a noisy signal xi,g,t
about rt every period

rt=ρrt−1+ηt, xi,g,t=rt+ui,g,t,

where ui,g,t∼N (0,τ−1
g ). Importantly, we allow different groups to face heterogeneous

information structures indexed by the signal precision τg. This is motivated by the
empirical evidence that the informational frictions faced by consumers depend on their
socioeconomic status (Broer et al., 2022; Rozsypal and Schlafmann, 2023). Different
levels of τg in our environment capture such dependence. Thus, as in section 2, the
first-order expectation about rt of an individual consumer i in group g is

Ei,g,t[rt]=
(
1−

λg
ρ

)
1

1−λgL
xi,g,t,

where λg captures the persistence of the first-order belief and could depend on groups.

21. Following Piergallini (2007), Del Negro, Giannoni, and Patterson (2015), and Farhi and Werning
(2019), the mortality risk gives rise to higher MPCs that are in line with empirical estimates.

22. A natural restriction is that
∑

gπgϕg=1.
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Without informational friction, the equilibrium outcomes are proportional to the
fundamental. The magnitude of the responses depends on the MPCs and income
exposures through a Leontief inverse matrix in the consumption network.

Lemma 3. In the economy without informational friction (τ1=τ2=∞), the equilibrium
outcomes are

[
c∗1t
c∗2t

]
=

[
c∗1
c∗2

]
rt,

[
c∗1
c∗2

]
=

(
I−

[ m1ϕ1π1
1−(1−m1)ρ

m1ϕ1π2
1−(1−m1)ρ

m2ϕ2π1
1−(1−m2)ρ

m2ϕ2π2
1−(1−m2)ρ

])−1[ 1−m1
1−(1−m1)ρ

1−m2
1−(1−m2)ρ

]
,

and the aggregate output is

y∗t =
∑
g

πgc
∗
grt.

Now turn to the economy with incomplete information. The abundance in types
of heterogeneity implies that the equilibrium outcomes will depend on higher-order
expectations with rich structures. The following proposition summarizes the eventual
dynamic pattern.

Proposition 4. With heterogeneity in both information structure and MPCs, the
aggregate output follows

yt=

(
ω1

(
1− ϑ1

ρ

)
1

1−ϑ1L
+ω2

(
1− ϑ2

ρ

)
1

1−ϑ2L

)
y∗t .

where ϑ1 and ϑ2 are the reciprocals of the outside roots of the determinant of T(L)

T(L)≡

[ m1ϕ1π1
1−(1−m1)L−1

m1ϕ1π2
1−(1−m1)L−1

m2ϕ2π1
1−(1−m2)L−1

m2ϕ2π2
1−(1−m2)L−1

]
−

[
(1−ρL)(L−ρ)+τ1L

τ1L
0

0
(1−ρL)(L−ρ)+τ2L

τ2L

]
,

and ω1 and ω2 are constants that depend on deep parameters.

With incomplete information, both within-group and cross-group higher-order expecta-
tions about real interest rates matter for the output dynamics. Proposition 4 reveals
that relative to the benchmark without informational friction, the aggregate outcome is
now subject to a modification that depends on two AR(1) terms. These two persistence
parameters (ϑ1,ϑ2) capture the additional dynamics relative to the fundamental process
of rt. To determine (ϑ1,ϑ2), it requires information from T(L): the GE consideration
captured by the MPCs and income exposures interact with informational frictions
captured by precision (τ1,τ2) when shaping the equilibrium dynamics. This result echoes
with our general characterization in section 3.4.

To gain further intuition on this interaction, we consider two special cases. In the first
special case, we keep informational friction but assume away the heterogeneity in the
friction, which helps highlight the role of heterogeneity in MPCs and income exposures.
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Proposition 5. With common information structure τ1=τ2=τ , the aggregate output
follows

yt=

(
1− ϑ

ρ

)
1

1−ϑL
y∗t ,

where ϑ is the reciprocal of the outside root of

T (L)=
∑
g

πg
mgϕg

1−(1−mg)L−1
− (1−ρL)(L−ρ)+τL

τL
.

1. When m1=m2, ϑ is independent of heterogeneous income exposures.
2. When m1>m2, ϑ is increasing in the high MPC group’s income exposure to aggregate
output, ϕ1.

With a common information structure, the effects of incomplete information can be
represented by a single composite parameter ϑ, which is the case explored in Angeletos
and Huo (2021). When consumers are with the same MPC, heterogeneity in income
exposures to aggregate output is irrelevant: what matters is only the average common
MPC.23 When m1>m2, increasing income exposure of the high MPC group to aggregate
output amplifies the average dependence on aggregate output, which strengthens the
general equilibrium consideration. This makes room for the higher-order expectations to
play a more important role in shaping the outcome.

In the second special case, we maximize ϕ1 by setting the low MPC group’s income
exposure to aggregate output to zero (ϕ2=0), while allowing heterogeneous information
structures. This special case helps isolate the effects of heterogeneous information
structure.

Proposition 6. With ϕ2=0 and heterogeneous information structure, the group
specific consumption follows

c1t−c∗1t=−c∗1
ϑ

ρ

1

1−ϑL
ηt−

m1ϕ1π2

T (λ−1
2 )(1−(1−m1)λ2)

1− ϑ
λ2

1−ϑL
c∗2

λ2
ρ

1

1−λ2L
ηt, (4.32)

c2t−c∗2t=−c∗2
λ2
ρ

1

1−λ2L
ηt, (4.33)

where ϑ is the reciprocal of the outside root of

T (L)≡ m1ϕ1π1
1−(1−m1)L−1

− (1−ρL)(L−ρ)+τ1L

τ1L
.

To better understand this result, note that for the low MPC group, their consumption
only depends on the first-order expectation about rt. It follows that the deviation from
the benchmark case only depends on the degree of informational friction (λ2), and the
GE consideration is irrelevant for group 2. In contrast, consumers in group 1 care about

23. Note that the economy is subject to the feasibility constraint
∑

gπgϕg=1.
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Figure 1
Responses of Output with Incomplete Information

Note: The persistence of the interest rate is set to be 0.9 and the two groups are with equal measure.
In the RANK model (black broken line), m1=m2=0.3 and the common precision is τ=0.4. In the
HANK model with common information structure (red dashed line), m1=0.45>m2=0.15, ϕ1=1.75>

ϕ2=0.25, and τ1=τ2=0.4. In the HANK model with heterogeneous information structure (blue solid
line), τ1=0.2<τ2=0.6 and the rest of the parameters are the same as that in the second case.

aggregate income. The within-group GE consideration is captured by the first term on
the right-hand side of condition (4.32), and the cross-group GE consideration is captured
by the second term. Such additional GE considerations amplify the effects of information
incompleteness. Therefore, when the high MPC group is subject to more informational
friction than the low MPC group, it will have a larger quantitative bite on the aggregate
output. These analytical results complement recent studies that explore the interaction
between information heterogeneity and income heterogeneity in HANK models (Pfäuti
and Seyrich, 2023; Guerreiro, 2023; Gallegos, 2023).

Finally, Figure 1 displays the impulse responses of output in three cases: (1)
with common MPC and common information structure (black broken line), (2) with
heterogeneous MPCs and common information structure (red dashed line), and (3) with
heterogeneous MPCs and heterogeneous information structure (blue solid line). The
responses are normalized by their counterparts without informational friction, which
allows us to focus on the effects of incomplete information. Comparing case (1) and case
(2), with the same first-order expectation, heterogeneous MPCs and income exposures
further dampen the impact response and induce additional sluggishness. Keeping the
average first-order expectation the same as before, when the informational frictions are
more severe for the high MPC group (τ1<τ2), the effects of informational frictions on
aggregate output are further amplified.

4.3. Reconciling with Empirical Evidence on Expectations

In this section, we show how our solution can be used to reconcile with empirical
evidence on expectations, and how it differs from an alternative method in solving
models with heterogeneous beliefs. To proceed, we adopt the model environment in
Angeletos and La’O (2013) with decentralized trading and random matching. When
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shocks are persistent, Angeletos and La’O (2013) adopts a heterogeneous-prior approach
to overcome the infinite regress problem. We instead maintain the rationality assumption.

In the economy, an individual agent i is endowed with a permanent fundamental κi,
drawn from a normal distribution N (0,σ2κ). At the beginning of each period, an agent i
is randomly matched with another agent indexed by m(i,t). Agent i’s optimal response
is given by

ait=κi+αEit[am(i,t)], (4.34)
where α captures the trade dependence between the two matched agents, and am(i,t) is
the action of agent i’s match in period t.24

Besides knowing her own fundamental, agent i receives two signals every period about
her trading partner

x1it=κm(i,t)+ϵit, (4.35)

x2it=x1m(i,t),t+ξt+uit, (4.36)

where ϵit∼N (0,σ2ϵ ) and uit∼N (0,σ2u) are both idiosyncratic noises, and ξt is a common
noise. The fundamental of i’s match in period t is κm(i,t), which from i’s perspective
is also an i.i.d shock that follows N (0,σ2κ). As emphasized by Angeletos and La’O
(2013), agent i’s forecast about κm(i,t) is pinned down by i’s first signal alone, and not
affected by the second signal. However, agent i’s forecast of x1m(i,t)t and all the higher-
order expectations are affected by the common noise ξt. The systematic variations in
higher-order expectations induced by ξt generates fluctuations in aggregate outcomes.
We assume that ξt follows a persistent process

ξt=ρξt−1+ηt. (4.37)

Different from subsection 4.1, agent i has to form higher-order expectations about a
random player m(i,t) every period. Nevertheless, our method continues to work which
yields the following equilibrium characterization.

Proposition 7. The aggregate outcome at is given by

at=
φ

1−ϑL
ηt, (4.38)

where

ϑ=
1

2

1
ρ
+ρ+

(1−α)

ρ(σ2ϵ +σ2u)
−

√(
1

ρ
+ρ+

1−α

ρ(σ2ϵ +σ2u)

)2

−4

, (4.39)

φ=
α2ϑ

ρ

σ2ϵ
σ2ϵ +σ2u

(
1−α2+

σ2ϵ
σ2κ

(
1−α2ϑ

ρ

σ2ϵ
σ2ϵ +σ2u

))−1

. (4.40)

Similar to Angeletos and La’O (2013), the common noise ξt leads to aggregate
fluctuations, even though first-order expectations about the aggregate fundamental

24. See Angeletos and La’O (2013) for the details of the micro foundation.
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remain constant. In addition, when the common noise is persistent, the aggregate
outcome inherits this property. Importantly, the persistence of the former is necessarily
greater than the latter which is determined in condition (4.39). This result also helps
illustrate the working of Corollary 1: since ξt is not a fundamental in the best response,
its persistence ρ will not enter the law of motion of the aggregate outcome.

Comparing with heterogeneous prior. A convenient device to avoid the infinite
regress problem is to assume that agents have heterogeneous prior, as in Angeletos and
La’O (2013) and Angeletos et al. (2018). The heterogeneous prior assumption works as
follows. Agent i observes both ξt and am(i,t)t perfectly. However, agent i believes her
match m(i,t) observes ai with a bias ξt. Supposing that agent i’s policy rule is

ait=f1ai+f2am(i,t)+f3ξt,

then agent i believes that the action of her match is given by

Eit[am(i,t)]=f1am(i,t)+f2(ai+ξt)+f3ξt.

By the method of undermined coefficients, it is straightforward to pin down the constants
{f1,f2,f3} that satisfies the best response, which yields the following aggregate outcome
with heterogeneous prior

at=
α2

(1−α2)(1−α)
ξt. (4.41)

The comparison between (4.38) and (4.41) echoes with our emphasis on the interaction
between the GE consideration and informational friction. With heterogeneous priors,
the aggregate outcome is perfectly correlated with ξt. This is in contrast with the
result under rational expectations in which a different persistence by ϑ is endogenously
determined. Meanwhile, the GE consideration α only modifies the impact response under
heterogeneous priors, but it shapes the entire dynamics under rational expectations. The
alternative approach with heterogeneous prior is convenient in obtaining the allocation,
but at the cost of eliminating learning and higher-order expectations. Our approach
helps preserve the role of dynamic higher-order expectations in shaping the aggregate
outcome, without sacrificing tractability.

Empirical evidence on expectations. The tractability also makes possible a clear
mapping to the evidence on expectations. Consider the following regressions

at+k−Et[at+k]=KCG(Et[at+k]−Et−1[at+k])+vt+k,

at+k−Eit[at+k]=KBGMS(Eit[at+k]−Ei,t−1[at+k])+vi,t+k.

The first regression proposed by Coibion and Gorodnichenko (2015) estimates the
predictability of forecast errors using forecast revisions at the aggregate level, which
detects deviations from rational expectations with common information if KCG ̸=0. The
second regression, proposed by Bordalo et al. (2020), is at the individual level, and detects
deviations from rationality if KBGMS ̸=0.

Through the lens of our model, these two moments for one-period ahead forecast
(k=1) have the following properties.
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Proposition 8. 1. With rational expectations, the coefficients KCG and KBGMS
satisfy

KCG>KBGMS=0,

Furthermore, KCG is decreasing in α.
2. With heterogeneous prior, the coefficients KCG and KBGMS are given by

KCG=KBGMS=α−1<0.

Bordalo et al. (2020) documents that KCG>0 and KCG>KBGMS.25 This pattern
is consistent with the model under rational expectations. With rational expectations,
KBGMS=0 by construction. With dispersed information, an agent’s forecast revision
helps predict others’ but not their own forecast error, which allows KCG to differ from
zero. Furthermore, KCG depends on the α. This suggests that in a GE setting where
the outcome depends on the forecasts, the mapping from KCG to the magnitude of the
informational friction has to be conditional on the level of the GE consideration.

In contrast, with heterogeneous prior, all common shocks are publicly known. This
implies that the moment at the individual level is always the same as that at the aggregate
level. In addition, with the “naive” beliefs, agents always overreact to the news, implying
a negative regression coefficient. The different implications on the properties of forecasts
bring in additional caveats when substituting the rational-expectations framework with
alternative approaches.

4.4. Integrating Belief Distortions with Dispersed Information

Recent work on expectation formation has also examined the assumption of individual
rationality and provides evidence on significant deviation from this benchmark (Bordalo
et al., 2020; Broer and Kohlhas, 2022). Different types of belief distortions have been
proposed to account for the observed empirical patterns, including over/under confidence,
over/under extrapolation, diagnostic expectations, and so on. Most of these studies focus
on a partial equilibrium analysis, in the sense that the process of the variable to be
forecast is taken to be exogenously given. This approach is effective in understanding
how a certain type of belief distortion changes the properties of individual or consensus
forecasts, but it is not sufficient to evaluate its impact on the equilibrium outcomes.
In this section, we show that our method can also be applied to models with bounded
rationality, and help understand how forecasts with distorted beliefs and the endogenous
outcomes are jointly determined in equilibrium.

To illustrate, we adopt the notion of diagnostic expectation formulation from BGMS.
With rational expectations, the updating rule for the underlying state zit in state space
(3.20) is given by

Eit[zit]=Ei,t−1[zit]+K
(
xit−HEi,t−1[zit]

)
,

where K is the corresponding steady-state Kalman gain matrix. With diagnostic
expectation, additional weight is put on the news, and the distorted belief denoted by
Ẽ[·] is given by

Ẽit[zit]=Ei,t−1[zit]+(1+µ)K
(
xit−HEi,t−1[zit]

)
,

25. Across different macroeconomic variables, about half of the KBGMS coefficients are negative in
Table 3 of Bordalo et al. (2020) .
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where µ≥0 parameterizes the overreaction to the news. When µ=0, diagnostic
expectations reduce to rational expectations.

Now consider the following beauty-contest model with diagnostic expectations

ait=(1−α)Ẽit[ξt]+αẼit[at].

Following BGMS, we assume that the fundamental ξt follows an AR(1) process, and
agents only observe a private signal xit=ξt+uit every period where uit∼N (0,σ2). Under
this information structure, the diagnostic expectation about ξt is exactly the same as
that in Proposition 1 of BGMS

Ẽit[ξt]=Ei,t−1[ξt]+(1+µ)

(
1− λ

ρ

)
(xit−Ei,t−1[ξt]),

where λ is specified in equation (2.6). The new element here is the fixed point problem:
the aggregate outcome at is endogenously determined by agents’ diagnostic expectations,
and agents have to form diagnostic expectations about this endogenous variable. The
following proposition characterizes the fixed point in the equilibrium.

Proposition 9. The aggregate outcome with diagnostic expectations is

at=
λ(1+µ)

λ(1+µ)−µϑ

(
1− µ

1+µ

ρϑ

λ
L

)
a∗t , (4.42)

where a∗t is the outcome with rational expectations, and ϑ is a function of deep parameters

a∗t =

(
1− ϑ

ρ

)
1

1−ϑL
ξt, and ϑ=

1

2

(1

ρ
+ρ+

1−α

ρσ2

)
−

√(
1

ρ
+ρ+

1−α

ρσ2

)2

−4

.
Condition (4.42) gives the diagnostic-expectation dynamics as a transformation of the
rational-expectation counterpart. This transformation consists of two parts: first, there is
an additional response on impact captured by the constant term λ(1+µ)

λ(1+µ)−µϑ , which is due
to the overreaction to the news. Note that the exact amount of overreaction also depends
on the GE effects summarized in ϑ. Ceteris paribus, a stronger complementarity leads
to a higher ϑ, and a more pronounced overreaction relative to its rational-expectation
benchmark. Second, the diagnostic expectations also modify how to respond to past
signals, which translates to modification of the entire dynamics, captured by the term
1− µ

1+µ
ρϑ
λ L. In this case, informational friction, GE feedback effect, and distorted belief

jointly determine the outcome, and condition (4.42) neatly presents the role of each force.
The idea of combining incomplete information with certain kinds of distorted beliefs

in a general equilibrium setting goes beyond the example presented above. For example,
Angeletos et al. (2021) combines over-extrapolation and over-/under-confidence with
dispersed information to account for the identified delayed overshooting of consensus
forecast in response to business-cycle shocks. We expect our method to help facilitate
more interaction between bounded rationality and incomplete information.

5. ENDOGENOUS INFORMATION

So far, we have maintained the assumption that the signal process is exogenously
determined and independent of agents’ actions. In this section we consider the case
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where signals contain variables that are endogenously determined in equilibrium. We first
discuss how the models with endogenous information are related to those with exogenous
information. We then discuss specific examples where the finite-state representation
no longer exists. Finally, we propose a numerical algorithm to compute models with
endogenous information.

In contrast with the previous setup, we modify the signal structure in the following
way

xit=M(L)sit+P(L)at. (5.43)

The new element P(L)at allows the signal to depend on the aggregate outcomes, and
therefore the informativeness of the signal is endogenously determined in equilibrium.
For example, agents could learn the aggregate state by observing past prices, outputs,
and so on, which are also outcomes of agents’ decisions. We define the equilibrium as
follows.

Definition 2. A linear Bayesian-Nash equilibrium with endogenous information is a
policy rule h(L) for agents and a law of motion H(L) for the aggregate outcome, such
that

1. The individual action ait=h(L)xit satisfies the best response (3.14), taking the
following exogenous signal process as given

xit=M(L)sit+P(L)H(L)Λsit. (5.44)

The aggregate outcome is consistent with individual actions: at=
∫
ait.

2. The aggregate outcome is consistent with the law of motion of the signal

at=h(L)M(L)Λsit=H(L)Λsit.

Note that there are two distinct consistency requirements: the perceived law of motion
H(L) has to be the same as that enters the best response and the signal process.
Accordingly, we purposely separate the equilibrium definition into two parts: in part
(1), given a particular perceived law of motion H(L), agents solve for their optimal
policy h(L) in the same way as in an exogenous-information economy, and the results
from Section 3 can be applied. In part (2), the additional consistency requirement on
the signal process is unique to the endogenous-information equilibrium.

This definition also makes it clear that the endogenous-information equilibrium is
a particular exogenous information equilibrium. From individual agents’ perspectives,
the competitive nature of the equilibrium implies that the information process is always
exogenous to them. However, this argument does not mean that the distinction between
exogenous and endogenous information is irrelevant, as only in the latter case the
informativeness of signals varies with changes in policies, technologies, and market
structures.

5.1. Infinite-State Representation

Notably, with endogenous information, the equilibrium may not admit a finite-state
representation. In this subsection, we provide such an example which is a natural
extension of the models with exogenous information.
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Example. Suppose the best response is the same as that in Section 2

ait=(1−α)Eit[ξt]+αEit[at],

where ξt=ρξt−1+ηt. Different from previous cases, agents receive an exogenous signal
and an endogenous signal with i.i.d private noises every period

x1it=ηt+uit, and x2it=at+ϵit.

The inclusion of the aggregate outcome at makes the second signal endogenous. There
are three shocks and two signals, and the signal system is non-square.

Despite the seemingly insignificant deviation from previous examples by including
the aggregate outcome in the signal process, the equilibrium can become much more
complex to characterize, as shown in the following proposition.

Proposition 10. Assume α∈(−1,1) and all the shocks are with positive variances.
Then, in the above example, the aggregate outcome in equilibrium never admits a finite-
state representation.

The basic idea behind the infinite-state result can be understood via Corollary 1.
With endogenous information, the equilibrium process at=H(L)ηt itself enters the signal
process M(L). At the same time, the coefficients of H(L) need to be consistent with
the determinant of the corresponding T(L) in equation (3.27)—a function of M(L).
However, such consistency in the fixed-point problem cannot be achieved with a finite-
state representation. As long as the guess of the equilibrium is restricted to be within
the realm of finite ARMA processes, Proposition 10 formally establishes that any such
conjecture with a finite-state process cannot be supported as an equilibrium.26

It is important to note that the infinite-state result is not due to higher-order
expectations per se. If the perceived law of motion for at follows a finite-order process,
Theorem 1 implies the actual law of motion also follows a finite-order process, despite the
dependence on higher-order expectations. With endogenous information, the additional
complication lies in that the signal process itself cannot be represented as a finite-order
process.

Proposition 10 also implies that such an infinite-state result does not hinge on explicit
coordination motive. Even when α=0, agents still need to forecast the action of others
as it appears in their signal. The endogenous signal therefore introduces an implicit form
of coordination, which leads to the type of fixed-point problem in Definition 2.

In the literature, a forward-looking asset pricing example is provided by Makarov
and Rytchkov (2012). Their proof is based on the orthogonality condition of projection
obtained from the inverse z-transform, which leads to the necessary conditions to
admit Markovian dynamics. We adopt a different proof strategy, which relies on the
properties of the fundamental representation, the Wiener-Hopf prediction formula, and
the annihilation operator. These properties can be used to study more complex problems.

26. With this conjecture, one may think that keeping track of {x1it=ηt+uit,x2it−ρx2i,t−1=δηt+

ϵit−ρϵi,t−1} every period is sufficient to make the inference about ηt as ηt,ϵit,ϵi,t−1 are i.i.d shocks.
This argument fails to recognize that the forecast can be improved by using additional signals from the
past. For example, since x1i,t−1 is helpful in inferring ηt−1, it is also helpful in inferring ξt−1 and ϵi,t−1.
As a result, x1i,t−1 should be used in forecasting ηt. By the same logic, all past signals are relevant.
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For example, in Online Appendix A.20, we have shown that the infinite-state result
extends to the case in which the fundamental follows an arbitrary AR (p) process.27

5.2. Finite-State Approximation

In this subsection, we provide an algorithm that approximates the aggregate outcome
with a relatively low-order ARMA process. The algorithm is based on the equilibrium
Definition 2. The key idea is to utilize our results in Section 3 to solve the exogenous-
information equilibrium, which helps save the required state variables.

To illustrate the strategy, consider on the following framework

ait=Eit[ξt]+αEit[at]+γEit[at+1]+βEit[ai,t+1], (5.45)

where ξt=ρξt−1+ηt, and the signal process is given by

x1it=ξt+uit, and x2it=at+ϵit.

The best response (5.45) allows for both static and forward-looking complementarity.
This structure nests a number of commonly used models in the literature, and the
algorithm can be applied for more general best responses as well.28

Numerical Algorithm. When information is endogenous, the finite-state representa-
tion no longer holds in general. We proceed with an iterative algorithm that maps from
the perceived signal process to the actual law of motion.

Starting with a perceived process at=H(0)(L)ξt that admits an ARMA representa-
tion, we compute a particular exogenous-information equilibrium where the exogenous
signals are given by

x1it=ξt+uit, and x2it=H(0)(L)ξt+ϵit.

Denote the law of motion in the exogenous-information equilibrium as at=H(1)(L)ξt,
which can be obtained from our earlier results in Section 3. Importantly, for individual
agents, their perceived aggregate outcome that enters the best response is H(1)(L)ξt,
rather than H(0)(L)ξt that enters the signal process.29

Though by construction, the perceived actual law of motion H(1)(L)ξt is consistent
with the actual law of motion, it may not satisfy part (2) in Definition 2. One can
therefore set the next perceived law of motion for the signal process to be H(1)(L), and
iterate this process until ||H(k+1)(L)−H(k)(L)|| is small enough.

We illustrate two advantages of this numerical algorithm: fast convergence speed
and efficiency in saving state variables. As a comparison, consider the following

27. We are grateful to Kyle Jurado for pointing out a gap in an early version of the proof.
28. For example, by setting γ=β=0, it nests the static beauty contests in Morris and Shin (2002),

Woodford (2003), Maćkowiak and Wiederholt (2009) and Angeletos and La’O (2010); by allowing β>0
and γ>0, it nests the forward-looking beauty contests in Allen et al. (2006), Nimark (2008), Nimark
(2017), and Angeletos and Huo (2021). The method also works for environments with backward-looking
best responses.

29. This distinction is irrelevant in the true equilibrium where H(0)(L)=H(1)(L). In the iterative
algorithm, such distinction helps speed up the convergence.
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Figure 2
Numerical Properties in the Endogenous Information Example

alternative iteration algorithm without solving an exogenous-information equilibrium
in each iteration:

at=Et[ξt]+αEt
[
H(0)(L)ξt

]
+γEt

[
H(0)(L)ξt+1

]
+βEit[ai,t+1]. (5.46)

Different from our original mapping, H(0)(L) enters both the signal process and the
best response. Consequently, there is no need to solve for the exogenous-information
equilibrium, and the actual law of motion at=H(1)(L)ηt is different from agents’
perception. The left panel of Figure 2 displays the convergence paths of the impulse
response functions when solving the exogenous-information equilibrium in the iteration.30

Starting with the perfect information solution, the law of motion converges after a small
number of iterations. From the second iteration, the IRF of aggregate outcomes can
hardly be distinguished from its further iterations. The right panel of Figure 2 compares
the required number of state variables with the aforementioned alternative algorithm.
The number of required minimal state variables increases linearly in our approach, but
increases exponentially in this alternative method.

This numerical algorithm complements the literature on computing models with
endogenous dispersed information. To deal with the issue of potential infinite history,
a common strategy is to truncate the history as in Hellwig (2002), Lorenzoni (2009),
and Venkateswaran (2014). Nimark (2017) instead approximates the equilibrium
outcome with finite-order expectations of the fundamental, and this method has an
interesting bounded rationality interpretation. Both of these methods are flexible and
straightforward to implement, but typically require a relatively large state space for an
accurate approximation. Recently, Han et al. (2022) build on the bridge between the
Kalman filter and the Wiener filter proposed in Section 3 to obtain the fundamental
representation, and they implement the inference with the discrete Fourier transform
which helps speed up the annihilating operator. These different methods have their

30. In this example, we set the parameters to be ρ=0.95, α=0.5, γ=0.2, β=0.1, ση=1, and
σu=σϵ=2.
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own comparative advantage, and researchers could adopt the best-suited one for their
particular application.

6. CONCLUSION

We develop a method that helps to solve and characterize the equilibrium outcomes
when information is incomplete and agents coordinate with each other. The key step is
to combine the Kalman filter and Wiener filter to make the inference problem traceable.
We show that the equilibrium outcome always admits a finite-state representation
when signals follow finite ARMA processes, and we characterize how the endogenous
persistence depends on the interaction between information incompleteness and general
equilibrium consideration. We also illustrate how to use the method to compute the
equilibrium with endogenous information.

We demonstrate that our method can help derive applied lessons in a sequence of
applications. Particularly, it is flexible enough to accommodate deviations from strong
rationality, such as diagnostic expectations (Bordalo et al., 2020), over-/under-confidence
(Broer and Kohlhas, 2022), and over-/under-extrapolation (Greenwood and Shleifer,
2014). These belief distortions have been shown to be necessary to rationalize the
evidence on expectations. The method allows one to explore their general equilibrium
implications under incomplete information.

Another direction of future research includes the exploration of how the structure
of dynamic coordination affects the equilibrium outcome. The applications in this
paper have focused on static and Euler-type forward-looking complementarities, but
the method allows one to consider much more sophisticated dependence on past and
future aggregate outcomes estimated from micro data. Our results can then assist in
building the bridge from micro to macro.
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