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1 Introduction

The use of structural economic models involves first selecting values for model parameters
and, second, evaluating the model’s implications for empirical moments or counterfactual
quantities under those parameters. This set of tasks is often referred to as “calibration.”
Kydland & Prescott (1996) define this term in a macroeconomic context, advocating that one
choose the parameters in a non-econometric fashion and then compare simulated moments
to empirical counterparts.1 Alternatively, Hansen & Heckman (1996) and Thomas Sargent
(quoted in Evans & Honkapohja, 2005, p. 568) treat “calibration” as synonymous with
moment matching—or more generally, minimum distance—estimation. We adopt the latter
perspective on calibration in this paper, as it provides a unified econometric framework for
estimating parameters if desired (provided suitable identification conditions are satisfied),
as well as for testing the ability of a structural model to fit empirical moments for any
given values of the parameters (whether estimated or fixed as in Kydland & Prescott, 1996).
Moment matching estimation and specification testing is a widely used paradigm, not only
in macroeconomics, but in diverse fields of applied structural economics.

The application of moment matching estimators and tests to structural models requires
knowledge of the entire variance-covariance matrix of the empirical moments, but in prac-
tice this matrix is often only partially known. When the empirical moments are obtained
from different data sets, different econometric methods, or different previous papers, it is
usually hard or impossible to estimate the off-diagonal elements of the variance-covariance
matrix. Nevertheless, the diagonal of the matrix—the variances of the individual empirical
moments—is typically estimable. In this paper, we show that the diagonal suffices to obtain
practically useful worst-case standard errors for the moment matching estimator. Moreover,
in the over-identified case, we show that the moment weighting that minimizes the worst-
case estimator variance amounts to a moment selection problem with a simple solution. We
also propose a test of correct model specification that can be applied both when the param-
eters are estimated and when they are fixed as in Kydland & Prescott (1996). Hence, our
limited-information methods allow researchers to choose their moments and data sources
freely without giving up on valid statistical inference.

We show that worst-case standard errors for the structural parameters (or smooth trans-
formations thereof), using only the empirical moment variances, are easy to compute. They

1DeJong & Dave (2011) and Nakamura & Steinsson (2018) provide further discussion of calibration.
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are given by a weighted sum of the standard errors of individual empirical moments, where
the weights depend on the moment weight matrix and the derivatives of the moments with
respect to the structural parameters. The derivatives can be obtained analytically, by auto-
matic differentiation, or by first differences. Using these worst-case standard errors, one can
construct a confidence interval that is valid even under the worst-case correlation structure.
The confidence interval is generally conservative for specific correlation structures, but its
minimax coverage is exact, i.e., under the worst-case correlation structure, which amounts
to perfect positive/negative correlation. The confidence interval is likely to be informative in
many empirical applications, as it is at most √

p times wider than it would be if the moments
were known to be independent, where p is the number of moments used for estimation.

Given knowledge of only the individual empirical moment variances, we show that the
moment weighting scheme that minimizes the worst-case estimator variance amounts to a
moment selection problem. That is, the efficient minimum distance weight matrix attaches
zero weight to some of the moments. The efficient selection of moments can be conveniently
computed by running a median regression (i.e., Least Absolute Deviation regression) on a
particular artificial data set. Our limited-information efficient estimator given knowledge of
only the moment variances is generally different from the familiar full-information efficient
estimator that requires knowledge of the entire moment correlation structure.

To understand the intuition behind our efficiency result, consider the analogy of port-
folio selection in finance. This analogy is mathematically relevant, as it is well known that
any minimum distance estimator is asymptotically equivalent to a linear combination of the
empirical moments—a “portfolio” of moments—with a linear restriction on the weights to en-
sure unbiasedness. When constructing a minimum-variance financial portfolio that achieves
a given expected return, it is usually optimal to diversify across all available assets, except if
the assets are perfectly (positively or negatively) correlated. In the latter extreme case, it is
optimal to entirely disregard assets with sufficiently high variance relative to their expected
return. But it is precisely the extreme case of perfect correlation that delivers the worst-case
variance of a given portfolio. Thus, the portfolio with the smallest worst-case variance across
correlation structures is a portfolio that selects a subset of the available assets.

We propose joint tests of parameter restrictions as well as tests of over-identifying restric-
tions. A common form of over-identification test used in the empirical literature is to check
whether the estimated structural parameters yield a good fit of the model to “non-targeted”
moments, i.e., moments that were not exploited for parameter estimation. We show how to
implement a formal statistical test based on this idea in our setup. The test can be per-
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formed either using estimated parameters (if these are identified from the targeted moments)
or given pre-specified parameter values (perhaps obtained from previous studies) as in the
approach advocated by Kydland & Prescott (1996). Separately, we develop a Wald-type
joint test of parameter restrictions. The proof of the validity of this test relies on tail prob-
ability bounds for quadratic forms in Gaussian vectors from Székely & Bakirov (2003), but
the test statistic and critical value are simple and easy to compute.

Finally, we extend our limited-information procedures to settings with more detailed
knowledge of the covariance matrix of empirical moments. This includes settings where the
entire correlation structure is known for some subsets of the moments, or where certain
moments are known to be independent of each other.

We illustrate the usefulness of our procedures through two empirical applications. In the
first one, we estimate and test the Alvarez & Lippi (2014) model of menu cost price setting
in multi-product firms, by matching moments of price changes. In the second application,
we estimate and test a heterogeneous agent New Keynesian model developed by McKay,
Nakamura & Steinsson (2016) and Auclert, Bardóczy, Rognlie & Straub (2021), by matching
impulse responses for macro time series and cross-sectional micro moments. Our worst-
case standard errors yield informative inference on several parameters of interest in both
applications. A Monte Carlo simulation study calibrated to the first application indicates
that our methods perform well in finite samples.

Literature. Unlike the literature on correlation matrix completion (e.g., Georgescu,
Higham & Peters, 2018), we solve the explicit problem of finding the worst-case correla-
tion structure when estimating parameters in a structural model. Our derivations of the
worst-case efficient weight matrix and joint testing procedure do not seem to have parallels
in the matrix completion literature.

While we focus on cases where it is difficult to estimate the correlation structure of
different moments, in some applications it may be possible to model and exploit the precise
relationship between the moments. The literature on estimating heterogeneous agent models
in macroeconomics has recently developed procedures for combining macro and micro data,
as discussed further in Section 5.2. Hahn, Kuersteiner & Mazzocco (2022, 2024) provide
advanced tools for doing inference with a mix of cross-sectional and time series data. These
methods, unlike ours, generally require access to the underlying data. Imbens & Lancaster
(1994) consider a microeconometric setting where certain macro moments are known without
error, which is a special case of our framework. Hahn, Kuersteiner & Mazzocco (2020) give
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examples of structural models where both time series and cross-sectional data are required
for identification of structural parameters. Their insights may help inform the choice of
moments for the methods that we develop below.

Outline. Section 2 defines the moment matching setup. Section 3 derives the worst-case
standard errors and the efficient moment weighting/selection. Section 4 develops tests of
parameter restrictions and of over-identifying restrictions. Section 5 contains two empirical
illustrations. Section 6 concludes. Appendix A contains proofs and other technical details.
Code for implementing our procedures is available online.

2 Setup

Consider a standard moment matching (minimum distance) estimation framework. Let
µ0 ∈ Rp be a vector of reduced-form parameters, which we will refer to as “moments”,
though the method applies more generally. Let θ0 ∈ Θ ⊂ Rk be a vector of structural
model parameters. According to an economic model, the two parameter vectors are linked
by the relationship µ0 = h(θ0), where h : Θ → Rp is a known function implied by the model.
The map h(·) may be computed either analytically or numerically. We have access to an
estimator µ̂ (“empirical moments”) that satisfies

√
n(µ̂ − µ0) d→ N(0, V ) (1)

for a p × p symmetric positive semidefinite variance-covariance matrix V .2 Let Ŵ be a p × p

symmetric matrix satisfying Ŵ
p→ W (we discuss the choice of Ŵ in Section 3.2). Then a

“moment matching” or “minimum distance” estimator of θ0 is given by

θ̂ = argmin
θ∈Θ

(µ̂ − h(θ))′Ŵ (µ̂ − h(θ)). (2)

This estimation strategy is sometimes referred to as “calibration”.3

2Here and below, all limits are taken as the sample size n → ∞. We implicitly think of the sample sizes
for the different moments as being proportional, with the factors of proportionality reflected in V . If some
element µ̂j converges at a faster rate than

√
n, then Vjj = 0. Sample sizes and convergence rates only enter

into our practical procedures through their implicit effect on the calculation of the moment standard errors
σ̂j (discussed below), which is handled automatically by econometric software.

3Our analysis extends in a straight-forward manner to Generalized Minimum Distance estimation. In
that setting θ0 and µ0 are linked through a possibly non-separable equation g(θ0, µ0) = 0m×1. The setting in
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If we were able to estimate the covariance matrix of the empirical moments µ̂ consistently,
it would be straight-forward to construct standard errors for any smooth function of the
estimator θ̂. Suppose we are interested in the scalar transformed parameter r(θ0), where
r : Θ → R. For example, r(·) may equal a particular counterfactual quantity in the structural
model, or we could simply set r(θ) = θi for some index i. Under the standard regularity
conditions listed below in Assumption 1,

√
n(r(θ̂) − r(θ0)) = λ′(G′WG)−1G′W

√
n(µ̂ − µ0) + op(1) (3)

d→ N
(
0, λ′(G′WG)−1G′WV WG(G′WG)−1λ

)
,

where G ≡ ∂h(θ0)/∂θ′ ∈ Rp×k and λ ≡ ∂r(θ0)/∂θ ∈ Rk. See Newey & McFadden (1994)
for details. If the entire asymptotic covariance matrix V of µ̂ were consistently estimable,
the above display would allow computation of standard errors, confidence intervals, and
hypothesis tests.

Unfortunately, the full correlation structure of µ̂ is difficult or impossible to estimate in
certain applications. This may be the case, for example, when the moments µ̂ are obtained
from a variety of different data sources or econometric methods, or from previous studies for
which the underlying data is not readily available. Moreover, if the moments involve a mix of
time series and cross-sectional data sources, it can be difficult conceptually or practically to
estimate correlations across data sources, whether through the bootstrap or the Generalized
Method of Moments (GMM). While the structural model could in some cases be exploited to
estimate the moment covariance matrix, this may require stronger assumptions than what is
needed for point estimation of the structural parameters.4 We discuss these points in more
detail at the end of this subsection and in the empirical applications in Section 5.

Yet, it is often the case that the standard errors of each of the components of µ̂ are
available. These marginal standard errors may be directly computable from data, or they
may be reported in the various papers that the individual elements of µ̂ are gleaned from.
Thus, assume that we have access to standard errors σ̂1, . . . , σ̂p ≥ 0 satisfying

√
nσ̂j

p→ V
1/2

jj , j = 1, . . . , p. (4)

our paper is a special case with g(θ, µ) = h(θ) −µ, but our calculations carry over with few changes because
the asymptotic expansions are essentially the same (Newey & McFadden, 1994).

4For example, if we exploit the model’s predictions about second moments for estimation, model-based
estimation of V would require believing the model’s predictions about fourth moments.
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We show in the next section that these marginal standard errors suffice for doing informative
inference on r(θ0).5

For ease of reference, we summarize our technical assumptions here:

Assumption 1.

i) The empirical moment vector µ̂ is asymptotically normal, as in (1).

ii) The standard errors σ̂j are consistent, as in (4).

iii) h(·) and r(·) are both continuously differentiable in a neighborhood of θ0 (which lies in
the interior of Θ), G ≡ ∂h(θ0)/∂θ′ has full column rank, and λ ≡ ∂r(θ0)/∂θ ̸= 0k×1.

iv) θ̂
p→ θ0.

v) Ŵ
p→ W for a symmetric positive semidefinite matrix W .

vi) G′WG is nonsingular.

Conditions (ii)–(vi) are standard regularity conditions that are satisfied in smooth, identi-
fied models (Newey & McFadden, 1994). Note that we allow for the possibility that some
moments are known with certainty (Vjj = 0) as in Imbens & Lancaster (1994). We will now
discuss the key condition (i).

Discussion of limited information about the correlation structure and the
joint normality assumption. We now provide several examples of situations where it
is difficult or impossible to estimate the correlation structure of different types of empirical
moments. In cases when the elements of the moment vector µ̂ are obtained from different
data sets, the joint normality assumption (1) requires justification. This ensures not only that
a normal distribution is the appropriate reference distribution for obtaining critical values,
but also that the vector µ̂ can reasonably be viewed as arising from some joint, repeatable
experiment for which the given standard errors σ̂j capture all sources of uncertainty. The
joint normality assumption is most easily understood and justified under a model-based (e.g.,
shock-based) perspective on uncertainty. In this view, there exists a coherent data generating
process with both aggregate and idiosyncratic shocks that affect all of the observed data.

5Our set-up covers applications where the parameters θ̂ are not explicitly estimated but are instead fixed
at certain extraneous values µ̂ obtained from prior studies. In this case h(θ) = θ, and σ̂j is the standard
error (which could potentially be 0 for some j) of the j-th extraneous parameter value θ̂j = µ̂j .
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The empirical application of Section 5.2 is a prototypical example of this framework, but
such applications are not the only use case.

There are several cases in which the joint normality assumption appears reasonable, but
estimation of the full moment covariance matrix V could be challenging. For example:

1. The moments are obtained from the same or similar data sets, but the underlying data
for some of the moments is not available. For example, some moments may be reported
in previous papers that use proprietary data. In this case, traditional full-information
inference procedures are inapplicable because it is generally impossible to estimate mo-
ment cross-correlations without access to the underlying data. However, as long as we
have access to marginal standard errors for each individual moment, our methods can be
applied. See Section 5.1 for an empirical example.

2. Some of the moments are computed from aggregate time series and others from panel data
spanning similar time periods. If the clustering procedure of the panel data regressions
allows for aggregate shocks (such as when clustering by time period or when using the
standard error formula from Driscoll & Kraay, 1998), and these aggregate shocks also
affect the time series data, then the panel regressions will have correct standard errors
but the coefficients may be correlated with the time series moments.

3. The moments stem from time series data observed at various frequencies, or from regional
data with various levels of geographic aggregation. While careful econometric analysis
may allow the estimation of the full covariance matrix of the moments by appropriately
collapsing the sample moment conditions for the higher-frequency or higher-resolution
data, this could be cumbersome in practice. This is especially true if there is limited
overlap in the time spans of the higher-frequency and lower-frequency data, or in the
geographical coverage of the higher-resolution and lower-resolution data.

4. We use a combination of aggregate time series moments and micro moments from surveys,
and the latter measure time-invariant parameters that are not affected by macro shocks
in the sample. In this case, it is often reasonable to assume that the uncertainty in
the micro moments (arising purely from idiosyncratic noise) is uncorrelated with the
uncertainty in the macro moments. Similarly, cross-sectional moments obtained from
different independent random samples are plausibly uncorrelated with each other. Such
extra information about off-diagonal entries of V can be incorporated in our procedures,
as shown in Section 3.3.

8



5. The moments are all computed from the same data set, but using a variety of complicated
procedures. While it may in principle be possible to estimate the correlation structure
analytically by stacking the first-order conditions for the different estimation procedures
into a large GMM moment vector, applied researchers may wish to avoid these com-
plications. The bootstrap offers a simpler approach but is computationally impractical
in some cases. In contrast, our analytical inference procedures below only require re-
searchers to obtain standard errors for each estimated moment separately, and these are
often outputted automatically by existing software. One may worry about the internal
consistency of mixing moments arising from different estimation procedures, in the sense
that the models used to compute the various moments could be mutually incompatible (or
incompatible with the structural model that the researcher seeks to fit to the moments).
This can be tested using the over-identification test that we propose in Section 4.2.

6. The moments are all computed from the same data set, but full-information inference
procedures perform poorly in finite samples. In this case full-information efficient infer-
ence is feasible and asymptotically valid. However, as shown by Altonji & Segal (1996),
traditional full-information efficient minimum distance estimation, which relies on an es-
timate V̂ of the entire moment variance-covariance matrix V , can be subject to severe
finite-sample biases in many applications, especially when p is large.6 Though we do
not have formal results characterizing finite-sample performance, one could apply our
limited-information inference procedure as a practical conservative robustness check that
avoids the noise arising from estimating the non-diagonal entries of V .

To be clear, in cases 2–6 above (though not in case 1), full-information inference may be
possible in principle, as we have indicated. However, this could be cumbersome to imple-
ment in practice and/or suffer from poor finite-sample properties. The limited-information
procedures we develop offer applied researchers simpler tools that in many cases provide in-
formative inference about structural parameters. Moreover, the limited-information results
could be used as a first step for exploring whether it is worthwhile to expend the extra effort
required for full-information inference.

It is important to note that the joint normality assumption (1) may fail in some cases,
rendering our methods invalid. For example:

6When matching simple moments with access to the underlying i.i.d. data, generalized empirical likelihood
estimators are known to have better finite-sample properties than efficient minimum distance or GMM,
though they are often harder to compute (see Imbens, 2002, for a review).
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1. We use a combination of aggregate time series moments and micro moments from surveys,
but the latter are affected by aggregate macro shocks that shift the whole micro outcome
distribution. In this case, standard cross-sectional moments may not even be consistent for
the true underlying population moments, since the aggregate shocks do not get averaged
out (Hahn et al., 2020, Section 3). Moreover, the usual micro standard errors will not
take into account the combined uncertainty in the macro shocks and idiosyncratic micro
noise. However, if the effects of macro shocks on micro moments do average out and we
appropriately account for all types of uncertainty when computing moments and their
standard errors, then our methods below can be applied. We illustrate this empirically
in Section 5.2.

2. The data used to compute some of the moments is very heavy tailed, or the estimation
procedures are not asymptotically regular. In this case, even marginal normality of the
individual empirical moments may fail. We leave extensions to non-normal limit distri-
butions as an interesting topic for future research.

3 Standard errors and moment selection

We first derive the worst-case standard errors for a given choice of moment weight matrix.
Then we show that the weighting scheme that minimizes the worst-case standard errors
amounts to a moment selection problem with a simple solution.

3.1 Worst-case standard errors and confidence intervals

We first compute the worst-case bound on the standard error of the moment matching
estimator, given knowledge of only the variances of the empirical moments. Although the
mathematical argument is straight-forward, it appears that the literature has not realized
the practical utility of this result.

Recall that we seek to do inference on the scalar parameter r(θ0). By the standard delta
method expansion (3) under Assumption 1, the estimator r(θ̂) is asymptotically equiva-
lent to a certain linear function x′µ̂ of the empirical moments, where x = (x1, . . . , xp)′ ≡
WG(G′WG)−1λ. We thus seek to bound the variance of an (asymptotically) known linear
combination of µ̂, knowing the variance of each component µ̂j but not the correlation struc-
ture. This worst-case variance is attained when all components of µ̂ are perfectly positively
or negatively correlated (depending on the signs of the elements of x), yielding the worst-case
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variance (∑p
j=1 |xj| Var(µ̂j)1/2)2, as is proved in the following elementary lemma.7

Lemma 1. Let x = (x1, . . . , xp)′ ∈ Rp and σ2
1, . . . , σ2

p ≥ 0. Let S(σ) denote the set of p × p

symmetric positive semidefinite matrices with diagonal elements σ = (σ2
1, . . . , σ2

p)′. Then

max
V ∈S(σ)

√
x′V x =

p∑
j=1

σj|xj|.

Proof. The right-hand side is attained by V = ss′, where s = (σ1 sign(x1), . . . , σp sign(xp))′.
Moreover, for any V ∈ S(σ),

x′V x =
p∑

j=1

p∑
ℓ=1

xjxℓVjℓ ≤
p∑

j=1

p∑
ℓ=1

|xjxℓ| |Vjℓ| ≤
p∑

j=1

p∑
ℓ=1

|xjxℓ| σjσℓ =
 p∑

j=1
σj|xj|

2

,

where the penultimate inequality uses that |Vjℓ|2 ≤ VjjVℓℓ for any symmetric positive semidef-
inite matrix V .

We can thus construct an estimate of the worst-case standard error of r(θ̂) as

ŝe(x̂) ≡
p∑

j=1
σ̂j|x̂j|, (5)

where x̂ = (x̂1, . . . , x̂p)′ ≡ Ŵ Ĝ(Ĝ′Ŵ Ĝ)−1λ̂, Ĝ ≡ ∂h(θ̂)
∂θ′ , and λ̂ ≡ ∂r(θ̂)

∂θ
. In practice, the deriva-

tives may be computed analytically, by automatic differentiation, or by finite differences.
Let Φ(·) denote the standard normal distribution function. Then the confidence interval

ĈI ≡
[
r(θ̂) − Φ−1(1 − α/2)ŝe(x̂), r(θ̂) + Φ−1(1 − α/2)ŝe(x̂)

]
covers r(θ0) with probability at least 1−α asymptotically, as shown formally in the following
proposition. The asymptotic coverage probability generally exceeds 1 − α due to the worst-
case perspective, but coverage is exact in a particular special case when all elements of the
empirical moment vector µ̂ are perfectly correlated asymptotically.

Proposition 1. Impose Assumption 1 and maxj |xj|Vjj > 0. Then limn→∞ P (r(θ0) ∈ ĈI) ≥
1 − α, and the inequality binds for the rank-1 matrix V defined in the proof of Lemma 1.

Proof. Please see Appendix A.1.

7The basic intuition is that Var(X+Y ) = Var(X)+Var(Y )+2[Var(X) Var(Y )]1/2 Corr(X,Y ) ≤ Var(X)+
Var(Y ) + 2[Var(X) Var(Y )]1/2 = (Var(X)1/2 + Var(Y )1/2)2, since Corr(X,Y ) ≤ 1.
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Remarks.

1. The worst-case standard errors are at most √
p times larger than the standard errors

that assume all elements of µ̂ to be mutually uncorrelated. This follows from Hölder’s
inequality between ℓ1 and ℓ2 norms, which yields ∑p

j=1 σ̂j|x̂j| ≤ p1/2(∑p
j=1 σ̂2

j x̂2
j)1/2.

2. Though often informative, limited-information inference can potentially have much lower
power than full-information inference. Specifically, the worst-case standard errors can in
some (but not all) models be arbitrarily larger than the standard errors one would report
given full knowledge of V . For example, consider a “repeated measurements” model with
k = 1, p = 2, h(θ) = (θ, θ)′, r(θ) = θ, and Ŵ = I, yielding the estimator θ̂ = (µ̂1 + µ̂2)/2.
The worst-case standard error of θ̂ equals (σ̂1 + σ̂2)/2, corresponding to the case where
µ̂1 and µ̂2 are perfectly positively correlated. But it is easy to verify that the best-case
standard error equals |σ̂1 − σ̂2|/2, corresponding to µ̂1 and µ̂2 being perfectly negatively
correlated. If σ̂1 = σ̂2, the ratio of worst-case to best-case standard errors is infinite.

3. In applications where the moment function h(θ) cannot be evaluated analytically, the
moments can instead be approximated by simulating from the economic model given
parameter vector θ. Proposition 3 in Appendix A.2 shows that the conclusions of Propo-
sition 1 continue to apply in this case, as long as the number of simulation draws is
sufficiently large relative to the empirical sample size n.

3.2 Efficient moment selection

We now derive a weight matrix W that minimizes the worst-case variance of the estimator,
derived above. We show that this weight matrix puts weight on at most k moments, so the
procedure amounts to efficient moment selection. Since the weight matrix W only matters
in the over-identified case, we assume p > k in this section.

We seek a weight matrix W that minimizes the worst-case asymptotic standard deviation
of r(θ̂). Let x(W ) denote the vector x defined in Section 3.1, viewed as a function of W , and
let Sp denote the set of p × p symmetric positive semidefinite matrices W such that G′WG

is nonsingular. Then we solve the problem

min
W ∈Sp

max
Ṽ ∈S(diag(V ))

√
λ′(G′WG)−1G′WṼ WG(G′WG)−1λ (6)

= min
W ∈Sp

max
Ṽ ∈S(diag(V ))

(x(W )′Ṽ x(W ))1/2
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= min
W ∈Sp

p∑
j=1

V
1/2

jj |xj(W )|,

where the last equality uses Lemma 1 in Section 3.1. Lemma 2 in Appendix A.1 shows that
the solution to the final optimization problem above is given by

min
W ∈Sp

p∑
j=1

V
1/2

jj |xj(W )| = min
z∈Rp−k

p∑
j=1

|Ỹj − X̃ ′
jz|, (7)

where we define

Ỹj ≡ V
1/2

jj Gj•(G′G)−1λ ∈ R, X̃j ≡ −V
1/2

jj G⊥′
j• ∈ Rp−k,

G⊥ is any p × (p − k) matrix with full column rank satisfying G′G⊥ = 0k×(p−k), and the
notation Aj• means the j-th row of matrix A. The intuition for the equality (7) is that the set
of all minimum distance estimators for various weight matrices is asymptotically equivalent
to the set of all estimators that are linear combinations of the p moments µ̂, subject to k

asymptotic unbiasedness constraints. We can therefore optimize over a (p − k)-dimensional
linear space.

The final optimization problem (7) is a median regression (Least Absolute Deviation
regression) of the artificial “regressand” {Ỹj} on the p − k artificial “regressors” {X̃j}. This
regression can be executed efficiently using standard quantile regression software.

The solution to the median regression amounts to optimally selecting at most k of the
p moments for estimation. Theorem 3.1 of Koenker & Bassett (1978) implies that there
exists a solution z∗ to the median regression (7) such that at least p − k out of the p median
regression residuals

e∗
j ≡ Ỹj − X̃ ′

jz
∗, j = 1, . . . , p,

equal zero. Hence, an efficient weight matrix W ∗ that achieves the minimum in (7) will
yield a linear combination vector x(W ∗) = (V −1/2

11 e∗
1, . . . , V −1/2

pp e∗
p)′ that attaches nonzero

weight to at most k out of the p empirical moments µ̂. In other words, the solution to
the efficient moment weighting problem is endogenously achieved by an efficient moment
selection. We may pick an arbitrary weight matrix that attaches nonzero weight to only the
efficiently selected moments (the magnitudes of the weights do not matter asymptotically,
as the selected set of moments is just-identified).
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Analytical illustration. To illustrate the above results, and to link back to the intu-
itive discussion of portfolio selection in Section 1, consider a “repeated measurements” model
with k = 1, p = 2, h(θ) = (θ, θ)′, and r(θ) = θ. It is easy to see that any weight matrix
Ŵ yields a minimum distance estimator of the form θ̂ = x1µ̂1 + x2µ̂2, where x1 + x2 = 1.
The constraint that x1 and x2 sum to 1 ensures that the estimator is consistent. The choice
of optimal weight matrix corresponds to an optimal choice of x1 and x2 = 1 − x1. One
might expect the usual diversification motive to cause us to attach nonzero weights to both
empirical moments µ̂1 and µ̂2, so that their estimation errors average out partially. However,
for the worst-case correlation structure for these moments—perfect correlation—their esti-
mation errors amplify each other, rendering diversification futile. Hence, we minimize the
worst-case standard error |x1|σ̂1 + |1 − x1|σ̂2 by setting x1 = 1 when σ̂1 < σ̂2 and otherwise
x1 = 0, yielding the estimator θ̂ = µ̂argminj σ̂j

. That is, the efficient estimator simply discards
the moment with the largest standard error. In more general models, moment selection also
depends on how informative each moment is about the structural parameters, as measured
by the Jacobian matrix G.

Algorithm. The efficient estimator and standard errors can be computed as follows:

i) Compute an initial
√

n-consistent estimator θ̂init using, say, a diagonal weight matrix
with Ŵjj = σ̂−2

j .

ii) Construct the derivative matrix Ĝ ≡ ∂h(θ̂init)
∂θ′ and vector λ̂ ≡ ∂r(θ̂init)

∂θ
, either analytically

or numerically.

iii) Solve the median regression (7), substituting Ĝ for G, λ̂ for λ, and σ̂j for V
1/2

jj .8 Compute
the residuals ê∗

j , j = 1, . . . , p, from this median regression. (In the non-generic case
where multiple solutions to the median regression exist, select one that yields at most
k nonzero residuals.)

iv) Construct the efficient linear combination x̂∗ = (x̂∗
1, . . . , x̂∗

p)′ of the p moments, given by
x̂∗

j ≡ σ̂−1
j ê∗

j for j = 1, . . . , p. At least p − k of the elements will be zero, corresponding
to those moments that are discarded by the efficient moment selection procedure.

v) To compute an efficient estimator of r(θ0), either:

8Remember to omit an intercept from the regression.
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a) Compute the just-identified efficient minimum distance estimator θ̂eff of θ0 which uses
any weight matrix that attaches zero weight to those (at least) p − k moments which
receive zero weight in the vector x̂∗. Then estimate r(θ0) by r(θ̂eff). Or:

b) Compute the “one-step” estimator r̂eff-1S ≡ r(θ̂init) + x̂∗′(µ̂ − h(θ̂init)) of r(θ0).9

vi) The worst-case standard error of the estimator from step (v) is given by the value of
the median regression (7) (i.e., the minimized objective function).

Options (a) and (b) in step (v) of the algorithm are asymptotically equivalent. Option (b)
is computationally more convenient as it avoids further numerical optimization, but option
(a) ensures that θ̂eff always lies in the parameter space Θ.

Remarks.

1. Since all operations involved in computing the efficient linear combination x̂∗ are continu-
ous, x̂∗ converges in probability to the population efficient linear combination x(W ∗). The
only exception may be where the population median regression (7) does not have a unique
minimum, which is a non-generic case. Even in this case, however, the efficient worst-case
standard errors will be consistent (when multiplied by

√
n) under Assumption 1(i)–(iv),

by a standard application of the maximum theorem.

2. The full-information (infeasible) efficient weight matrix that exploits knowledge of all of
V is known to equal W = V −1. This weight matrix in general attaches nonzero weight to
all moments, unlike the limited-information efficient solution derived above. The worst-
case asymptotic standard deviation (7) given limited information is of course larger than
the asymptotic standard deviation (λ′(G′V −1G)−1λ)1/2 of the full-information efficient
estimator of r(θ0).

3. The efficient moment weighting/selection for the limited-information efficient estimators
r(θ̂eff) and r̂eff-1S depends on the function r(·) of interest, unlike in the case of full-
information efficient estimation. In practice, we can just re-run the computations for
each function r(·) of interest (e.g., for each component of θ).

4. By restricting W to the set Sp of weight matrices for which G′WG is nonsingular, we
ensure that the parameter vector θ0 is at least locally identified from the selected moments

9See Newey & McFadden (1994, Section 3.4) for a general discussion of one-step estimators.
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(Newey & McFadden, 1994, p. 2144). However, the selected moments may fail to ensure
global identification of θ0. In models for which this is a concern, we recommend using the
one-step efficient estimator r̂eff-1S, which inherits its consistency from the initial estimator
θ̂init that could be computed using all available moments.

5. It is not restrictive to consider moment matching estimators of the form (2). Consider
instead any estimator ϑ̂ ≡ f̂(µ̂) of θ0, where f̂ : Rp → Rk is a possibly data-dependent
function with enough regularity to satisfy the asymptotically linear expansion

ϑ̂ − θ0 = H(µ̂ − µ0) + op(n−1/2),

for some k×p matrix H. If we restrict attention to asymptotically regular estimators of θ0

(i.e., estimators that remain asymptotically unbiased under locally drifting parameters),
we need HG = Ik. Among all estimators ϑ̂ satisfying these requirements, the smallest
possible worst-case asymptotic standard deviation of r(ϑ̂) is achieved by the estimator
whose asymptotic linearization matrix H solves

min
H : HG=Ik

max
Ṽ ∈S(diag(V ))

(λ′H ′Ṽ Hλ)1/2.

Lemma 2 in Appendix A.1 shows that the solution to this problem is precisely the value
of the median regression (7). In other words, the minimum distance estimator θ̂ with
(limited-information) efficient weight matrix delivers the smallest possible worst-case
standard errors in a large class of estimators.

3.3 General knowledge of the covariance matrix

We now extend our results to the general case where any collection of elements of the
asymptotic covariance matrix V of the moments µ̂ is known (or consistently estimable),
while the remaining elements are unrestricted. For example, if a pair of elements of µ̂ are
known to be independent, the corresponding off-diagonal elements of V must equal zero.

Letting S̃ denote the given constraint set for V , we can compute the worst-case asymp-
totic standard deviation of r(θ̂) as √

max
Ṽ ∈S̃

x′Ṽ x, (8)
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where x was defined in Section 3.1.10 In the case of interest to us, S̃ is defined by equality
restrictions on a subset of the elements of V , in addition to the restriction that V is symmet-
ric positive semidefinite.11 Then the maximization problem (8) is a so-called semidefinite
programming problem, a special case of convex programming. In Appendix A.3, we show
that the efficient weight matrix can likewise be computed through a pair of nested convex
optimizations. We also show that analytical simplifications obtain in the special case where
we know the block diagonal of V ; such a structure may occur if consecutive elements of µ̂ are
obtained from the same data set, allowing estimation of covariances among these elements.
Our online software suite automatically implement all these computations.

4 Testing

In this section we develop a joint test of multiple parameter restrictions as well as a test of
over-identifying restrictions.

4.1 Joint testing of parameter restrictions

We propose a test of the joint null hypothesis H0 : r(θ0) = 0m×1 against the two-sided
alternative. In this section, the continuously differentiable function r : Θ → Rm is allowed to
be multi-valued. Tests of a single parameter restriction (m = 1) can be carried out using the
confidence interval described in Section 3.1. For the case m > 1, we propose the following
testing procedure. Let α ∈ (0, 1) denote the significance level.

i) Compute the Wald-type test statistic

T̂ ≡ r(θ̂)′Ŝr(θ̂),

where Ŝ is a user-specified symmetric positive definite m × m matrix, to be discussed
below.

ii) Compute the critical value

cvn ≡ max
Ṽ ∈S(diag(V ))

1
n

trace
(
Ṽ WG(G′WG)−1λSλ′(G′WG)−1G′W

)
×
(
Φ−1(1 − α/2)

)2
.

(9)

10Similarly, we could compute the best-case standard deviation by minimizing this objective function.
11In fact, the argument also extends to imposing inequality constraints on elements of V .
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In practice, we substitute the estimates 1
n

diag(V ) ≈ diag(σ̂2
1, . . . , σ̂2

p), W ≈ Ŵ , S ≈ Ŝ,
G ≈ Ĝ ≡ ∂h(θ̂)

∂θ′ , and λ ≈ λ̂ ≡ ∂r(θ̂)′

∂θ
.

iii) Reject H0 : r(θ0) = 0m×1 if T̂ > cvn.

The maximization (9) is a semidefinite programming problem, which is easy to compute
numerically, as discussed in Section 3.3. Appendix A.3 extends the procedure to settings
where additional knowledge about V is available other than the diagonal.

The following proposition shows that, for conventional significance levels α, the asymp-
totic size of this test does not exceed α, regardless of the true correlation structure of the
moments. This holds for any valid choice of weight matrix Ŵ , including—but not limited
to—the limited-information efficient weight matrix derived in Section 3.2.

Proposition 2. Impose Assumption 1, except that we redefine λ ≡ ∂r(θ0)′/∂θ and require
this matrix to have full column rank m. Assume also that Ŝ

p→ S, S is symmetric positive
definite, n cvn > 0, and α ≤ 0.215. Then, if r(θ0) = 0m×1,

lim sup
n→∞

P (T̂ > cvn) ≤ α.

Proof. Please see Appendix A.1.

Remarks.

1. We do not have formal results on how to choose the weight matrix Ŝ in the test statistic.
A pragmatic ad hoc choice is to set Ŝ = (λ′(G′WG)−1G′WV̄ WG(G′WG)−1λ)−1 (with
consistent estimates plugged in), where V̄ is a particular value for the asymptotic variance
V of µ̂ at which we wish to direct power. Then T̂ is the usual full-information Wald
statistic given V = V̄ , though the critical value for the test differs from the conventional
one to ensure size control regardless of the actual unknown correlation structure. For
example, if we want to direct power toward the case with independent moments, we can
choose V̄ = diag(nσ̂2

1, . . . , nσ̂2
p).

2. The test procedure in Proposition 2 is generally conservative from a minimax perspec-
tive, i.e., the size may be strictly smaller than α for all covariance matrices V of the
moments. The reason is that the proof of Proposition 2 relies on a tail probability bound
for quadratic forms of Gaussian random vectors (Székely & Bakirov, 2003). This bound
is attained when V has rank 1, but the positive semidefinite maximum (9) need not be
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attained at a rank-1 matrix, to our knowledge. It is an interesting topic for future re-
search to devise a test that has a formal minimax optimality property given the limited
knowledge of V .

3. The test procedure is consistent against any fixed alternative with r(θ0) ̸= 0m×1 under the
conditions of Proposition 2. This follows from the standard argument that nT̂ diverges
to infinity with probability 1 in this case, while cvn = O(n−1) since the largest eigenvalue
of any matrix Ṽ ∈ S(diag(V )) is bounded above by ∑p

j=1 Vjj.

4. An alternative way to test multiple hypotheses (m > 1) is to separately test each null
hypothesis rj(θ0) = 0, j = 1, . . . , m, using the univariate confidence interval for rj(θ0)
in Section 3.1, but with a Bonferroni correction applied to the significance level.12 That
is, the test rejects the joint hypothesis when any of the m level-(1 − α/m) confidence
intervals excludes 0. This Bonferroni test neither dominates, nor is it dominated by, the
test in Proposition 2 in terms of local power in general. The latter test has the advantage
that it is finite-sample invariant to nonsingular linear transformations of the joint null
hypothesis (if Ŝ is chosen as in the first remark above).

4.2 Over-identification testing

The fit of the calibrated model can be evaluated using over-identification tests when we
have more moments p than parameters k. In this subsection we allow for potential model
misspecification by dropping the assumption in Section 2 that there exists θ0 ∈ Rk such
that h(θ0) = µ0. Let an arbitrary weight matrix Ŵ

p→ W be given, such as the limited-
information efficient weight matrix derived in Section 3.2. Define the pseudo-true parameter
θ̃0 ≡ argminθ∈Rk(µ0 − h(θ))′W (µ0 − h(θ)), assuming the minimizer is unique. We continue
to impose all the assumptions in Section 2, with θ̃0 substituting for θ0.

Suppose we want to know whether the model provides a good fit for a particular moment.
Let j∗ ∈ {1, . . . , p} be the index of the moment of interest. We seek a confidence interval
for the model misspecification measure µ0,j∗ − hj∗(θ̃0), i.e., the j∗-th element of µ0 − h(θ̃0).

12We thank a referee for this suggestion. Yet another approach was suggested to us by Bo Honoré: Reject
whenever infV nr(θ̂)′(λ′(G′WG)−1G′WVWG(G′WG)−1λ)−1r(θ̂) exceeds the 1−α quantile of a chi-squared
distribution with m degrees of freedom. That is, we search over V for the smallest conventional Wald test
statistic. Unfortunately, this optimization problem appears to be numerically challenging unless p is small.
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It is standard to show that, under Assumption 1,

µ̂ − h(θ̂) − (µ0 − h(θ̃0)) = (Ip − G(G′WG)−1G′W )(µ̂ − µ0) + op(n−1/2). (10)

Let x̄ be the j∗-th column of the matrix Ip − Ŵ Ĝ(Ĝ′Ŵ Ĝ)−1Ĝ′. Then

[
µ̂j∗ − hj∗(θ̂) − Φ−1(1 − α/2)ŝe(x̄), µ̂j∗ − hj∗(θ̂) + Φ−1(1 − α/2)ŝe(x̄)

]
is a confidence interval for the difference µ0,j∗ −hj∗(θ̃0), with worst-case asymptotic coverage
probability 1 − α. Note that it can happen that ŝe(x̄) = 0, in which case it is not possible
to test the over-identifying restriction corresponding to the j∗-th moment.13

One common use of over-identification testing is to evaluate the estimated model’s fit
on “non-targeted moments”. This corresponds to the special case where the weight matrix
Ŵ zeroes out the corresponding rows and columns of the non-targeted moments, so that
the point estimate θ̂ ignores these moments.14 An application of this idea is to fix the
structural parameters θ to extraneous values—perhaps obtained from previous studies—and
then evaluate whether the model’s predictions at these parameters match additional moments
(this can be viewed as a statistical version of the model validation process advocated by
Kydland & Prescott, 1996). This is achieved by choosing a moment function of the form
h(θ) = (θ′, h̄(θ))′, with empirical moments µ̂ = (ˆ̃θ′, ˆ̄µ)′. Here ˆ̃θ are the extraneous parameter
values, while h̄(θ) is the “non-targeted” model prediction of the empirical moment ˆ̄µ.

5 Empirical applications

We illustrate our methods with two empirical examples. First we fit a model of menu cost
price setting to scanner data. Then we fit a heterogeneous agent New Keynesian model to
impulse responses estimated from a combination of micro and macro data.

13Similarly, following the ideas in Section 4.1, a joint test of the over-identifying restrictions can be
constructed by computing the test statistic T̂overid ≡ (µ̂ − h(θ̂))′Ŝ(µ̂ − h(θ̂)) for some p × p sym-
metric positive definite matrix Ŝ. A natural ad hoc choice is Ŝ = Ŵ , in which case the test
statistic equals the minimized minimum distance objective function. We reject correct specification of
the model at significance level α ≤ 0.215 if the test statistic exceeds the critical value cvn,overid ≡
maxṼ ∈S(diag(V ))

1
n trace

(
Ṽ (Ip −WG(G′WG)−1G′)S(Ip −G(G′WG)−1G′W )

)
×
(
Φ−1(1 − α/2)

)2, where we
plug in sample analogues for all the unknown quantities.

14Note that in this case p continues to denote the total number of moments (“targeted” plus “non-
targeted”), and in particular Ĝ should contain derivatives of both kinds of moments.
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5.1 Menu cost price setting in multi-product firms

Our first application estimates the Alvarez & Lippi (2014) model of menu cost price-setting
in multiproduct firms. We fit the model to moments of price changes from supermarket
scanner data. This is a small-scale application with k = 3 parameters and p = 4 moments.

Though we in fact have access to the underlying data set, we emulate a hypothetical
situation where the model is matched to moments that were reported in another paper.
We can therefore compare full-information inference, which uses the underlying data, with
limited-information inference, which uses only the moments and their marginal standard
errors. We find that limited-information inference remains informative about the structural
parameters. Moreover, a simulation study calibrated to this application confirms the utility
of our procedures in finite samples.

Model. We give a brief overview of the structural model here and refer the reader to
Alvarez & Lippi (2014) for details. A firm sets prices on N products. The desired log prices
for the products evolve in continuous time as N independent Brownian motions (without
drift); however, the actual prices are fixed until the firm pays a fixed menu cost, at which
point it may reset all N prices simultaneously. The firm’s profit depends negatively on
the squared log deviation between the current and desired price, integrated over time and
averaged across the N products. The model has k = 3 parameters: the number N of
products, the volatility of the desired prices, and the scaled menu cost (relative to the
curvature of the profit function).15 Alvarez & Lippi (2014) derive closed-form expressions
for the frequency of price changes and the moments of the size of price changes. These are
the moments we will match in the data.

Data. We empirically estimate the frequency and moments of price changes in scanner data
from the supermarket chain Dominick’s (Kilts Center for Marketing, 2018). As described
in detail in Appendix A.4, we clean the data following Alvarez, Le Bihan & Lippi (2016),
and in particular we focus on data from a single store. Unlike those authors, we exclusively
use data on beer products, which arguably increases the interpretability of the results and
makes the sample size more relevant for our subsequent simulation study. The final data set
contains weekly prices on 499 beer products (Universal Product Codes, henceforth UPCs),
observed for an average of 76 weeks per UPC. The total sample size is n = 37,916. When

15In the notation of Alvarez & Lippi (2014), these parameters are n, σ, and
√
ψ/B, respectively.
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computing standard errors, we treat the price changes as i.i.d. across UPCs and time.
The p = 4 reduced-form moments that we match to the structural model are the average

number of price changes per week as well as the empirical first, second, and fourth moments
of the absolute log price changes (conditional on a nonzero change).16 We estimate the
full-information covariance matrix of these moments using the usual nonparametric estimate
(which depends on sample moments of price changes up to order 8). When applying our
limited-information procedures, we use only the diagonal of this covariance matrix.

Results. We consider both just-identified and efficient specifications. We treat the number
N of products as a parameter to be estimated, since there may not be a perfect correspon-
dence between a UPC and the structural model’s notion of a “product”. The just-identified
specification uses a weight matrix that attaches zero weight to the first moment of absolute
price changes (i.e., the average), so that the three parameters are estimated from three mo-
ments (this estimator is available in closed form). We can then check whether the model
provides a good fit for the “non-targeted” moment by carrying out the over-identification
test proposed in Section 4.2. The efficient specification exploits all four empirical moments,
using either the conventional full-information one-step estimator or our limited-information
one-step estimator in Section 3.2. In addition to the full-information and limited-information
procedures, we report results for a procedure that (erroneously) assumes that the four em-
pirical moments are mutually independent.

Table 1 shows that the limited-information standard errors are larger than the full-
information ones, but they remain highly informative about the values of the structural
parameters. In the efficient over-identified specification, the worst-case standard errors are
at most 3.7 times larger than the corresponding full-information values. Importantly, all
worst-case standard errors are arguably small relative to the economic magnitudes of the
parameter estimates. Hence, taking a worst-case perspective still allows for informative in-
ference. In this particular application, the standard errors that assume independence are
mostly intermediate between the full-information and limited-information values.

Though limited-information inference is informative about the structural parameters
themselves, there is a price to pay for the over-identification test in this application. In
particular, Table 1 shows that the limited-information test does not reject the validity of
the non-targeted moment restriction, whereas the full-information test does reject (however,

16Before computing moments, we subtract off the overall average log price change (conditional on a nonzero
change), since the Alvarez & Lippi (2014) model abstracts from inflation.
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Price setting application: Parameter estimates

Just-identified specification Efficient specification
# prod. Vol. Menu cost Over-ID # prod. Vol. Menu cost

Full-info 3.012 0.090 0.291 0.002 3.255 0.089 0.305
(0.046) (0.001) (0.003) (0.000) (0.051) (0.001) (0.003)

Independ. 3.012 0.090 0.291 0.002 2.829 0.090 0.280
(0.167) (0.001) (0.010) (0.001) (0.091) (0.000) (0.006)

Worst case 3.012 0.090 0.291 0.002 2.786 0.090 0.278
(0.235) (0.001) (0.016) (0.002) (0.148) (0.001) (0.011)

Table 1: Estimates for the just-identified specification (uses only three moments for estimation)
and the efficient specification (exploits all four moments for estimation). The rows correspond
to full-information inference (exploits knowledge of V̂ ), inference under independence (erroneously
assumes that V̂ is diagonal), and worst-case inference (exploits only diagonal of V̂ without assuming
off-diagonal elements are zero). Parameters: number of products (“# prod.”), volatility of desired
log price (“Vol.”), scaled menu cost (“Menu cost”). Column “Over-ID” displays the error in fitting
the non-targeted mean absolute price change moment, given the just-identified parameter estimates.
Standard errors in parentheses.

the economic magnitude of the moment violation is small, as the empirical moment equals
0.145 but the error in fitting the moment is only 0.002).17 This illustrates the principle that
full-information inference is usually preferable if it is practically feasible. Of course, if we did
not have access to the underlying supermarket scanner data, there would be no alternative
to the limited-information analysis.

Simulation study. In Appendix A.4 we show that our inference procedures perform well
in simulations. We simulate data from the Alvarez & Lippi (2014) model conditional on
the estimated structural parameters. While our limited-information tests and confidence
intervals have approximately correct size/coverage given the empirical sample size n (as
do the full-information procedures), the procedures that erroneously assume independence
between the reduced-form moments can over-reject/under-cover.

17Consistent with the over-identification test, some of the full-information efficient parameter estimates
are significantly different from the corresponding independence-based or limited-information estimates in
Table 1. If the model were correctly specified, there should be no statistically significant differences between
estimates obtained with different weight matrices. However, the discrepancies between the different estimates
are arguably small in economic terms.
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5.2 Heterogeneous agent New Keynesian model

Our second application estimates a heterogeneous agent New Keynesian general equilibrium
macro model, following McKay et al. (2016) and Auclert et al. (2021). The matched mo-
ments are impulse response functions of macro time series and cross-sectional micro moments
with respect to identified productivity and monetary policy shocks, as estimated by Chang,
Chen & Schorfheide (2024) and Miranda-Agrippino & Ricco (2021). This is a medium-scale
application with k = 7 parameters and p = 23 moments.

Though less efficient, impulse response matching estimation is more robust to modeling
assumptions than full-information likelihood estimation.18 This is because—in the first-order
approximation we consider—the impulse responses with respect to a monetary shock, say,
do not depend on the exogenous processes for the other disturbances (e.g., shocks to the
household discount rate).19 Thus, our application only requires us to specify and estimate
the exogenous processes for productivity and monetary disturbances. We remain agnostic
about the number and nature of other shocks that may be driving the economy.

Likewise, our limited-information approach is simpler and less restrictive than other types
of procedures that attempt to exploit more information. The only data inputs into our
procedure are the impulse response point estimates and confidence intervals reported by
Chang et al. (2024) and Miranda-Agrippino & Ricco (2021). We do not need access to the
underlying data used in those papers, as would be required if one were to estimate the joint
covariance matrix of all empirical moments via the bootstrap or GMM calculations. Unlike
approaches based on bootstrapping or simulating data, we do not need to repeatedly re-run
the impulse response estimation routines, and we do not need to fully model the relationship
between the macro and micro data used by Chang et al. (2024) (e.g., by specifying all shocks).

Model. We employ the one-asset heterogeneous agent New Keynesian model described in
Auclert et al. (2021, Appendix B.2). Following McKay et al. (2016), the model features a
continuum of heterogeneous households facing uninsurable idiosyncratic earnings risk. The
households choose their work hours and amount of savings in a nominal Treasury bond.
Monopolistically competitive firms set prices subject to a quadratic adjustment cost, yielding

18Likelihood procedures for estimation of heterogeneous agent models have been proposed by Mongey &
Williams (2017), Winberry (2018), Auclert et al. (2021), and Liu & Plagborg-Møller (2023) among others.

19Impulse responses to a monetary shock are computed by holding fixed all other exogenous shocks. As a
result, the linearized impulse responses depend only on parameters of the monetary disturbance process as
well as model parameters that govern the endogenous transmission mechanisms.
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a New Keynesian Phillips curve. Households receive lump sum distributions of government
interest revenue and firm profits. The central bank sets the nominal interest rate according
to a Taylor rule that depends on inflation. A detailed description of the model is provided
in the Online Supplement.

Our model differs from that of Auclert et al. (2021) in only three respects. First, we
set the Taylor rule coefficient on output equal to zero, as this coefficient is estimated to
be numerically small by Auclert et al. (2021, Table F.III). Second, rather than assuming
constant total factor productivity (TFP), we allow for an exogenous AR(2) disturbance to
the log growth rate of TFP. Third, in order to allow for more flexible dynamics, we generalize
the AR(1) process for the monetary disturbance (the residual in the Taylor rule) assumed by
Auclert et al. to an AR(2) process. Auclert et al. additionally allow for shocks to government
spending and markups; our estimation strategy is robust to the presence of such additional
shocks, as noted above, though we do not explicitly estimate the effects of these shocks.

The model is solved through a first-order linearization, using the numerical procedures
developed by Auclert et al. (2021). That is, the moment function h(·) is computed numeri-
cally, and its derivatives are approximated via finite differences; no Monte Carlo simulation
is involved.

Following Auclert et al. (2021), we limit ourselves to estimating structural parameters
that do not affect the steady state of the model. This allows us to avoid repeatedly recom-
puting the steady state, though this would be feasible to do with moderate computational
effort. The steady state parameters are fixed at the values assumed by Auclert et al. (2021,
Table B.2). The k = 7 estimated parameters are: the Taylor rule coefficient on inflation, the
slope of the Phillips curve, the three parameters in the AR(2) process for TFP growth, and
the two autoregressive coefficients for the monetary disturbance.20

Data. The empirical moments are obtained from two sets of Structural Vector Autoregres-
sion estimates of impulse responses to identified shocks.

Impulse responses with respect to TFP shocks are obtained from Chang et al. (2024, Fig.
9 and 11, blue lines). We use the responses of TFP itself and of GDP (output in the model),
as well as the response of a cross-sectional moment estimated using data from the Current
Population Survey (CPS): the fraction of people earning less than 2/3 of per capita GDP.21

20We do not need to estimate the standard deviation of the monetary shock, since this parameter does
not affect the normalized impulse responses that we match (see below).

21The factor 2/3 approximately adjusts for the average labor share, see Chang et al. (2024, Sec. 6.1).
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The sophisticated estimation method of Chang et al. (2024) takes into account statistical
uncertainty arising from the limited sample sizes in the CPS. By relying directly on their
reported results, our analysis inherits this desirable feature.

Impulse responses with respect to monetary shocks are obtained from Miranda-Agrippino
& Ricco (2021, Fig. 3). We use the responses of industrial production (output in the model),
the consumer price index (price level in the model), and the 1-year Treasury rate (annualized
nominal interest rate in the model). Since our structural model is quarterly but the Miranda-
Agrippino & Ricco (2021) data is monthly, we use the end-of-quarter impulse responses.

We focus on four impulse response horizons: the impact horizon, and the 1-, 2-, and
8-quarter horizons. When matching the model to the data, we take into account that the
Chang et al. (2024) responses are with respect to a one-standard-deviation shock, while
the Miranda-Agrippino & Ricco (2021) responses are normalized so that the Treasury rate
increases by 100 basis points on impact.22 Since both papers report Bayesian posterior
quantiles, we appeal to the Bernstein-von Mises theorem and define the point estimates to
be the reported posterior medians, while the standard errors are those implied by a normal
approximation of the reported credible intervals.23 In total, we have p = 23 empirical
moments, as we discard the impact response of the bond rate, which is normalized to 1.

Results. The top row of Table 2 shows the parameter estimates obtained by using a diag-
onal weight matrix with Wjj = 1/σ̂2

j .24 The Taylor rule coefficient on inflation is estimated
to slightly exceed 1. The slope of the Phillips curve is positive but statistically insignificant
at conventional significance levels. The TFP growth process is estimated to be close to
white noise (i.e., the level of TFP is close to a random walk, as commonly assumed in the
literature), while the monetary disturbance process has a half-life of about 2 quarters.

Figure 1 compares the model-implied and empirical impulse responses, at the parameter
estimates discussed in the previous paragraph. We see that the model-implied impulse
responses of output to a monetary shock are too small in magnitude relative to the data at

22Chang et al. (2024) actually consider a 3-standard-deviation shock, but we divide by 3.
23Thus, if the length of the 1 − α credible interval for θj is L̂j , we set σ̂j = L̂j/(2Φ−1(1 − α/2)).
24We run gradient-based numerical optimizations from 100 different starting values and report the overall

optimum. One vector of starting values equals the posterior mode estimates θ̂ABRS
i from Auclert et al. (2021,

Table F.III) where possible (including setting the AR2 coefficient for the monetary disturbance to zero as
assumed therein), supplemented by parameters implying that TFP growth is white noise with standard
deviation equal to the contemporaneous response of TFP to a TFP shock reported by Chang et al. (2024).
The 99 other starting values are simulated uniformly at random from intervals of the form [0, 2θ̂ABRS

i ], or
[−0.99, 0.99] in the case of AR1 coefficients.
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Heterogeneous agent application: Parameter estimates

TFP Monetary
Weight matrix TR PC AR1 AR2 Std AR1 AR2
Diagonal 1.060 0.009 0.008 -0.040 0.006 0.702 0.075

(0.100) (0.008) (0.146) (0.189) (0.000) (0.110) (0.163)
Efficient 1.040 0.015 0.007 -0.017 0.006 0.697 0.014

(0.074) (0.006) (0.137) (0.152) (0.000) (0.088) (0.127)

Table 2: Structural parameter estimates with diagonal weight matrix (top row) and efficient
weighting (bottom row). Parameters: Taylor rule coefficient on inflation (“TR”); slope of Phillips
curve (“PC”); first and second autoregressive (“AR1” and “AR2”) and standard deviation (“Std”)
parameters of TFP and monetary disturbance processes. Worst-case standard errors in parentheses.

the 2- and 8-quarter horizons, while the opposite is true for the responses of the price level
with respect a monetary shock. Moreover, the model fails to generate nontrivial dynamics
in the fraction of low-wage earners in response to a TFP shock. To test whether these
disparities are too large to be explained by statistical noise, we conduct the over-identification
test proposed in Section 4.2. The vertical error bars in Figure 1 show the 90% confidence
intervals for the differences between model-implied and empirical moments, centered at the
empirical moments for visual convenience. Three of the model-implied impulse responses for
the fraction of low-wage earners fall outside their respective intervals, though only marginally
so. While this points to misspecification of either the structural model or the reduced-form
VAR models used to generate the empirical impulse responses, we note that the joint test
of the validity of all p = 23 moments does not reject at the 10% level.25

The efficient (one-step) parameter estimates in the bottom row of Table 2 demonstrate
the benefit of optimally weighting the moments as described in Section 3.2. In particular,
the t-statistic for the slope of the New Keynesian Phillips curve increases to 2.32, from 1.10
previously. Thus, our limited-information approach obtains a statistically significant slope
parameter, as in the full-information estimation exercise of Auclert et al. (2021) but without
requiring specification of all the shocks driving the economy. More generally, the efficient
standard errors in the bottom row of Table 2 are 6–26% smaller than the non-efficient ones
in the top row.26

25The test statistic in Footnote 13 equals 24.58 with critical value 56.99.
26Table 5 in Appendix A.5 shows which moments are optimally selected to estimate the various parameters.
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Heterogeneous agent application: Impulse responses
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Figure 1: Model-implied impulse responses (thin curves) and corresponding empirical estimates
(circles), with respect to a one-standard-deviation TFP shock (top row) or a monetary policy shock
that raises the bond rate by 1 percentage point on impact (bottom row). Figure titles: response
variables (“% Earn < GDP”: fraction of people earning less than 2/3 of per capita GDP). Vertical
axis units: percentage points. Horizontal axis units: quarters. Vertical error bars: (shifted) 90%
confidence intervals for the differences between the empirical and model-implied moments (not
confidence intervals for the empirical moments themselves).

6 Conclusion

We computed simple, sharp, and informative upper bounds on the standard errors of struc-
tural parameter estimates when the correlation structure of the matched empirical moments
is not fully known. In addition, we proposed an efficient moment weighting procedure in the
over-identified case, as well as valid tests of parameter restrictions and over-identifying re-
strictions. The required inputs are minimal: Other than being able to evaluate the mapping
from structural parameters to model-implied moments (at least numerically), we just need
the empirical moment estimates and their individual standard errors. Our procedures are
computationally tractable even in settings with many moments and/or parameters. A code
suite is available online.

We believe our limited-information approach is useful for applied researchers who match
their models to moments obtained from several different data sources, estimation methods,
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or previous papers. Our methods obviate the need to estimate the correlation structure
across the various moments, which is sometimes difficult or impossible. Even when the
moment correlation structure is in principle estimable, our methods may be helpful, since
marginal standard errors for individual moments are typically much easier to obtain from
standard econometric software than it is to figure out the joint distribution of all moments,
as illustrated in our empirical applications. Moreover, the limited-information procedures
can be used to gauge whether it is worthwhile to expend the additional effort required for
full-information analysis.

A Appendix

A.1 Technical lemmas and proofs

Here we state and prove a technical lemma referred to in Section 3.2, and we provide the
proofs of Propositions 1 and 2.

Lemma 2. Assume p, k ∈ N and p > k. Let λ ∈ Rk, and let G ∈ Rp×k have full column
rank. Let G⊥ denote any p×(p−k) matrix with full column rank such that G′G⊥ = 0k×(p−k).
Let Sp denote the set of p × p symmetric positive semidefinite matrices W such that G′WG

is nonsingular. Then

{
WG(G′WG)−1λ : W ∈ Sp

}
= {x : x ∈ Rp, G′x = λ} =

{
G(G′G)−1λ + G⊥z : z ∈ Rp−k

}
.

Proof. We first show that

{
G(G′G)−1λ + G⊥z : z ∈ Rp−k

}
⊂
{
WG(G′WG)−1λ : W ∈ Sp

}
. (11)

Pick any z ∈ Rp−k, and define

W (z) ≡ (G, G⊥)
 Ik λ̃z′

zλ̃′ δIp−k

 G′

G⊥′

 , λ̃ ≡ 1
λ′(G′G)−1λ

λ,

where δ > 0 is arbitrary but chosen large enough so that W (z) is positive semidefinite. Then

W (z)G = (G, G⊥)
 Ik λ̃z′

zλ̃′ δIp−k

 G′G

0(p−k)×k

 = (G + G⊥zλ̃′)G′G.
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Hence,
G′W (z)G = (G′G)2,

implying

W (z)G(G′W (z)G)−1λ = (G + G⊥zλ̃′)(G′G)−1λ = G(G′G)−1λ + G⊥z,

and thus the statement (11) holds.
Now pick any W ∈ Sp. Then x = WG(G′WG)−1λ satisfies G′x = λ. This shows that

{
WG(G′WG)−1λ : W ∈ Sp

}
⊂ {x : x ∈ Rp, G′x = λ} . (12)

Finally, choose any x ∈ Rp satisfying G′x = λ. Since the columns of G and G⊥ are (jointly)
linearly independent, there exist y ∈ Rk and z ∈ Rp−k such that x = Gy + G⊥z. Note that
λ = G′x = G′Gy, so necessarily y = (G′G)−1λ. We have thus shown that

{x : x ∈ Rp, G′x = λ} ⊂
{
G(G′G)−1λ + G⊥z : z ∈ Rp−k

}
. (13)

The set inclusions (11)–(13) together imply the statement of the lemma.

Proof of Proposition 1. It is standard to show that (3) holds under Assumption 1
(Newey & McFadden, 1994). Moreover,

√
n ŝe(x̂) p→

p∑
j=1

V
1/2

jj |xj| = max
Ṽ ∈S(diag(V ))

√
x′Ṽ x,

where the equality uses Lemma 1 in Section 3.1, diag(V ) is the vector of diagonal elements
of V , and we recall the notation x = WG(G′WG)−1λ. Hence, letting Z denote a standard
normal random variable, we have

lim
n→∞

P (r(θ0) ∈ ĈI) = lim
n→∞

P
(√

n|r(θ̂) − r(θ0)| ≤ Φ−1(1 − α/2) ×
√

n ŝe(x̂)
)

= P

(√
x′V x × |Z| ≤ Φ−1(1 − α/2) × max

Ṽ ∈S(diag(V ))

√
x′Ṽ x

)
≥ P

(
|Z| ≤ Φ−1(1 − α/2)

)
= 1 − α.
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Proof of Proposition 2. Under the null hypothesis,

√
nr(θ̂) d→ λ′(G′WG)−1G′WV 1/2Z,

where V 1/2V 1/2′ = V , and Z = (Z1, . . . , Zp)′ ∼ N(0p×1, Ip). The asymptotic null distribution
of the test statistic T̂ is therefore a Gaussian quadratic form:

nT̂
d→ Z ′QZ, Q ≡ V 1/2′WG(G′WG)−1λSλ′(G′WG)−1G′WV 1/2.

Székely & Bakirov (2003) prove that

P (Z ′QZ ≤ trace(Q) × τ) ≥ P (Z2
1 ≤ τ) (14)

for any p×p symmetric positive semidefinite (non-null) matrix Q and any τ > 1.5365. Since
(Φ−1(1 − α/2))2 > 1.5365 for α ≤ 0.215, it follows that, under the null,

P (T̂ ≤ cvn) ≥ P
(
nT̂ ≤ trace(Q) × (Φ−1(1 − α/2))2

)
→ P

(
Z ′QZ ≤ trace(Q) × (Φ−1(1 − α/2))2

)
≥ P

(
Z2

1 ≤ (Φ−1(1 − α/2))2
)

= 1 − α.

A.2 Simulated moments

We here argue that Proposition 1 can be extended to a setting where the model-implied
moment function h(·) is not available analytically and we therefore resort to stochastic
simulation to approximate it. The main requirement is that the number of simulation draws
M is sufficiently large relative to the empirical sample size n.

Let ĥM(·) denote the approximation of h(·) computed from M simulation draws. For
example, if we are matching simple moments of the form h(θ) = E[h̃(θ, ζ)], where h̃(·, ·) is
a deterministic function and ζ is a random vector (e.g., the shocks in the structural model),
then we can set ĥM(θ) = 1

M

∑M
s=1 h̃(θ, ζs), where ζ1, . . . , ζM are draws from the distribution

of ζ. The minimum distance estimator θ̂ is defined as in (2), but with ĥM(·) in place of h(·).
The worst-case standard errors are computed as in (5), except that we leave the estimator
Ĝ = ĜM of G = ∂h(θ0)

∂θ′ unspecified for now (we return to this choice below).

Proposition 3. Impose Assumption 1 and maxj |xj|Vjj > 0. Assume further that as n → ∞,
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we have M → ∞, n/M → 0, ĜM
p→ G, and supθ : ∥θ−θ0∥≤δM

√
M∥ĥM(θ) − h(θ)∥ = Op(1) for

any sequence satisfying δM → 0. Then the conclusions of Proposition 1 apply.

Proof. Upon inspection of the proof of Proposition 1, it suffices to show that (3) holds. We
appeal to Theorem 7.2 in Newey & McFadden (1994), where, in their notation, ĝn(θ) =
ĥM(θ) − µ̂ and g0(θ) = h(θ) − h(θ0). The first three conditions of this theorem hold by
Assumption 1(iii)–(vi). The fourth condition holds by Assumption 1(i) and

√
n[ĥM(θ0) −

h(θ0)] =
√

n/M ×
√

M [ĥM(θ0) − h(θ0)] = o(1) × Op(1). Finally, the fifth condition follows
from

sup
θ : ∥θ−θ0∥≤δM

√
n∥ĝn(θ) − ĝn(θ0) − g0(θ)∥ = sup

θ : ∥θ−θ0∥≤δM

√
n∥ĥM(θ) − ĥM(θ0) − [h(θ) − h(θ0)]∥

≤ 2
√

n/M × sup
θ : ∥θ−θ0∥≤δM

√
M∥ĥM(θ) − h(θ)∥ = o(1) × Op(1).

Remarks.

1. The key assumption is that the number of simulation draws M is large relative to the
empirical sample size n, in the sense n/M → 0, so that the simulation noise in ĥM(·) is
asymptotically negligible relative to the statistical noise in µ̂. In practice, we recommend
that researchers choose M sufficiently large so that the simulation noise in the moment
estimates ĥM(θ̂) is orders of magnitude smaller than the empirical moment standard
errors σ̂j.

2. The uniform tightness assumption supθ : ∥θ−θ0∥≤δM

√
M∥ĥM(θ) − h(θ)∥ = Op(1) strength-

ens pointwise
√

M -consistency of ĥM(θ) (which usually follows straight-forwardly from a
central limit theorem) to uniform

√
M -consistency for all θ in a neighborhood of θ0.

3. Under alternative asymptotics where M is proportional to n, the simulation noise in the
moments must be taken into account in the worst-case standard error formula, and the
uniform tightness assumption would need to be strengthened to stochastic equicontinuity
as in Newey & McFadden (1994, Theorem 7.2). In practice, our procedure can be ap-
plied without further modification if, for each moment, we increase the squared moment
standard error σ̂2

j by the variance of the Monte Carlo simulation noise of that moment.

4. Consider again the special case with h(θ) = E[h̃(θ, ζ)] and ĥM(θ) = 1
M

∑M
s=1 h̃(θ, ζs),

where we now assume that the draws {ζs}M
s=1 are strictly stationary across s. Then uni-

form tightness is implied by ∑∞
ℓ=−∞ ∥ Cov(h̃(θ, ζs), h̃(θ, ζs−ℓ))∥ being uniformly bounded
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for all θ in a neighborhood of θ0 (this follows from Chebyshev’s inequality). Notice that
these conditions allow the simulated moments ĥM(θ) to be computed either by averaging
across time (in a single simulated economy) or across independent simulated economies.

5. The only assumption required of the estimated Jacobian matrix ĜM is consistency. Newey
& McFadden (1994, Section 7.3) and Hong, Mahajan & Nekipelov (2015) discuss generic
finite-difference derivative estimators based on simulation draws, and they provide as-
sumptions ensuring consistency.

A.3 Details of extensions

Here we provide further details on the cases discussed in Section 3.3 where additional knowl-
edge about the moment covariance matrix is available.

General constraint set. Consider a general constraint set S̃ defined by linear equality
or inequality restrictions, as well as the positive semidefiniteness constraint. In the over-
identified case p > k, the worst-case efficient weight matrix W can be computed through
two nested convex/concave optimization problems:

min
W ∈Sp

max
Ṽ ∈S̃

x(W )′Ṽ x(W ) = min
z∈Rp−k

max
Ṽ ∈S̃

{G(G′G)−1λ + G⊥z}′Ṽ {G(G′G)−1λ + G⊥z}, (15)

where Sp, x(W ), and G⊥ were defined in Section 3.2, and the equality follows from Lemma 2
in Appendix A.1. The inner maximization in (15) is a concave semidefinite program, as
discussed in Section 3.3. The outer minimization is an unconstrained convex program since
the objective function is a pointwise maximum of convex functions in z. The nested opti-
mizations in (15) may be neither strictly convex nor differentiable, but for our purposes it
suffices to use convex optimization algorithms that return any arbitrary local minimum z∗

(which is necessarily also a global minimum). Once an optimal z∗ has been computed, a
corresponding optimal weight matrix is given by the matrix W (z∗) defined in the proof of
Lemma 2 in Appendix A.1.

To conduct joint hypothesis tests as in Section 4, we can simply replace the constraint
set in the critical value computation (9) with S̃.

Special case: Knowledge of the block diagonal. Suppose we know the block
diagonal of V , while all other elements are unrestricted. That is, suppose the constraint set
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S̃ is given by all symmetric positive semidefinite matrices of the form

V =



V(1) ? ? . . . ?
? V(2) ? . . . ?
... . . . ...
... . . . ...
? ? . . . ? V(J)


, (16)

where V(j) are known (or consistently estimable) square symmetric matrices (possibly of
different dimensions) for j = 1, . . . , J . Partition the vectors x and µ̂ conformably as x =
(x′

(1), . . . , x′
(J))′ and µ̂ = (µ̂′

(1), . . . , µ̂′
(J))′. The worst-case asymptotic standard deviation (8),

for fixed W , is then given by

√
max
Ṽ ∈S̃

x′Ṽ x =
J∑

j=1
(x′

(j)V(j)x(j))1/2. (17)

This follows from the same logic as in Lemma 1 in Section 3.1 once we recognize that the
known block diagonal of V implies that the marginal variance of x′

(j)µ̂(j) is known for each
j = 1, . . . , J , but the correlations among these J variables remain unrestricted. Specifically,
the maximum (17) is achieved by V = Var(µ̃), where the random vector µ̃ = (µ̃′

(1), . . . , µ̃′
(J))′

has the following representation. Let η = (η′
(1), . . . , η′

(J))′ have the covariance matrix (16), but
with zeros instead of question marks. Let η̄ be a scalar random variable with variance 1 that
is uncorrelated with η. Then set µ̃(j) ≡ 1√

x′
(j)V(j)x(j)

V(j)x(j)η̄ + (I − 1
x′

(j)V(j)x(j)
V(j)x(j)x

′
(j))η(j),

j = 1, . . . , J .
In the over-identified case, the worst-case efficient weight matrix can be computed by

substituting the formula (17) into the nested optimization (15) (with x = G(G′G)−1λ+G⊥z).

A.4 Details of the price setting application and simulation study

Here we provide details of the data used for the empirical application in Section 5.1, and we
conduct a simulation study calibrated to this application.

Data. We use the “movement” data set for beer products (file name wber.csv) on the
Dominick’s Data website (Kilts Center for Marketing, 2018). We follow Alvarez et al. (2016)
when cleaning the data. First, we keep only data for store #122. Second, we drop any
observations with prices below 20 cents or above 25 dollars (the data was collected between
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Price setting application: Reduced-form moment estimates

Moment Estimate Std. error Pairwise correlation
×1000 E[(∆p)2] E[(∆p)4] E[|∆p|]

Frequency 0.293 2.338 0.000 0.000 0.000
E[(∆p)2] 0.027 0.233 0.939 0.966
E[(∆p)4] 0.001 0.019 0.831
E[|∆p|] 0.145 0.754

Table 3: Reduced-form moment estimates and their standard errors: average weekly rate of
nonzero price changes (Frequency), and moments E[|∆p|j ], j = 1, 2, 4 of absolute log price changes
conditional on a nonzero change. “Pairwise correlation” columns: estimated pairwise correlations
across the sample moments.

the years 1989 and 1994). Third, we set any absolute price changes below one cent equal to
zero. Fourth, we drop the largest 1% of absolute log price changes.

Table 3 shows the p = 4 estimated reduced-form moments, their standard errors, and
their estimated correlation matrix. The sample kurtosis (fourth moment divided by squared
second moment) of log price changes equals 1.80. The zero correlation between the sample
frequency of nonzero price changes (a binary outcome) and the sample moments of the price
change magnitudes is mechanical. Our limited-information analysis here does not exploit
this fact because we want to emulate what an applied researcher might do without thinking
hard about the problem. However, the independence could be taken into account using the
extensions described in Section 3.3.

Simulation study. We apply the inference methods to data simulated from the Alvarez &
Lippi (2014) model. The simulations treat the just-identified empirical parameter estimates
(columns 1–3 in Table 1) as the truth, and we use a sample size of n = 37,916 as in the
real data. The binary price change indicators are drawn i.i.d. from a binomial distribution
with the model-implied success probability (Alvarez & Lippi, 2014, Proposition 4). The
magnitudes of the price changes are drawn from the model-implied density function (Alvarez
& Lippi, 2014, Proposition 6).27 We use 10,000 Monte Carlo repetitions. The estimation
and inference procedures are the same as the ones applied to the actual data (in particular,
efficient estimates are computed using the one-step approach).

27We simulate from this density by numerically computing the associated quantile function on a fine grid,
and then passing random uniform draws through a cubic interpolation of this function.
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Monte Carlo simulation study

Just-identified specification Efficient specification
# prod. Vol. Menu cost # prod. Vol. Menu cost

Confidence interval coverage rate

Full-info 94.5% 95.0% 94.7% 95.0% 95.2% 95.3%
Independence 100.0% 95.0% 100.0% 100.0% 89.1% 100.0%
Worst case 100.0% 99.4% 100.0% 100.0% 99.4% 100.0%

Confidence interval average length

Full-info 0.179 0.002 0.010 0.162 0.002 0.009
Independence 0.627 0.002 0.039 0.390 0.002 0.025
Worst case 0.878 0.003 0.059 0.571 0.003 0.041

RMSE relative to true parameter values

Full-info 1.53% 0.59% 0.86% 1.37% 0.58% 0.76%
Independence 1.53% 0.59% 0.86% 1.72% 0.59% 0.99%
Worst case 1.53% 0.59% 0.86% 1.79% 0.59% 1.03%

Rejection rate of over-identification test

Full-info 5.01%
Independence 0.00%
Worst case 0.00%

Rejection rate of joint test of true parameter values

Full-info 4.79%
Independence 7.54%
Worst case 2.47%

Table 4: Simulation results based on the empirically calibrated Alvarez & Lippi (2014) model. The
just-identified specification uses only three moments for estimation, while the efficient specification
exploits all four moments. The rows correspond to full-information inference (exploits knowledge
of V̂ ), inference under independence (erroneously assumes that V̂ is diagonal), and worst-case
inference (exploits only diagonal of V̂ without assuming off-diagonal elements are zero). Estimated
parameters: number of products (# prod.), volatility of desired log price (Vol.), scaled menu cost
(Menu cost). The over-identification test tests the validity of the fourth non-targeted moment. The
joint test of the true parameters is a Wald test (Full-info or Independence) or the test proposed in
Section 4.1 (Worst case). The nominal significance level is 5%.
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Table 4 shows that the just-identified and efficient limited-information confidence inter-
vals have coverage probabilities very nearly equal to or exceeding the nominal level of 95%
for all three parameters. Though coverage is conservative, the table shows that the aver-
age length of the confidence intervals is not more than six times that of the corresponding
full-information confidence intervals. This is consistent with the empirical standard errors
reported in Section 5.1.

Table 4 also illustrates that the worst-case perspective is key to avoiding over-rejection in
the face of limited information: Both the “efficient” t-test for the price volatility parameter
and the joint Wald test of the true parameter values over-reject if we erroneously assume
that all the empirical moments are independent of each other.28 In contrast, the limited-
information and full-information t-tests and joint tests are correctly sized.29 The limited-
information tests are conservative (as predicted by theory), though the joint test of parameter
restrictions is only mildly conservative in this particular model.

Finally, Table 4 shows that the limited-information efficient point estimates have slightly
higher root mean squared error (RMSE) than the efficient full-information estimates. It
may seem surprising at first blush that the limited-information efficient estimates can have
(marginally) higher RMSE than the just-identified estimates. This is because the limited-
information efficient estimates are designed to have low variance under the worst-case cor-
relation structure (i.e., perfect correlation of the moments), not under the true correlation
structure that is unknown to the econometrician.

A.5 Details of the heterogeneous agent application

We here provide further details on the application in Section 5.2. Table 5 shows which
impulse response moments are used to efficiently estimate the seven structural parameters,
according to the moment selection procedure described in Section 3.2. The p = 23 moments
are shown along the rows, while the k = 7 parameters are shown along the columns. A cell
with an “x” indicates a non-zero efficient loading (x̂∗

j in the notation of Section 3.2), while
empty cells indicate zero loadings.30

28In the case of the volatility parameter, the independence-based efficient estimator loads positively on all
four moments (i.e., x̂j > 0 for all j). Because three of these moments are in fact highly positively correlated
with each other (see Table 3), ignoring covariances leads to an underestimate of the standard error.

29We only report the joint test for the just-identified specification. This is because the joint test proposed
in Section 4.2 requires a single choice of weight matrix, whereas the worst-case efficient point estimates of
the three parameters correspond to three different choices of moments (selected as in Section 3.2).

30We define a loading to be zero if |x̂∗
j | < 10−4.
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Heterogeneous agent application: Efficient moment selection

Impulse response TFP Monetary
Var. Shock Horiz. TR PC AR1 AR2 Std AR1 AR2
TFP TFP 0 x x x x x

1 x x x x
2 x x x x
8

Output TFP 0 x x x
1
2
8

Frac TFP 0
1
2
8

Output MP 0 x x x x
1
2
8

Price MP 0 x x
1
2 x
8

Bond MP 1 x x x x
2
8 x x

Table 5: Cells with an “x” indicate that the efficient estimate of the given parameter (along
columns) attaches a non-zero weight to the given empirical moment (along rows). First three
columns show the impulse response variable (“Var.”), shock, and quarterly horizon (“Horiz.”). Vari-
able “Frac”: fraction of people earning less than 2/3 of GDP. Shock “MP”: monetary shock. See
parameter abbreviations in Table 2.
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