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Abstract

For an incompatible patient-donor pair, kidney exchanges often forbid receipt-before-donation

(the patient receives a kidney before the donor donates) and donation-before-receipt, causing a

double-coincidence-of-wants problem. We study an algorithm, the Unpaired kidney exchange

algorithm, which eliminates this problem. In a dynamic matching model, we show that the

waiting time of patients under Unpaired is close to optimal and substantially shorter than under

widely-used algorithms. Using a rich administrative dataset from France, we show that Unpaired

achieves a match rate of 63 percent and an average waiting time of 176 days for transplanted

patients. The (infeasible) optimal algorithm is only slightly better (64 percent and 144 days);

widely used algorithms deliver less than 40 percent match rate and at least 232 days waiting

times. We discuss a range of solutions that can address the potential practical incentive challenges

of Unpaired. In particular, we extend our analysis to an environment where a deceased donor

waitlist can be integrated to improve the performance of algorithms. We show that our theoretical

and empirical comparisons continue to hold. Finally, based on these analyses, we propose a

practical version of the Unpaired algorithm.
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1 Introduction

Kidney transplantation is the treatment of choice for kidney failure. However, globally, numerous

individuals undergo dialysis and face prolonged waiting times for transplants. This situation not

only imposes signi�cant healthcare costs but also leads to the deaths of tens of thousands of patients

annually, primarily due to the shortage of compatible organs. Addressing this crisis, kidney exchange

programs have emerged as an innovative solution, targeting patient-donor pairs who are unable to

donate to each other due to biological incompatibility. This approach works by pairing two such

pairs together. If the donor from one pair is compatible with the patient from the other, and vice

versa, then a kidney exchange can be arranged, enabling both patients to receive kidneys. While

ingenious, this leads to the well-known �double coincidence of wants� problem: you not only have to

have the kidney that I want, but also have to want the kidney that I have (Jevons, 1885).

To address the double coincidence of wants challenge, we propose a new solution: the Unpaired

kidney exchange algorithm. Under this algorithm, a patient (patient i) can receive a compatible

kidney from a donor (donor j) who is part of a di�erent patient-donor pair, even if their own paired

donor (donor i) is not a match for that pair's patient (patient j). When this happens, patient j,

whose paired donor has donated a kidney to someone else, is classi�ed as an �unpaired patient.� This

status gives patient j priority to receive a kidney in a future exchange. Similarly, donor i, whose

paired patient has received a kidney from another donor, becomes an �unpaired donor.� Their kidney

is then available to be matched with a di�erent patient in need in the future.

This method contrasts with most current matching algorithms, which often enforce strict timing

constraints on kidney exchanges. These restrictions usually prevent scenarios where a donor gives

a kidney before their corresponding patient receives one, or vice versa. The Unpaired algorithm

removes these timing constraints, enabling current patient-donor pairs to engage in kidney exchanges

with future pairs who are not yet in the system. While it is not obvious that our algorithm will

outperform those enforcing the timing constraints, we will show that the additional �exibility of the

Unpaired algorithm can signi�cantly improve the e�ciency and reach of kidney exchange programs.1

To persuade policymakers to implement our approach, we need to address three critical aspects

of the Unpaired kidney exchange algorithm: its comparative performance against existing methods,

the willingness of patient-donor pairs to participate, i.e., its incentive compatibility, and its moral

and ethical implications, given the sensitive nature of organ donation. Our paper o�ers an in-depth

theoretical and empirical analysis of the Unpaired algorithm, thoroughly examining its e�cacy and

addressing the �rst two questions. Additionally, we brie�y discuss the ethical considerations of this

approach to kidney transplantation.

Section 2 develops a dynamic kidney exchange model with two types of patients. Patient-donor

pairs arrive at some rate n. A fraction λ of patients are hard-to-match and the rest, 1−λ, are easy-
to-match. Hard-to-match and easy-to-match patients are compatible with a random donor with

probabilities pH and pE , respectively, where pH < pE . This two-type assumption is a reasonable

1Indeed, the Unpaired algorithm can match patients/donors too quickly while more transplants could be obtained
by waiting for further arrivals. Timing constraints may mitigate this phenomenon.
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approximation to the continuous but bimodal distribution of match probability among the patients

in kidney exchange in the U.S. and in France.2 Patients and donors stay until they are matched.

The planner, everything else equal, wishes to match patients with donors as quickly as possible.

Hence, the main objective is minimizing the average waiting time of patients.

The Unpaired algorithm works as follows: whenever a new patient-donor pair arrives, match

the patient to a compatible donor (if any), and match the donor to a compatible patient (if any),

breaking ties in favor of hard-to-match patients.

To evaluate the (relative) performance of the Unpaired algorithm, we study three alternative

matching algorithms. The �rst�the Pairwise algorithm�matches two patient-donor pairs whenever

they are pairwise compatible. The second�the Chain algorithm�starts with a �nite number of

altruistic donors and matches patients with donors whenever there exists a chain of donations starting

with an altruistic donor. These two algorithms and some combination of the two correspond to the

state-of-the-art algorithms used in most countries. The third�the Optimal algorithm�minimizes

patients' average waiting time in the class of all matching algorithms. It is clear that the Optimal

algorithm will outperform any algorithm, in particular, the state-of-the-art algorithms. However, the

exact form of the Optimal algorithm is unknown to us and we expect it to be non-greedy and fairly

complex. Hence, we do not see the Optimal algorithm as a candidate for practical implementation.

However, as will become clear, the Optimal algorithm is a useful benchmark since we will be able to

provide non-trivial bounds on its performance and to compare it with a simple and greedy algorithm

such as Unpaired.

We prove the following results, all in the regime that pH is small: First, the Unpaired algorithm

substantially outperforms the Pairwise algorithm. In particular, if the majority of patients are hard-

to-match (i.e., λ > 1/2), the ratio of the waiting times under the two algorithms is O(1/pH). Even

if there are more easy-to-match pairs (λ < 1/2), Unpaired still outperforms Pairwise. For instance,

when only 30 percent of patients are hard-to-match, the waiting time of hard-to-match patients

under Pairwise is at least twice as long as under Unpaired.3

Second, the Unpaired algorithm outperforms the Chain algorithm; in particular, if the fraction of

hard-to-match patients (λ) is large, the Chain algorithm's performance becomes substantially worse

than Unpaired. For instance, if 60 percent of patients are hard-to-match, the Unpaired algorithm

matches hard-to-match patients nearly twice as fast as Chain.4

Finally, we compare the Unpaired algorithm with the Optimal algorithm. We prove that the

Optimal algorithm's waiting time is at least half of that under the Unpaired algorithm. Note

that the Unpaired algorithm matches patients and donors greedily, while the Optimal algorithm is

2This is shown at least graphically in Ashlagi et al. (2019) for the case of the U.S. For France, we run the DIP test
(Hartigan and Hartigan, 1985) and fail to reject the hypothesis of bimodality.

3In our data, among all patients who participated in the KEP, around 30% are compatible with less than 10% of
participating donors.

4We emphasize that this result (and only this result) is shown under the assumption that an easy-to-match patient
is compatible with all donors (pE = 1). As noted in Ashlagi et al. (2019), the Markov chain induced by the Chain
algorithm is hard to analyze. However, our simulations and those in Ashlagi et al. (2019) show that the average
waiting time under the Chain algorithm when pE = 1 is a good approximation to the average waiting time for pE < 1;
moreover, we theoretically show that the waiting time under Unpaired does not depend on pE .
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forward-looking and can in principle wait to thicken the market. This result, nevertheless, shows

that the additional gains from thickening the market are small, in particular, relative to the gains

that Unpaired can bring upon algorithms used in practice such as Chain or Pairwise.

After presenting our theoretical results, we empirically investigate the performance and challenges

of the Unpaired algorithm in Section 3. This is necessary because our theoretical model ignores many

real-world details of the kidney exchange problem. For instance, a patient's biological compatibility

with a donor depends on blood-type and tissue type compatibilities; the compatibility realizations

are unlikely to be i.i.d. across patient-donor pairs in practice. The empirical analysis imposes no

such assumptions on compatibilities. Instead, they directly come from data.

We rely on a dataset provided by the Agency of Biomedicine (Agence de la Biomédecine), a

government agency that oversees all organ transplants in France. It covers the period of December

2013 to February 2018, including all transplants with deceased and living donors kidneys. We

identify a pool of incompatible pairs who are most likely to participate in a kidney exchange program

(KEP), i.e., the 78 pairs who participated in France's KEP and another 508 pairs who went through

incompatible transplantation facilitated by desensitization. We then sample with replacement from

the pool to generate dynamic markets of di�erent sizes (i.e., di�erent arrival rates of patient-donor

pairs).5

We run simulations to compare four algorithms: Pairwise, Chain, Unpaired, and Optimal. We

evaluate an algorithm's performance by the transplant rate (the fraction of the patients in the

simulation sample receiving a transplant in the simulation period), as well as the average waiting

time of transplanted patients.6 Because computing the Optimal algorithm requires additional

assumptions on the data generating process, we simulate a better-than-optimal alternative, the

Omniscient algorithm, which assumes that the planner has perfect foresight about all arrivals in our

sample period. Given this perfect information, the planner simply minimizes the average waiting

time of patients over our sample period. The waiting time of the Omniscient is a lower-bound for

the waiting time of any algorithm, including the Optimal algorithm.

Consistent with our theoretical results, the simulations show that Unpaired performs much better

than the Pairwise and Chain algorithms. In particular, both Pairwise and Chain have a transplant

rate below 40 percent, while Unpaired obtains 63 percent. Perhaps more surprisingly, Unpaired's

transplant rate is almost equal to the Omniscient's rate, which is 64 percent. The same pattern

holds for the average waiting times of transplanted patients�248 days for Pairwise, 232 days for

Chain, 176 days for Unpaired, and 144 days for Omniscient. We show that these �ndings are not

driven by the small size of the French KEP, as we �nd similar results for a wide range of market

sizes.

After showing that the Unpaired algorithm can perform substantially better than the typically

used algorithms, we turn into our second main question: Is it incentive compatible? The Unpaired

algorithm comes with two practically relevant incentive concerns. First, because of donation-before-

5We discuss robustness checks with respect to the pool from which we sample our pairs in footnote 31.
6The transplant rate de�ned in the empirical section would not be a useful measure in the theory part of the paper:

In our in�nite-horizon model without departure, all patients eventually get transplanted.
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receipt, a patient whose intended donor already gave his kidney may wait for a long time after her

paired donor's donation. In our main simulation of a market the size of the French KEP (on average

83 pairs), the median waiting time among the 29 unpaired patients after their donors' donation is

245 days. A pair may �nd it unacceptable to donate a kidney in exchange for a kidney that may

arrive so late. Second, due to receipt-before-donation, a donor may wait for a long time after her

paired patient's transplantation, increasing the chance that she reneges or becomes un�t to donate.

In our main simulation, the median waiting time among the 26 unpaired donors after their patients'

transplant is 339 days.

Similar challenges also exist in some current practices that are related to the Unpaired algorithm.7

The �rst concern exists in the �voucher" programs in the U.S. (Veale et al., 2017). Donors in these

programs donate their kidneys in exchange for a future kidney promise. Notably, some of their

paired patients are not in an urgent need for a kidney, while some may not ever need one�their

voucher will be used only if a member of their family needs a kidney. Yet, many donors are willing

to participate. In addition, our simulations show that the long waits of unpaired patients are largely

due to the small market size, as they decrease signi�cantly with market size in our simulations. This

makes us cautiously optimistic that the �rst concern may not be binding in practice.

The second concern�that unpaired donors may renege�is a challenge in the current practice of

the Chain algorithm, where a donor donates only if his paired patient has already received a kidney.

Data shows that such donors rarely renege. Through simulations, we show that even renege rates 10

times that assumed in the medical literature (Gentry et al., 2009), or 30 times the rate documented

among bridge donors in a chain (Cowan et al., 2017), do not signi�cantly a�ect the performance of

Unpaired (both in terms of waiting time and transplant rate). This also makes us optimistic that

the Unpaired algorithm may not encounter serious practical risk.

Having said that, the incentive challenges discussed may still be seen as obstacles by some

decision makers, especially for small markets in which they are more prominent. Hence, we propose

a practical solution by taking advantage of the �exibility of the Unpaired algorithm to introduce

modi�cations that can (almost) fully address these concerns. The key idea is to use the kidneys

supplied to the deceased donor list (DDL). We propose a modi�ed Unpaired algorithm�Unpaired

with DDL�under which patients who do not get matched with a compatible living donor upon

joining the KEP will be o�ered both arriving kidneys from living donors as well as arriving DDL

kidneys. To ensure this proposal does not hurt patients who are waiting in the DDL, when a KEP

patient is matched to a DDL kidney, a living donor waiting in the KEP will have to donate his

kidney back to a patient waiting on the DDL. The last part of the paper analyzes this algorithm,

theoretically and empirically.8

First, we extend our dynamic matching model to allow for arrivals of deceased donors. We show

that all the theoretical results of Section 2 comparing Unpaired, Pairwise, and Optimum extend to

7See Section 5 for a detailed discussion of the connections.
8As we will see the use of DDL kidneys will help alleviating the two aforementioned incentive issues. While we

do not formally investigate this, it also serves another purpose which is to incentivize patient-donor pairs to join the
KEP.
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this new environment where all algorithms have access to DDL kidneys. An interesting theoretical

property of the Unpaired with DDL is related to the comparative static of increasing the arrival

rate of pairs, keeping the arrival of DDL kidney �xed. In this case, there can be more competition

for DDL kidneys from paired patients, and thus the waiting times of patients may become longer.

We prove that the waiting time of patients under Unpaired with DDL decreases when the arrival

rate of pairs increases. Importantly, this is not necessarily the case for Pairwise with DDL: we show

that the waiting time of patients under Pairwise with DDL may increase when the arrival rate of

pairs increases. Hence, if the good performance of Unpaired successively attracts more pairs into

the system, the performance will not be jeopardized.

Next, we empirically investigate the Unpaired with DDL. We take the arrival of DDL kidneys in

our data as given and only o�er high-quality DDL kidneys (based on the commonly used kidney donor

pro�le index ) to patients. Both Pairwise and Unpaired algorithms have a signi�cantly improved

performance in their versions with DDL: in a market similar to the French KEP, the mean waiting

time of patients is reduced by about 88 to 91 percent. Consistent with our theoretical results, the

Unpaired still performs better than the Pairwise, and is very close to the Omniscient. In addition,

Unpaired with DDL is more favorable than Pairwise with DDL for patients with blood-type O who

typically have the longest waiting times (Glander et al., 2010).

Our empirical counterfactuals also show that the two aforementioned practical challenges are

successfully addressed: the median waiting time for unpaired patients and donors is 50 days and 65

days, respectively. Again, these waiting times decrease sharply as market size grows.

There is, however, a negative unintended consequence for the Unpaired with DDL algorithm.

Precisely because this algorithm is fairly successful in matching patients quickly to a living or

deceased donor, it does not provide enough incentives for patients to �nd easy-to-match donors. A

patient who has two potential donors in the family with blood-types O and AB gets no reward for

bringing the O donor, since in any case she is likely to be matched to a deceased donor quickly.

And, in fact, she may prefer to bring the AB donor to reduce the probability that her donor ends

up donating a kidney.

This concern motivates us to consider a version of Unpaired with DDL that we propose as the

�nal and most practically plausible solution, the Unpaired with DDL with delay δ : In the Unpaired

with DDL algorithm, each patient is required to wait for δ months before receiving any DDL kidney

o�ers, but a patient whose donor has already donated can receive DDL kidney o�ers immediately.

This modi�ed version provides incentives for patients to �nd a donor who is likely to donate soon

to a patient in the KEP (e.g., an O donor who is likely to be compatible with many patients), so

that they can receive high-quality DDL kidneys earlier.

In our simulations, we �nd that the algorithm with δ = 6 months can address all the practical

concerns discussed above. In a market similar to the French KEP, (i) it matches 55 percent of

patients with a living donor, (ii) a median unpaired patient only waits for 6 days before receiving

a kidney, hence increasing the incentive to bring a good donor to get matched earlier, and (iii) a

median unpaired donor waits 39 days for donating a kidney.
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To conclude this section, we turn to the question of our proposal's moral acceptability. It is

instructive to compare this with an alternative proposed by economists: legalizing kidney transactions,

a concept explored by (Becker and Elias, 2007). While this market-based approach theoretically

solves the double coincidence problem and has shown in Iran's legal market to increase donor supply

and reduce waiting times (Akbarpour et al., 2019), it also brings forth substantial ethical concerns.

Roth (2007) identi�es three primary concerns: �rst, the moral con�ict between altruistic organ

donation and commodi�cation, where selling organs for money could be seen as objectifying the

human body; second, the disproportionate likelihood of the poor selling kidneys, raising concerns

of coercion; and third, the risk of creating a slippery slope leading to more morally questionable

practices, such as forcing debtors to donate organs in bankruptcy cases. While we take no stance on

the morality of a kidney market, we note its global illegality, barring Iran, and the unlikely prospect

of legal reforms in this domain.

The Unpaired algorithm, in contrast, is designed to sidestep all of these ethical dilemmas. It

fosters kidney donation driven by altruistic motives, not �nancial gain. It negates scenarios where

the poor are pressured to sell organs or creditors demand organs as debt repayment. The core

di�erence lies in the fungibility of money versus the non-fungibility of commitments to provide

kidneys within our system. Money's fungibility can lead to morally objectionable uses, whereas

non-fungible commitments of our proposal, tied to speci�c patients or donors, allow for controlled

and ethical use, circumventing concerns of repugnance. Therefore, we believe that the Unpaired

algorithm aligns with the ethical principles of standard pairwise kidney exchanges, emphasizing the

altruistic essence of organ donation.

1.1 Related Work

The economics literature on kidney exchange starts with Roth et al. (2004). In a subsequent paper,

Roth et al. (2007) demonstrate the e�ciency gains of creating a large kidney exchange, as well as

those from allowing 3-way or larger cycles.

The double-coincidence-of-wants problem has been a known challenge since the beginning of

kidney exchange. We now review the two approaches that have been used to tackle it in practice.

The �rst approach is to create a su�ciently thick market:

And we will show that, even without a medium of exchange, if the market is thick

enough, the problem of the coincidence of wants can be substantially ameliorated by the

organization of an appropriate clearinghouse. (Roth et al., 2007)

A KEP grows when more incompatible pairs join the market. More recently, Sönmez et al. (2020)

propose an incentivized system for compatible pairs to participate in an exchange. More speci�cally,

the system �rewards� compatible pairs participating in the KEP with a high priority on the DDL

once they need a repeat transplant in case of kidney failure. This will not only increase the market

thickness, but also change the composition of patients and donors in the KEP. In turn, this may

help blood-type O patients who have a hard time �nding a match.
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Similar to the literature, our simulation con�rms these results. Every algorithm's performance

improves when the market is thicker. Nevertheless, except for Unpaired, none of the state-of-the-art

algorithms are close to the Optimal algorithm, while the advantages of Unpaired remain even when

the KEP is three times larger than the largest one in the world (i.e., the NKR in the U.S.) and

when some compatible pairs participate in the KEP. In this sense, the Unpaired algorithm is a way

to reach the full potential of a KEP of any given size with any other incentive schemes (such as the

incentivized-exchange policy of Sönmez et al., 2020).

The second approach is to authorize non-simultaneous exchanges by allowing receipt-before-

donation or donation-before-receipt. Non-simultaneous altruistic donor chains (Roth et al., 2006)

allow for receipt-before-donation. A chain is initiated by an altruistic donor who donates a kidney

to a patient whose paired donor then donates to another patient, and so on. Transplants may

happen simultaneously or sequentially. Nowadays, such chains account for a large fraction of kidney

exchange transplants. By allowing receipt-before-donation, a chain need not form a closed loop, and

thus, can alleviate the problem of double-coincidence-of-wants:

Developing the capability to arrange trades in longer cycles and chains helps overcome

this [double coincidences of wants] barrier... In the case of kidney exchange, long non-

simultaneous chains of the sort proposed in Roth et al. (2006) are proving increasingly

important. (Ashlagi et al., 2012)

While clever, the Chain algorithm confronts three practical challenges. First, its e�ciency is limited

by the number of available altruistic donors. Second, in places where altruistic donation is illegal

(e.g., France and Germany), this algorithm is infeasible. Last but not least, even with a reasonable

number of altruistic donors, it goes only halfway in solving the double coincidence problem, because

donation-before-receipt is not allowed.

Ausubel and Morrill (2014) introduce the idea of �sequential kidney exchange� that allows

donation-before-receipt but not receipt-before-donation, opposite to the Chain algorithm. They

study this in an overlapping generations model. In this sense, our Unpaired algorithm combines

Chain and sequential kidney exchange by allowing both donation-before-receipt and receipt-before-

donation.

Similar to the Unpaired algorithm is the voucher program that has been adopted by multiple

hospitals in the U.S. (Veale et al., 2017). This program allows donation-before-receipt; in particular,

a donor can donate and receive a voucher that her paired recipient can use to receive a kidney in

future. We compare this program with the Unpaired algorithm in Section 5.

Our theoretical model is related to those of dynamic kidney exchange. Ünver (2010) studies

a model of dynamic exchange with blood-type considerations. Akbarpour et al. (2020) consider a

dynamic kidney exchange model with stochastic departures and show that optimal timing can be

highly valuable; their focus, however, is only on pairwise exchanges. The two-type model studied

here builds on the model of Ashlagi et al. (2019), where they compare Chain and Pairwise. To the

best of our knowledge, our paper is one of the �rst papers o�ering a dynamic setting including DDL
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kidneys into KEP.9 This setting may be useful for further research as well.

2 Theoretical Analysis of the Unpaired Algorithm

2.1 Model

We now introduce a continuous-time, in�nite-horizon model of a dynamic kidney exchange market.

Arrivals and types of patients. Incompatible patient-donor pairs arrive at the market according

to a Poisson process with rate n. There are two types of patients: hard-to-match and easy-to-match.

We refer to these types as H and E, respectively. A fraction λ > 0 of patients are hard-to-match and

a fraction (1 − λ) are easy-to-match. An H patient is compatible with any donor with probability

pH , and an E patient is compatible with any donor with probability pE . We discuss the plausibility

of this assumption in Section 2.3.10

For any t ≥ 0, let V p
t and V d

t be the set of patients and donors in the market at time t, respectively,

and St = |V p
t | and Zt = |V d

t |. De�ne Et ⊆ V p
t × V d

t as the set of compatible patient-donor pairs

and Gt = (V p
t , V

d
t , Et) as the (bipartite) compatibility graph at time t. We refer to Et as the set of

edges. When a new incompatible patient-donor pair vi = (pi, di) arrives at time t, edges are formed

between pi and all compatible donors in V d
t , as well as between di and all compatible patients in V p

t .

Matching algorithms. A set of edges (possibly empty) is a matching if no two edges share the

same endpoints. A matching algorithm, at any time t, selects a matching Mt in the graph Gt. The
endpoints of the edges in Mt leave the market immediately. This de�nition of a matching algorithm

does not require a donor di and her paired patient pi to be in the same matching. Thus, there are

algorithms that are illegal in some countries. For instance, the usual pairwise kidney exchange�

which is the only legal form of exchange in France�substantially limits the set of possible matchings:

A pairwise compatibility happens when two incompatible patient-donor pairs vi and vj are cross-

compatible; that is, there is an edge between pi and dj and another edge between pj and di. In

pairwise kidney exchange, only pairwise compatible pairs can be matched.

A matching algorithm induces a stochastic process over the number of patients of each type

remaining in the system. In this study, we restrict our attention to matching algorithms inducing

a stochastic process with a unique invariant distribution. We consider three myopic matching

algorithms, with the �rst two, the Pairwise and the Chain algorithms, from the literature (Akbarpour

et al., 2020; Ashlagi et al., 2019), and the third, the Unpaired algorithm, being the core contribution

9A noticeable exception is Sönmez et al. (2018) who characterize�in a continuum model�match rates with
deceased/living donors as a function of some policies implemented in the KEP.

10In our model, agents do not take any decision on whether to join the pool of pairs. In practice, when joining the
pool agents trade-o� their waiting time to get a transplant with their outside options (e.g. desensitization). While
the analysis of participation decisions is highly non-trivial, we are optimistic that the superiority of the Unpaired
algorithm that we introduce in this paper over Pairwise and Chain will remain valid. See our discussion in the
conclusion section.
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of this study. We formally prove in Appendix A.5 that the Unpaired algorithm has a unique invariant

distribution (the same argument can be used for Chain and Pairwise, see also Ashlagi et al., 2019).11

De�nition 2.1 (Pairwise). If any new patient-donor pair vi enters the market at time t, then match

them with any cross-compatible patient-donor pair (if any), breaking ties in favor of hard-to-match

patients.12

For a pair, the Pairwise algorithm forbids donation-before-receipt (a donor donates before the

paired patient receives a kidney) and receipt-before-donation (a patient receives a kidney before the

paired donor donates). Therefore, it creates the problem of double-coincidence-of-wants.

We now introduce the Chain algorithm. Note �rst that it is feasible only in settings where

altruistic donors exist. The de�nition is taken from Ashlagi et al. (2019) and implicitly extends the

setting to allow for the existence of an altruistic donor at the beginning of time.

De�nition 2.2 (Chain). There is a bridge or altruistic donor in the market at any given time.13

Consider a newly arriving pair v1 = (p1, d1). If p1 does not have an edge to the bridge (or altruistic)

donor, then no match is formed. Otherwise, a chain-segment begins with matching the bridge (or

altruistic) donor with p1 and advances as follows. First, we search for an H patient that has an edge

to d1; if there are multiple such H patients, we select one uniformly at random; otherwise, we search

for an E patient that has an edge to d1 (again breaking ties uniformly at random). With the paired

donor of the selected patient available to be matched, the process repeats among the pairs without a

selected patient, until we select a patient whose paired donor is incompatible with all never-selected

patients, forming a disjoint path. All patients and donors in the disjoint path leave the market, and

the paired donor of the last selected patient becomes a bridge donor.

Essentially, upon the arrival of a new patient-donor pair, the Chain algorithm identi�es a chain

in a greedy fashion. This policy does not necessarily pick the longest chain (since it is searching in a

greedy fashion), but it does �nd a maximal size chain, i.e., a chain that is not properly contained in

a longer chain, and at the same time gives priority to H patients. In that respect, we follow Ashlagi

et al. (2019); we further discuss this in Remark 2.11.

For a pair, the Chain algorithm still forbids donation-before-receipt but allows receipt-before-

donation if the patient is compatible with some donor in the chain. We are now ready to introduce

the Unpaired algorithm that allows donation-before-receipt and receipt-before-donation.

11As is well-known, at an informal level, a Markov chain over a �nite state space has a unique invariant distribution
if it is possible to eventually get from every state to every other state with positive probability. In particular, starting
from any state, with positive probability, the process will be back to the very same state with positive probability. As
will become clear, this must be the case for the Markov chains induced by the algorithms we study. One issue though
is that the state space of our Markov chains are countably in�nite. So to ensure the existence of a unique invariant
distribution, one has to further guarantee that the expected amount of time to return to a state, given that the chain
started in that state, has a �nite �rst moment. Appendix A.5 proves this appealing to a su�cient condition provided
in Meyn and Tweedie (1993).

12Our theoretical results do not depend on the way we break ties within types. In particular, this implies that the
choice of the queueing discipline (�rst-come-�rst-served or others) within type is inconsequential for our theoretical
results.

13As in Ashlagi et al. (2019), we may assume that there are �nitely many d ≥ 1 bridge or altruistic donors at any
given time. The results will remain essentially the same. See footnote 24 for details.
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De�nition 2.3 (Unpaired). If any new patient-donor pair vi = (pi, di) enters the market at time

t, match pi to a compatible donor (if any), breaking ties arbitrarily, and match di to a compatible

patient (if any), breaking ties in favor of hard-to-match patients.

The Unpaired algorithm allows both donation-before-receipt and receipt-before-donation. Whenever

a pair engages in donation-before-receipt, the algorithm will match the pair's patient, de�ned as an

unpaired patient, with a compatible kidney in the future. Similarly, if a pair does receipt-before-

donation, the algorithm will ask the pair's donor, de�ned as an unpaired donor, to donate a kidney

in the future. In other words, for a pair, the algorithm searches for a match for the patient while

independently �nding a match for the donor, as if they were unpaired. Hence, we call it the Unpaired

algorithm.

By relaxing the timing constraints on kidney donation and receipt for a pair, the Unpaired

algorithm may create two incentive issues. First, donation-before-receipt creates unpaired patients

who need to wait to receive a compatible kidney after their donors' donation; if the wait is expected

to be long, they may opt out of donation-before-receipt or quit the KEP altogether. Second, receipt-

before-donation results in unpaired donors who will wait to donate after their paired patients'

transplantation; they may renege or become un�t to donate if the wait is long. In Section 3.4,

we present an extensive empirical investigation of the consequences of these issues as well as several

solutions addressing them. In short, as shown in the empirical analysis, these issues diminish with

market size; even when some pairs opt out of donation-before-receipt or when some unpaired donors

renege, the performance advantage of the Unpaired algorithm remains; nevertheless, we acknowledge

that these incentive issues may still be a concern for a policymaker, in particular, in a small KEP.

In Section 4, we o�er practical solutions which can e�ectively address these issues.

Objective. Patients and donors stay in the market until they are matched. For a patient pi who

enters the market at time t0 and gets matched at time t1, let w(pi) = t1−t0 be pi's waiting time. Our

objective is to minimize the average waiting time at the invariant distribution (recall that we focus

on matching algorithms inducing stochastic processes that have a unique invariant distribution). By

Little's law, this is equivalent to minimizing the average number of patients in the system.14,15 Let

W(ALG) denote the average waiting time for a given matching algorithm ALG in steady state.

This is equal to λWH(ALG) + (1 − λ)WE(ALG), where WH(ALG) and WE(ALG) denote the

expected waiting time of hard-to-match and easy-to-match patients, respectively.

Optimal solution. In the following, we sometimes compare the performance of a matching

algorithm to an optimal algorithm that is a theoretical benchmark but practically infeasible. We

de�ne the Optimal algorithm as the one achieving the smallest average waiting time that can be

14Little's law states that the long-term average number of agents in a stationary system is equal to the long-term
average e�ective arrival rate multiplied by the average time that an agent spends in the system.

15Note that, unlike in Akbarpour et al. (2020), our patients and donors do not depart. This makes our analysis
less tedious, without creating any di�erence in the objective function. Our goal here is to minimize the total waiting
time, whereas in a model with departures the goal is a mix of waiting time and deaths. With linear waiting cost and
Poisson departures, Little's law implies that both of these objectives are minimized by minimizing the pool size.
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achieved by a matching algorithm. Unlike the other algorithms we study, the optimal algorithm

need not be greedy, i.e., it may delay matching a patient/donor if they may help pairs arriving

in the future. Formally, we de�ne the average waiting time achieved by the Optimal algorithm,

W(Optimal), as

inf W(ALG)

where the in�mum is taken over all matching algorithms (inducing a stochastic process with a unique

invariant distribution). Therefore, the optimal algorithm also induces an invariant distribution.

The optimal algorithm depends on the whole �network structure� of patients and donors; that

is, which patient is compatible with which donor at each point in time. Since the space of such

networks grows exponentially, the optimal algorithm is generally intractable. However, it serves as

a valuable benchmark.

It is intuitive that the Unpaired algorithm performs better than the Pairwise and even Chain�

after all, it allows both receipt-before-donation and donation-before-receipt, imposing fewer constraints

on the algorithms. While this intuition turns out to be theoretically valid, it is not as obvious

as it may seem. In fact, in some realizations of the system, the Pairwise and Chain algorithms

outperform the Unpaired. We illustrate this with two examples: Example 2.4 is one such scenario

under which Pairwise can lead to signi�cantly lower waiting time than Unpaired. Similarly, Example

2.5 shows that the Chain algorithm can lead to signi�cantly lower waiting times than Unpaired.

These examples illustrate that Unpaired may match agents �too quickly� while more transplants

could be obtained by waiting for further arrivals. However, our main results will show that taking

the average waiting times over all realizations of the stochastic process, the average waiting time of

Unpaired is signi�cantly lower than those of the widely used practical algorithms.

Example 2.4 (Pairwise vs. Unpaired). Let v1, . . . , v4, be the sequence of pairs who arrive until time

T under one draw of the Poisson process (v1 arrives �rst, v2 second, and so on). The compatibility

graph obtained when no match is performed until v4 arrives is represented in Figure 1 (panel A).16

Under this realization, Unpaired matches patients p1, p2 and p4. To see why, note that when v2

arrives, p2 gets matched to d1, and when v3 arrives, d3 donates to p1, and when v4 arrives, d2

donates to p4. On the contrary, under Pairwise v1 and v3 will perform a kidney exchange when v3

arrives, so will v2 and v4 when v4 arrives. Hence, Pairwise matches all the patients, performing

better than Unpaired. By choosing appropriately the arrival times of future arriving pairs, one can

easily show that the average waiting time can be lower under Pairwise than under Unpaired.

Example 2.5 (Chain vs. Unpaired). Let v1, . . . , v4, be the sequence of pairs who arrive until time

T under one draw of the Poisson process and let d be the altruistic donor who is in the market

from the beginning. The compatibility graph obtained when no match is performed until v4 arrives is

represented in Figure 1 (panel B). Under this realization, for Unpaired, when v2 arrives, d1 donates

16In both examples, for conciseness, we do not use a representation of compatibility graphs in terms of bipartite
graphs. Here, an edge from one node to another means that the donor at the source of the edge is compatible with
the patient at the other end of the edge.
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(A) Example 2.4 (B) Example 2.5
v1

v2

v3

v4

v1

v2

v4

v3

d

Figure 1: Compatibility graphs in Examples 2.4 and 2.5

to p2, when v3 arrives, nothing happens since d1 and p2 were already matched earlier, and when v4

arrives, d4 donates to p1. Hence, patients 1 and 2 get matched. Under the Chain algorithm, no

matching will happen until v4 arrives. At that point, a chain is activated. Recall that the Chain

algorithm selects a maximal chain in a greedy fashion so that several chains can be implemented with

positive probability. One such chain is the longest chain where d donates to p4, d4 donates to p1,

d1 donates to p3 and d3 donates to p2. So all patients get matched in this longest chain. The other

maximal chain skips v3 and so involves 3 patients being grafted. Thus, the expected number of grafts

under Chain is strictly higher than under Unpaired. By choosing appropriately the arrival times of

future arriving pairs, one can easily show that the average waiting time can be lower under Chain

than under Unpaired.

2.2 Theoretical Results

This section compares the average waiting time of patients at steady state under the Unpaired

algorithm with those under the Pairwise, Chain and optimal algorithms. We state our results for

the regime where pE is held constant and pH → 0. This regime should not be interpreted literally; as

discussed in Section 2.3, the type distribution has a binomial shape, and pH → 0 captures the idea

that a substantial fraction of patients have exceedingly low compatibility probabilities. In addition,

this assumption makes the analysis theoretically tractable by removing nuisance terms. This is a

standard method in random graph theory, starting from Erd®s and Rényi (1960), and has been

applied in the analysis of kidney exchange graphs recently (e.g., Akbarpour et al., 2020 and Ashlagi

et al., 2019; for a more comprehensive discussion, see Ashlagi and Roth, 2021). Of course, as pH → 0,

the average waiting time of hard-to-match patients explodes. Hence, we focus on their �normalized�

waiting times, i.e., pHWH(Unpaired) (and perform a similar exercise for easy-to-match patients).17

Working with normalized waiting times will prove useful to compare waiting times across algorithms

when pH is small. The following proposition characterizes normalized waiting times for easy and

hard-to-match patients under the Unpaired algorithm.

Proposition 2.6. Under the Unpaired algorithm, the average waiting time of hard-to-match patients,

17We normalize the waiting time of easy-to-match patients to have a meaningful comparison with the waiting time
of hard-to-match patients. Under Unpaired, the waiting time of easy-to-match patients is negligible in comparison to
hard-to-match when pH vanishes, as stated in Proposition 2.6. The proof of the proposition in the appendix shows
further that it converges to 0 very quickly (at rate pH).
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WH(Unpaired), and that of easy-to-match patients, WE(Unpaired), satisfy

lim
pH→0

pHWH(Unpaired) =
ln (1 + λ)

λ · n
and lim

pH→0
pHWE(Unpaired) = 0.

Hence,

lim
pH→0

pHW(Unpaired) =
ln (1 + λ)

n
.

We prove this proposition in Appendix A. Here, we provide a sketch of the main idea behind the

proof.

Proof overview. The key step behind the proof of this theorem is to carefully study the structure

of the stochastic system induced by the Unpaired algorithm. First, note that the number of donors

in the system is always equal to the number of patients. Thus, the state of the system can be tracked

by the number of easy-to-match and hard-to-match patients that are currently in the system. For

simplicity, let us �rst sketch the proof of the proposition for the case that pE = 1, which means

that whenever an easy-to-match patient arrives, she will get matched immediately.18 In this case,

the number of hard-to-match patients is a su�cient statistic for the state of the system. For sake of

simplicity, we also normalize the arrival rate of pairs to n = 1.

Suppose the total number of hard-to-match patients in the system is k. When a patient-donor

pair arrives, three events can change the state of the system:19

1. The patient is hard-to-match, and neither the patient nor the donor are compatible with

anyone in the pool. In this case, the system moves from state k to state k + 1. This happens

at rate λ((1− pH)k)2.

2. The patient is hard-to-match, and both the donor and the patient are compatible with someone

in the pool, in which case the system moves to state k−1. This happens at rate λ(1−(1−pH)k)2.

3. The patient is easy-to-match, and both the donor and the patient are compatible with someone

in the pool. Again, the system moves to state k − 1. Since pE = 1, this happens at rate

(1− λ)(1− (1− pH)k).

Thus, we are dealing with a standard birth-death Markov chain, where the birth event has rate

λ((1− pH)k)2 and the death event has rate λ(1− (1− pH)k)2 + (1− λ)(1− (1− pH)k). In the full

proof, we show that E(k) is highly concentrated around the state where the birth and death forces

balance;20 i.e., E(k) ' k∗, where k∗ is the solution to:

18The only exception is when there are no other donors in the system. Thus, it is possible to be in the state that
there is only one easy-to-match patient and one donor in the system, but as our full analysis in Appendix A shows,
this is exponentially unlikely.

19Note that another kind of event can happen, the patient can be compatible with someone and the donor not
compatible with anyone (or the donor can be compatible with someone and the donor not to anyone). However, those
events do not modify k.

20Our proof shows this using the standard global balance condition characterizing invariant distributions of Markov
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λ((1− pH)k)2 = λ(1− (1− pH)k)2 + (1− λ)(1− (1− pH)k).

Algebraic manipulations for the case where pH → 0 lead to k∗ ' ln(1+λ)
pH

. By Little's law, the

expected waiting time in a queue is equal to the pool size divided by the arrival rate:

E(WH) = E(k)/λ ' k∗

λ
' ln(1 + λ)

λpH
.

When pE < 1, we must keep track of both the number of hard-to-match and easy-to-match

patients, which makes the analysis more tedious. Since easy-to-match agents only exert a negative

externality on hard-to-match patients under Unpaired (by taking kidneys that would otherwise be

assigned to hard-to-match patients), when pE gets smaller, this can only help hard-to-match patients.

Hence, intuitively, when pE < 1, the expected number of hard-to-match patients remaining in the

system should be lower-bounded by what we obtain when pE = 1. We show that this bound is

actually tight. There is a simple intuition for why the behavior of the system is similar when pE < 1

as when pE = 1: as pH → 0, the number of patients (and thus donors) in the system explodes.

If there are k donors in the system, a new arriving easy-to-match patient is compatible with some

donor in the system with probability at least 1− (1− pE)k, which goes to 1 for su�ciently large k.

Thus, easy-to-match patients will get matched quickly as long as pE is a constant.21

Proposition 2.6 reveals several interesting comparative statics. First, the average waiting time of

hard-to-match patients is decreasing in λ. A larger λ means a higher arrival rate for hard-to-match

patients and a lower one for easy-to-match patients. In other words, easy-to-match patients exert a

negative externality on hard-to-match ones. Indeed, upon arrival, an easy-to-match patient is almost

sure to be compatible with an existing donor. The departure of a donor makes the market smaller,

reducing the opportunities for future hard-to-match patients and thus increasing their waiting time.

As we shall see below, this is in contrast to Pairwise and Chain under which easy-to-match patients

can potentially help hard-to-match patients by increasing their likelihood of being cross-compatible

or increase the likelihood of initiating a chain-segment (see Figure 2).

As we already mentioned in our Examples 2.4 and 2.5, matching patients with donors quickly,

as does the Unpaired algorithm, may not always be bene�cial. Indeed, our examples showed that

the average waiting time of patients under Unpaired can be higher than under Pairwise or Chain for

some realizations of our Poisson process. Theorem 2.7 and Theorem 2.10 state that, when taking

expectations with respect to possible realizations of our process, this is not the case anymore.

chains. While intuitive, the feature that the process concentrates on a state equalizing birth and death rate is
non-trivial. This is not a general feature and one can build simple birth-death processes under which this property
fails.

21For a new arriving easy-to-match patient, the likelihood of being compatible with some donor in the system goes
to 1 as pH vanishes. However, conditional on the small probability event that this patient does not get matched upon
arriving, given the priority rule under Unpaired, he will have to wait for an arriving donor to be incompatible with
all hard-to-match patients remaining in the system. Given that the number of hard-to-match patients in the system
explodes, one may expect the conditional waiting time to be very long. However, at an intuitive level, the rate of
arrival of such donors should be bounded above by n(1− pH)k

∗
which converges to a constant as pH vanishes. This

suggests that the conditional waiting time does not explode. We make this precise in our argument in Appendix A.
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Theorem 2.7 (Unpaired vs. Pairwise). If λ > 1
2 , then:

lim
pH→0

pH
W(Pairwise)

W(Unpaired)
=

ln(2λ)

ln(1 + λ)
,

and if λ < 1
2 , then:

lim
pH→0

W(Pairwise)

W(Unpaired)
=

1

pE

ln
(

1−λ
1−2λ

)
ln (1 + λ)

> 1.

Proof. See Appendix B.1.

This theorem states that, when pH gets small, the average waiting time under the Unpaired

algorithm is less than that under the Pairwise algorithm, irrespective of the value of λ. Moreover,

when there are more hard-to-match patients (λ > 1
2), the gap between the two algorithms goes to

in�nity at rate 1
pH

. When there are strictly more easy-to-match patients (λ < 1
2), the gap is not

always as large, but still Unpaired achieves a shorter average waiting time than Pairwise.

To gain some intuition for the �rst part of the result, let us focus on the special case that there

are only hard-to-match patients (λ = 1). Consider a given patient who is waiting in a pool of

size k. New donors arrive with rate n and they are compatible with our patient with probability

pH , which means that the arrival rate of a compatible donor for this patient is npH . Since all

agents are ex ante symmetric, our patient, under the Unpaired algorithm, will get matched at rate

proportional to npH/k. Now consider the Pairwise algorithm. A patient will get matched if a cross-

compatibility happens, so our patients match rate is proportional to np2H/k. Thus, for any given

pool size, Unpaired matches agents 1/pH times faster than Pairwise, which in turn means that the

waiting time under Unpaired is 1/pH times smaller.22

Furthermore, the next theorem shows that the Unpaired algorithm's performance is not too far

from the Optimal algorithm or, at least, much closer to it than Chain or Pairwise.

Theorem 2.8 (Unpaired vs. Optimal). For any λ, we have:

lim
pH→0

W(Unpaired)

W(Optimal)
≤ 2

ln (1 + λ)

λ
≤ 2.

We prove this theorem in Appendix B.2. The main idea behind the proof is to provide a lower

bound on the expected waiting time that applies to any possible matching algorithm, and hence,

to Optimal. The essence of the argument can be given in the one-type model. So let us set λ = 1,

normalize the arrival rate to n = 1 and �x an arbitrary matching algorithm ALG. Given a �xed

pool size k, an arriving patient can be matched right way (in which case, his waiting time is 0) or

he can join the pool. The latter event occurs with probability (1− pH)k. In this event, in order to

get matched, the patient will have to wait for an arriving compatible donor (this is necessary but,

22Ashlagi et al. (2019)�from whom we borrow the analytical expression of the waiting time of patients under the
Pairwise algorithm�were not able to derive a closed form solution when the arrival rate of H patients and E patients
are the same. This is why we do not report any result for λ = 1/2. However, they provide simulations suggesting
that, in that case, the expected waiting time of H patients scales with 1/pH .
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of course, not su�cient) which occurs at rate pH . Thus, the conditional expected waiting time of

patients is bounded below by23

(1− pH)k
1

pH
≥ (1− kpH)

1

pH
.

Taking expectations over possible values of k, we get as a lower bound on the unconditional expected

waiting time of patients

W(ALG) ≥ 1

pH
− E[k],

where E[k] stands for the expected pool size. Now, the �nal step of the proof simply consists in

noting that, by Little's law, the expected pool size divided by the arrival rate of patients equals the

expected waiting time, i.e., W(ALG) = E[k]. Thus, we obtain the following lower bound on the

expected waiting time of the algorithm

W(ALG) ≥ 1

2pH
.

This lower-bound together with Proposition 2.6 gives us Theorem 2.8 when λ = 1. One can easily

extend this argument to the two-type model to obtain λ
2npH

as a lower bound and derive Theorem

2.8 in this general case.

This theorem shows that the waiting time of patients under the Unpaired algorithm is not too

far from that under the Optimal algorithm. This is not true for Pairwise as implied by Theorem 2.7,

especially when λ > 1
2 . Note that Unpaired is purely greedy and computationally simple, while the

Optimal algorithm is forward looking and potentially computationally complex. Yet, the Optimal

algorithm does not substantially improve upon Unpaired. This result can be further strengthened:

As made precise in the next remark, if the Optimal algorithm is restricted to provide easy-to-match

patients with an average waiting time as short as their waiting time under the Unpaired algorithm,

the waiting time under Unpaired is at most 38 percent more than under this restricted Optimal

algorithm. This is a natural restriction if the objective is to improve, at least weakly, the situation

of all patients (i.e., decrease the waiting time of hard-to-match patients without increasing the

waiting time of easy-to-match patients).

Remark 2.9. The bound in Theorem 2.8 can be improved under this additional constraint on the

waiting time of easy-to-match patients. Appendix B.2 shows that for any matching algorithm ALG

satisfying WE(ALG) ≤WE(Unpaired),

lim
pH→0

W(Unpaired)

W(Optimal)
≤ (1 + λ)

ln (1 + λ)

λ
≤ 2 ln(2) ' 1.38.

So far, we have shown that the Unpaired algorithm performs substantially better than Pairwise,

while being much closer to the Optimal algorithm. In practice, the Chain algorithm also plays an

important role in matching patient-donor pairs. Our next result compares Unpaired with Chain.

23In the inequality, we use the Bernoulli inequality, which states that for any x ≤ 1 and any n ≥ 1, (1−x)n ≥ 1−xn.
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Theorem 2.10 (Unpaired vs. Chain). For any λ ∈ (0, 1), if pE = 1, we have:

lim
pH→0

W(Chain)

W(Unpaired)
= − ln(1− λ)

ln(1 + λ)
≥ 1.

Proof. See Appendix B.3.

Since − ln(1−λ)
ln(1+λ) is greater than one, when pH gets small, the average waiting time under Unpaired

is smaller than under the Chain algorithm irrespective of the value of λ. Note also that − ln(1−λ)
ln(1+λ) is

an increasing function of λ and goes to in�nity as λ → 1. In other words, the Unpaired algorithm

performs increasingly better than the Chain algorithm as the fraction of hard-to-match patients

increases; as this fraction approaches one, Chain delivers an average waiting time that is in�nitely

longer than what Unpaired achieves.

Below is an intuition of this theorem. The Chain algorithm performs better when the probability

of starting a new chain-segment is higher, which makes easy-to-match patients critical. When a

pair with an easy-to-match patient arrives, the patient will be matched with the bridge donor and

advance the chain-segment with probability pE . This probability reduces to pH , which is vanishing,

if the arriving patient is hard-to-match. Note that the donor in the newly arriving pair cannot

be considered for matching unless the paired patient �nds a match. Therefore, when only a small

minority of arrivals have an easy-to-match patient, the probability of starting a new chain-segment

is small and Chain performs poorly. In contrast, the Unpaired algorithm does not crucially depend

on the type of the arriving patient, because it allows donation-before-receipt.24

Theorem 2.10 comes with an additional technical assumption: to provide a closed-form solution

for the Chain algorithm, we assume pE = 1. Without this assumption, the Markov chain induced

by the Chain algorithm seems too complicated to be analyzed. For the same reason, Ashlagi et al.

(2019) do not provide a formal proof for the performance of Chain when pE < 1. Our numerical

simulations, as well as those in Ashlagi et al. (2019), indicate that the closed-form solution for

pE = 1 approximates well the simulated average waiting time for pE < 1. Based on these results,

we conjecture that Theorem 2.10 holds even when pE < 1.

Remark 2.11. The Chain algorithm identi�es a chain in a greedy fashion. It does not necessarily

pick the longest chain. The Optimal Chain algorithm (selecting the longest chain) has been studied

in a one-type model by Anderson et al. (2017). In that model, it is easy to show that the waiting

time of patients under Optimal Chain is always greater than that of Unpaired. Indeed, under Optimal

24If there are �nitely many bridge donors at each point in time, the same argument applies. Indeed, as pH vanishes,
the likelihood that an arriving hard-to-match patient is compatible with a bridge donor vanishes. Therefore, when
only a small minority of arrivals are easy-to-match patient, Chain still performs poorly and Theorem 2.10 still holds,
as mentioned in footnote 13. In addition, note that nothing changes for an arriving easy-to-match patient since, by
assumption pE = 1, and so more bridge donors is not helpful to start a chain segment in case of such an arrival. Thus,
more generally, the comparison between Unpaired and Chain remains the same when the number of bridge donors is
larger than 1. Of course, with pE < 1, more bridge donors may be useful to allow easy-to-match patients to start new
chain segments. However, at an intuitive level, we are considering the most favorable case for Chain when assuming
that pE = 1, where each arrival of an easy-to-match patient starts a chain segment. Further, simulations in Ashlagi
et al. (2019) as well as ours show that the average waiting time under the Chain algorithm when pE = 1 is similar to
the average waiting time for pE < 1.
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Chain, an arriving patient has probability pH to be matched with the bridge donor right away. With

the complement probability, this patient will be unmatched and enter the pool. In that event, she

will have to wait for an arriving patient to be compatible with the bridge donor (which is necessary

to initiate a chain-segment), which occurs with rate pH . Thus, in expectation, for small values of

pH , this patient will have a waiting time bounded below by 1/pH . This is larger than ln(2)/pH , the

waiting time of patients under the Unpaired algorithm (see Proposition 2.6).

(A) Average waiting time of all patients (B) Average waiting time of hard-to-match patients
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Figure 2: Waiting Time under Each Algorithm and the Fraction of Hard-to-match Patients (λ)

Notes: Given pE = 1 and n = 1, the lines show that, as a function of the fraction of hard-to-match patients (λ), the waiting

times under the Pairwise, Chain, and Unpaired algorithms, as well as a lower bound for the Optimal algorithm.

We summarize our theoretical results in Figure 2 with pE = 1 and n = 1. For a given algorithm,

taking pH to zero, a line in the �gure depicts the limiting average (normalized) waiting time for

hard-to-match patients (panel A) and that for all patients (panel B), as a function of the fraction of

hard-to-match patients (λ ∈ [0, 1]). In terms of these waiting times, the di�erence between Unpaired

and Optimal is bounded and relatively small for all λ (Theorem 2.8); the di�erence between Unpaired

and Pairwise increases with λ and explodes when λ > 1
2 (Theorem 2.7); last, the di�erence between

Unpaired and Chain increases with λ and goes to in�nite when λ = 1 (Theorem 2.10). The results

reported in Figure 2 allows us to quantify the bene�ts of relaxing the simultaneity constraints

embedded in the Pairwise algorithm. They show that those bene�ts may be substantial, especially

when the share of hard-to-match patients is large. We will evaluate the empirical relevance of these

results in Section 3.

2.3 Discussion of the Assumptions

We now discuss some of the assumptions and modeling choices that we have adopted.

First, our model assumes two patient types, each of which has a di�erent probability of being

compatible with a random donor. Below, we show some evidence that this can be a reasonable
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approximation in some settings. A real-life kidney exchange problem certainly has more than two

types of patients, because a patient's biological compatibility with a donor depends on blood-type

and tissue type compatibilities. There are �nitely many blood-types with a known compatibility

relation, but tissue compatibilities involve a more subtle comparison of the antibodies of a patient

with the antigens in a donor's tissue. This information is usually summarized by a continuous

measure, Panel Reactive Antibodies (PRA), quantifying the probability that a patient is tissue type

incompatible with a random blood-type compatible donor. The higher a patient's PRA, the more

di�cult it is to �nd a compatible donor for the patient. The distribution of PRA among patients

is bimodal with high concentrations of patients at very low and very high PRA values in the U.S.

(Anderson et al., 2017). Panel A of Figure 3 shows a similar bimodal pattern for the patients in

the French kidney exchange program (KEP) that are used in our simulation analyses in Section 3.

Adding blood-type compatibility still induces a bimodal distribution for the probability of overall

biological compatibility in our data (panel B).

(A) PRA (Panel Reactive Antibodies) Values (B) Fraction of Compatible Donors

Figure 3: Distribution of Patient Types in the French KEP

Notes: Calculated by the authors from the 78 patient-donor pairs who ever participated in the French kidney exchange program

(KEP) during December 2013 to February 2018. In panel A, the higher a PRA, the more di�cult it is for a patient to �nd a

compatible donor. In panel B, a patient is compatible with a donor if they are both blood-type and tissue type compatible.

Using the DIP test in Hartigan and Hartigan (1985), for both distributions, we fail to reject the hypothesis of bimodality. See

Table 1 for more summary statistics on these patients.

Second, there is no death in our model, which can be overly simplifying for patients waiting

for kidney transplant.25 However, patients participating in a KEP are usually in better health

conditions. In the sample period of more than four years, none of the patients who participated in

the French KEP died while waiting for a kidney. Some of them did leave the KEP for a deceased donor

kidney or an incompatible living donor kidney after going through desensitization (see Section 3.1).

Introducing a pair exit decision would add a layer of complexity in our model, but we conjecture that

our main results would hold. Intuitively, the longer the waiting time under an algorithm, the higher

the probability that a patient exits. Compared with Pairwise and Chain, the Unpaired algorithm

has a shorter average waiting time, and thus a model with exit may reinforce the advantage of the

25In the U.S., in 2014, 4,761 patients died while waiting for a kidney transplant; another 3,668 patients became too
sick to receive a kidney transplant. Source: National Kidney Donation (www.kidney.org).
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Unpaired algorithm. Moreover, our simulations in online appendix S.6 show that our results are

robust even when we allow pairs to exit.

Last, our main theoretical results are limiting results for pH → 0, with pH being the probability

of a hard-to-match patient being compatible with a random donor. Working with limit results gives

us more analytical tractability, but it also implies that our results provide a good approximation

only when pH is su�ciently low. In our data, a patient with a PRA above 85 percent, who is

considered hard-to-match by convention, is compatible with only 1.5 percent of the living donors.

In contrast, a patient with a PRA below 85 percent is compatible with 24.5 percent of the living

donors. Admittedly, our theoretical results do not give any insight about how small pH should be for

the results to be a good approximation. Ultimately, this is an empirical question and our empirical

analysis in Section 3 con�rms the relevance of our results in real life.

3 Simulation Analyses Using French Data

Our theoretical model investigates the steady-state performance of the algorithms in a stylized

model. There are two main reasons for why an empirical investigation is crucial. First, even if all

features of the environment (e.g., arrival rate) remain steady over time, it will take some time for

a given market to reach the steady state. Policymakers are certainly interested in an algorithm's

short-run performance as well, and our theoretical results are silent with respect to that. Second,

while the two-type assumption of our model is not unreasonable as a �rst-order approximation, the

real world is indeed substantially more complex. For instance, a patient's biological compatibility

with a donor depends on both blood-type and tissue type compatibilities and thus, for a given

patient, the compatibility realizations are not i.i.d. across donors.

With these considerations, we assess the algorithms with an administrative dataset on kidney

transplants in France for a period of 1644 days. We observe all 586 incompatible pairs that either

have completed or are still waiting to complete the transplantation in France in that period. These

pairs then serve as the �population pool� from which we randomly draw pairs to participate in the

algorithm in consideration.

We proceed as follows. Section 3.1 describes the institutional background and our data. In

Section 3.2, we detail some de�nitions and assumptions that are necessary in our simulations.

Section 3.3 presents the performance of the four algorithms (Pairwise, Chain, Optimal, and Unpaired)

in our baseline simulation. We highlight that the empirical results are consistent with the theoretical

predictions. Moreover, focusing on the waiting times of patients/donors after being unpaired, we

acknowledge that the two potential incentive issues of Unpaired appear to be a concern in practice.

However, in Section 3.4, we show that one of the issues does not a�ect the performance of Unpaired,

while the other one becomes negligible as the market size grows. Moreover, we shall show in Section 4

that this latter issue can also be made negligible in small markets such as the French KEP when we

integrate the possibility of getting deceased donor kidneys under Unpaired.
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3.1 Institutional Background and Data

Our analysis relies on administrative data from France provided by the Agency of Biomedicine

(Agence de la Biomédecine, ABM), a government agency that oversees all organ transplants in

France. Our data covers the period of December 13, 2013 to February 23, 2018, or 1644 days in

total, including all transplants with deceased or living donor kidneys, as well as discarded kidneys

from deceased donors.

In France, when a patient is diagnosed as requiring a kidney transplant, her doctor must register

her at the national deceased donor list (DDL) to join the waitlist. If a patient �nds an incompatible

living donor, she may either join the kidney exchange or go through a desensitization procedure

whereby she can receive an incompatible kidney from her donor. Together, they become the pool of

incompatible pairs from which we will randomly draw pairs to create di�erent markets. Below, we

provide institutional details.

Kidney Exchange Program. France's kidney exchange program (KEP) started in 2013, following

the revision of the bioethics law (loi de bioéthique) that regulates the medical practices in France.

Unlike the U.S., France has a single KEP at the national level, administered by the ABM. By law,

any exchange of living donors must be done through the KEP.

The KEP executes a match run every three months. Over the time period we study, only 2-way

pairwise exchanges were allowed, while non-directed kidney donations and chains were prohibited.26

The KEP's objective is to maximize the total number of transplants in each match run. In total,

there are 78 pairs participating in the 15 match runs in our sample period.27 A detailed summary

can be found in Combe et al. (2019).

Columns (1) and (2) of Table 1 present more statistics on the 78 KEP pairs. Some patients

receive a kidney from the DDL or a living donor kidney outside the KEP, leading to 69 percent of

them receiving a transplant. 35 percent of the donors donate, with some of them donating outside

the KEP. Many of the patients have blood-type O (56 percent) or are hypersensitized (27 percent),

indicating that a large fraction of them are hard-to-match. The most common blood-type among the

donors is A (51 percent), while only 23 percent of them have blood-type O. Among all the pairs, 42

percent are blood-type compatible, and 32 percent are human leukocyte antigen (HLA) compatible.

Desensitization pairs. Desensitization is an immunosuppressive treatment that can eliminate

immunological compatibility constraints. Once treated, a patient is able to receive a transplant

from an incompatible donor. For a brief review of desensitization, please see Andersson and Kratz

(2020) and Heo et al. (2018) as well as the references therein.

In general, incompatible transplants facilitated by desensitization are more expensive than compatible

26See Section 5 for a discussion of the recent reform of the rules governing the french KEP.
27In the sample period, December 2013 to February 2018, the �rst match run happened in December 2013. There

were only three match-runs in each of the years 2014, 2015 and 2017 and four match-runs in 2016. Additionally, our
data covers one match-run in February 2018. On average, a pair stays for 3.4 match-runs, and a match-run has 17.5
participating pairs.
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Table 1: Kidney Patients and Donors: Summary Statistics

Incompatible Pairs
KEP Pairs Desensitization Pairs

DDL Kidneyse
Patient Donor Patient Donor
(1) (2) (3) (4) (5)

# of observations 78 78 508 508 13,036

Patient grafted/Donor donated 69%b 35% 100% 100% 97%

Agea 46.1 48.1 42.7 45.8 54.9
(12.9) (10.5) (14.1) (11.8) (18.5)

Female 47%c 49%d 37% 62% 43%

blood-type

A 31% 51% 23% 49% 44%
B 10% 18% 16% 16% 10%
O 56% 23% 59% 29% 43%

AB 3% 8% 2% 6% 4%

Sensitization Statusf

Hypersensitized 27% 24%
Sensitized 50% 47%

Non-sensitized 23% 29%

ABO-Compatible within the pair 42% 44%
HLA-Compatible within the pair 32% 48%

Notes: This table presents characteristics of kidney patients and donors in France from December 2013 to February 2018.
Columns (1) and (2) are on the 78 patient-donor pairs who ever participated in the KEP. Columns (3) and (4) are on pairs who
did desensitization. Column (5) describes all the DDL kidneys in the sample period, column (6) focuses on those quali�ed for
at least one KEP patient, and column (7) includes those quali�ed for at least one patient in KEP or desensitization pairs. The
de�nition of being a �quali�ed� DDL kidney is in footnote 34.
a An age in the table is calculated on January 1, 2012, except for a DDL kidney (which is calculated on its retrieval day).
b Patients in the KEP can receive a transplant outside the KEP (e.g., from DDL or desensitization), and a donor can donate
outside the KEP (i.e., by desensitization). There are 12 pairs (15.4%) engaged in an exchange in the KEP in the sample.
c This percentage is calculated among the 70 patients with non-missing gender information.
d This percentage is calculated among the 68 donors in the KEP with non-missing gender information.
e A DDL donor may provide two kidneys, and the statistics in column (5) are calculated at the individual kidney level.
f A patient's sensitization status measures how likely it is for her to �nd a deceased or living donor kidney that is compatible.
The exact de�nition is provided in online appendix S.4.1.

ones,28 while leading to poorer patient outcomes.29 Nonetheless, desensitization is a popular choice

for incompatible pairs in France. During our sample period, there are 508 incompatible pairs that

take this option without trying the KEP. These transplants, as well as the associated patients and

donors, are recorded by the ABM.

Columns (3) and (4) of Table 1 present summary statistics on desensitization pairs. Compared

with the donors, the patients are less likely to be a female (37 percent vs. 62 percent), are of similar

ages (42.7 vs. 45.8 years old), and are more likely to have blood-type O (59 percent vs. 29 percent).

24 percent of these patients are hypersensitized. Relative to the KEP pairs, the desensitization

pairs are more likely to be blood-type compatible (44 percent vs. 42 percent) or HLA-compatible

(48 percent vs. 32 percent).

28Compared with a compatible living donor transplant, on average, a blood-type incompatible transplant is $100,000
more expensive, and an HLA-incompatible transplant is $180,000 more expensive (Axelrod et al., 2018).

29In a recent survey, Scurt et al. (2019) conclude that blood-type incompatible transplants result in an excess
of mortality and loss of kidney grafts compared to compatible transplants. The outcomes of HLA-incompatible
transplants are even worse (Marfo et al., 2011).
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Deceased donor kidneys. Some of later evaluations will involve deceased donor kidneys list,

which we refer to as DDL kidneys. Our sample has 13,036 such kidneys o�ered to patients on the

DDL.30 Column (5) of Table 1 describes all the DDL kidneys in our sample period. On average,

they are 54.9 years old, and 43 percent are from a female donor. The top two blood-types are A (44

percent) and O (43 percent).

3.2 De�nitions and Assumptions in the Simulations

The following de�nitions, assumptions, and data preparations are needed in our simulations.

Simulating markets. There are 586 KEP and desensitization pairs form our pool of pairs.31 We

measure time period by days vary the size of the market via daily Poisson arrival rate of pairs n.

For a given size n patients/day, we �rst draw from the Poisson distribution the number of arriving

pairs on each day and then randomly draw that number of pairs from the pool with replacement.32

We run each simulated market under a given algorithm for 1,644 days, corresponding to the number

of days in our sample period. To evaluate an algorithm in a market of size n patients/day, we run

1,000 sets of independent simulations and report the average across them.

We consider eight di�erent sizes, n ∈ {0.05, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2} patients/day.33 In the

following, we focus on n = 0.05 patients/day which corresponds to the French KEP. Many larger

real-life KEPs are included in our simulations. For example, the Spanish KEP is roughly n = 0.2

patients/day; the UK KEP is n = 0.4 patients/day; and the NKR, the largest in the world, is

roughly n = 1 patients/day (Agarwal et al., 2018; Biró et al., 2019).

Compatibility between a patient and a donor. Patient pi and donor dj are compatible unless

they are either blood-type incompatible or HLA-incompatible. We have su�cient information to

determine the compatibility between any patient and any donor in the data. Speci�cally, we compare

30On any given day in our sample period, there are about 7,000 patients waiting on the (active) DDL. In our sample
period, there are 389 deceased donors whose kidneys are o�ered to the DDL patients but discarded in the end due to
either refusals or last-minute cancellations. For some of the deceased donors, we do not know how many kidneys are
available for the DDL; in that case, we assume such a donor has only one kidney available.

31Hence, our simulation only includes incompatible pairs. As shown in Table 1, the distribution of characteristics
of the KEP pairs are di�erent from those of the desensitization pairs, due to self-selection of the pairs into the KEP
or desensitization. As a robustness check, we run several additional simulations: resampling only from the KEP pairs
and resampling from a simulated U.S. pool (NKR and APKD) based on marginal distributions reported in Ashlagi
and Roth (2021). In all these simulations, we �nd similar patterns in the performance of the algorithms. Relatedly,
some countries allow compatible pairs to participate in a KEP, and policymakers can even incentivize compatible
pairs to participate and improve a KEP's performance (Sönmez et al., 2018). The participation of compatible pairs
will not only increase the market size but also change its composition because compatible pairs are, on average, easier
to match than incompatible ones. As another robustness check, we add compatible pairs into the simulation. Again,
we �nd similar patterns in the algorithms' performance.

32As in the literature, we assume that the participation decision of a pair is exogenous and not a�ected by the
performance of the algorithm in use. An e�cient algorithm tends to encourage more pairs to participate, while every
algorithm performs better in a larger market (as we shall see later). Hence, our assumption may underestimate the
actual performance of a more e�cient algorithm, in our case, Unpaired.

33We also run simulations for n ∈ {2.5, 3, 3.5, 4} patients/day, whose results, although not reported, also con�rm
our �ndings.
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pi and dj 's blood-types to determine their blood-type compatibility; if dj has at least one antigen

that is unacceptable to pi, pi is HLA-incompatible with dj .

Hard-to-match. A patient is de�ned to be hard-to-match if she is hypersensitized, i.e., tissue-type

incompatible with more than 85 percent of the 13,622 donors, living or deceased, in our data. There

are 21 such patients from the KEP pairs and another 120 from the desensitization pairs (Table 1).

As mentioned in Section 2.3, even when we abstract from blood-type incompatibility, the probability

of those patients �nding a compatible kidney is low. Additionally, we separately report statistics on

O patients, who are also likely to be hard-to-match.

�Waiting rooms� for unpaired patients (P) and donors (D). The Unpaired algorithm may

have two incentive issues involving unpaired patients and donors due to donation-before-receipt and

receipt-before-donation. Namely, a patient may not be willing to let her donor donate before she

receives a kidney, and a donor may renege if her patient has already received a transplant from

someone else. Some de�nitions will be useful in our analysis: let P be the �waiting room� for

unpaired patients who are waiting for a kidney after their paired donors have donated; D is the

�waiting room� for unpaired donors who wait to donate after their paired patients have received a

transplant.

Tie-breaking in the algorithms. When selecting among multiple compatible donors/patients,

an algorithm needs a tie-breaking rule. In our de�nitions (De�nitions 2.1, 2.2, and 2.3), we allow

for arbitrary tie-breaking rules within types (i.e., we favor hard-to-match patients but allow for

arbitrary tie-breaking rules within patients of the same type; similarly, we allow for arbitrary tie-

breaking rules among donors), as the theoretical results do not depend on that. Our simulation,

however, complements the de�nitions with the following rule: when selecting among multiple donors,

Unpaired favors those in D and breaks any remaining ties by their waiting time; when it chooses

among multiple patients, hard-to-match patients enjoy the highest priority, and any remaining ties

are broken �rst by whether a patient is in P and then by their waiting time. Pairwise and Chain

also use this tie-breaking rule, although Pairwise involves neither P nor D and Chain has no P.

3.3 Evaluating the Algorithms: Baseline Simulations

We focus on a market with a daily arrival rate of n = 0.05 patients/day, similar to the French

KEP. We consider a baseline in which there is neither pair exiting nor donor reneging. Presumably,

the exit rate of pairs is endogenous and would be rarer in the high-performing algorithm such as

Unpaired. We start with no exit and allow an exogenous exit rate in a robustness check in online

appendix S.6. Donor reneging in practice is shown to be low (Cowan et al., 2017), although we shall

relax this no-reneging assumption shortly.

We apply an algorithm to each of the 1000 simulated markets. For a given simulation, pairs are

ordered by arrival date: i = 1, . . . , n`. Let a(i) and e(i) be the dates of arrival and exit of pair i,
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respectively. Let T be the end of our simulation time horizon; obviously, T ≥ a(n`). There is no

exit, or equivalently e(i) = T for all i. That is, before the last day (T ), once a pair arrives, the

patient leaves only if she receives a kidney, and the donor leaves only if she donates a kidney.

We simulate Pairwise and Unpaired by following their de�nitions and applying the aforementioned

tie-breaking rule (Section 3.2). To initiate Chain in the simulation, we select a DDL kidney as an

altruistic donor.34 We allow for multiple bridge donors in online appendix S.6. Note that, following

common practices, pairwise exchanges are still allowed in Chain in the simulation, contrary to our

theoretical analysis.35

A best-case, infeasible algorithm: Omniscient. In Section 2, we used the optimal algorithm to

provide the best-case scenario for average waiting time. However, this algorithm is not computationally

feasible due to, among other reasons, the exponential size of the state space. As such, instead of

simulating the optimal algorithm, we consider a better-than-optimal algorithm, the Omniscient

algorithm. This algorithm assumes that the designer has full information about all the patients

and donors arriving in our simulation, including their arrival/exit dates and their characteristics.

The designer then minimizes the average waiting time of all patients up to date T (i.e., the end

of our simulation).36 Therefore, in terms of this average waiting time, it dominates all algorithms,

including Unpaired. While Omniscient is practically infeasible, it helps us evaluate the potential of

Unpaired.

Simulating Omniscient is feasible because it does not need assumptions on pair arrivals beyond

our simulation time horizon. We detail the de�nition and implementation of the Omniscient algorithm

in online appendix S.5, which for the baseline simulations corresponds to a standard polynomial

algorithm to compute a minimum weight bipartite matching.

Results. Our simulation results in columns (1)-(5) of Table 2 are in line with our theoretical

�ndings in Section 2.2. The transplant rate under Unpaired, very similar to what Omniscient

achieves, is signi�cantly higher than those under Pairwise and Chain; the waiting time under

Unpaired is substantially lower than Pairwise and Chain (cf. Theorem 2.7 and Theorem 2.10).

Although Omniscient achieves the lowest waiting time, it does not signi�cantly outperform Unpaired

34To ensure that a DDL kidney is �high quality� for a given patient, we require that the DDL kidney be compatible
with the patient and have a Kidney Donor Pro�le Index (KDPI, lower is better), a risk index of post-transplant
graft failure, below the Living Kidney Donor Pro�le Index (LKDPI) of the patient's paired incompatible donor. The
LKDPI is an index for living donor kidneys corresponding to the KDPI, and they are of the same scale. See online
appendix S.4 for more details on KDPI and LKDPI. Among the DDL kidneys meeting this selection criterion for at
least one KEP patient, we randomly pick one, regardless of its arrival date. We assume that this DDL kidney arrives
on the �rst simulated arrival day, a(1), and remains until being transplanted or until the end of the simulation. We
redraw a new DDL kidney for each set of simulated dates.

35Based on simulations of the theoretical model, the steady-state average waiting time of this algorithm (allowing
for both chains and pairwise cycles) is almost identical to that of Chain. The simulations are available upon request.

36The optimal algorithm used in the theory section simply minimizes waiting time over all possible algorithms
(with a unique invariant distribution). Importantly, an algorithm is a mapping from current compatibility graph into
matchings. Hence, it does not condition current decisions to future compatibility graphs. Put di�erently, under this
optimal algorithm, the designer does not know for sure the future. The omniscient assumes that all the future is
known to the designer.
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(cf. Theorem 2.8). We also run the same simulations for various market sizes and �nd the similar

patterns; see online appendix Figure S1.

Table 2: Performance of Di�erent Algorithms

Pairwise 2-way & Chain & With DDL
(2-way) 3-way Pairwise Unpaired Omniscient & δ = 6 months
Exchange Exchanges Exchange Exchange Pairwise Unpaired

(1) (2) (3) (4) (5) (6) (7)

Transplants
% patients receiving transplant 33% 40% 36% 63% 64% 85% 93%

hypersensitized patients 18% 23% 18% 40% 41% 74% 82%
O patients 24% 30% 26% 46% 49% 84% 91%

% transplants from living donors 100% 100% 100% 100% 100% 24% 55%

Average waiting time (days)
Patients receiving transplant 248 240 232 176 144 169 72

hypersensitized patients 234 292 232 281 231 239 145
O patients 362 307 357 311 228 182 83

All patients (censored) 617 565 579 350 325 193 91
hypersensitized patients 737 704 736 574 559 297 203

O patients 688 643 671 486 445 208 106

Patients going through P
Total number - - - 29 32 - 29

hypersensitized patients - - - 11 12 - 13
O patients - - - 24 25 - 21

Waiting time of patients in P
Median - - - 245 384 - 6

hypersensitized patients - - - 517 584 - 54
O patients - - - 237 396 - 6

Donors going through D
Total number - - 4 26 31 - 36

AB donors - - 1 4 5 - 4

Waiting time of donors in D
Median - - 207 339 417 - 39

AB donors - - 368 618 614 - 48

Notes: The statistics are from the 1000 sets of simulations, each of which contains independent draws of pairs with a daily
arrival rate of 0.05 (roughly the size of France's KEP). There are on average 83 incompatible pairs, among which 20 pairs have
a hypersensitized patient and 48 have an O patient. The waiting time for a patient or a donor may be censored from above if
she has not received or donated a kidney by the last date of the simulation. The same censoring applies to the number of days
in P or D. P and D are waiting rooms for unpaired patients and donors, respectively. Pairwise (2-way exchange) (column 1)
is de�ned in De�nition 2.1, column (2) allows 3-way exchanges in addition to 2-way, Chain is de�ned in De�nition 2.2 and
is combined with Pairwise (column 3). In column (4), Unpaired is de�ned in De�nition 2.3. Omniscient (column 5) uses full
information on all pairs in the sample period to match patients and donors to minimize the total censored waiting time. Patients
in columns (6) and (7) have to wait for six months before receiving a DDL kidney o�er (unless their donor has already donated
under Unpaired).

We �rst report transplant rates: Unpaired is close to Omniscient (63 vs. 64 percent) and far

above the other two algorithms (33 percent under Pairwise and 36 percent under Chain). The same

conclusion is true among hard-to-match patients.37

Conditional on transplantation, the average waiting time is 176 days under Unpaired, which is

37The transplant rate of either hypersensitized or O patients under any algorithm is signi�cantly lower than that
of other patients. This is consistent with our assumption that they are harder to match than others.
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close to the 144 days under Omniscient and far lower than the 248 days under Pairwise and the 232

days under Chain. However, among hypersensitized patients, this conditional waiting time is lower

under either Pairwise or Chain than Unpaired. The main reason is that Pairwise and Chain each

only achieves less than a half of the transplants under Unpaired.

This observation motivates us to consider an alternative measure: the average censored waiting

time for all patients, which also includes the waiting time of those who are not transplanted at

the end of the simulation period. As pairs arriving throughout the simulation period are randomly

drawn from the same pool, this new measure creates some balance between transplant rate and

waiting time conditional on transplantation. Omniscient (column 5) minimizes average censored

waiting time and reaches 325 days, while Unpaired (column 4) achieves a similar level, 350 days.

Pairwise and Chain (columns 1 and 3) perform signi�cantly worse, delivering a waiting time at least

65 percent longer than Unpaired. This pattern also holds among hard-to-match patients (de�ned as

either hypersensitized or O patients).

In practice, a KEPmay allow both 2-way and 3-way pairwise exchanges. Including this possibility,

column (2) shows that this more �exible algorithm performs better than Pairwise but remains

signi�cantly worse than Unpaired.38

In sum, our theoretical analysis shows that imposing simultaneity constraints in a kidney exchange

algorithm can be costly, while our simulation reveals that such costs are indeed substantial in realistic

settings.

3.4 Two Potential Practical Challenges

Table 2 con�rms that Unpaired has two potential practical challenges. First, that receipt-before-

donation makes some donors enter D and possibly wait for a long time. The median waiting time of

such donors is 339 days. Such a long wait can bring a non-negligible chance of losing an unpaired

donor, because she may refuse or become un�t to donate. The second challenge arises because

we allow donation-before-receipt, which means that some patients enter P after their donors have

donated; the median waiting time of the patients who go through P is 245 days. Hypersensitized

patients wait even longer: they have a median wait time of 517 days. Pairs may refuse to donate

before receiving a kidney if they expect such long wait-times.

To analyze the �rst challenge, we simulate Unpaired, but allow for each donor who enters D to

renege at some rate. Gentry et al. (2009) use a monthly renege rate of 5%, which is substantially

higher than what is documented by Cowan et al. (2017) in a dataset from NKR in the US.39

Figure 4 shows that the possibility of reneging barely changes the performance of the Unpaired:

38The Unpaired algorithm eliminates the timing constraints on the donation and receipt but, compared to the 2-way
and 3-way pairwise exchanges, it also allows exchange cycles of arbitrary sizes. One may naturally wonder whether
the performance of Unpaired relies on the relaxation of the constraints on the cycle sizes. To answer this question,
we simulated pairwise exchanges allowing cycles of arbitrary size. Its performance is still signi�cantly worse than
Unpaired: the transplant rate is 44 percent (vs. 63 percent under Unpaired) and the (censored) average waiting time
is 539 days (vs. 350 days under Unpaired).

39In their dataset, among the 1,244 bridge donors in a chain over about 7.5 years, 1.6 percent of the donors did not
donate for some reasons, e.g., donor health problems; only 0.5 percent of them elected not to proceed with donation.
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Figure 4: Waiting Time and Transplant Rate under Unpaired When Donors May Renege

Notes: The size of the market in terms of daily arrival rate is n = 0.05, corresponding to the French KEP. For each donor who

enters D, there is an independent daily reneging probability, from which we can calculate a monthly reneging probability. We

consider a wide range of monthly rates, 5 percent and another 10 values from 10 to 99.90 percent. When the monthly reneging

rate is zero, the results are the same as column (4) of Table 2.

If no donor reneges, then patients' mean waiting time and transplant rate are 349 days and 62.5

percent, respectively. In the worst case scenario, if (almost) all donors who enter D renege in a

month, then these numbers change to 371.5 days and 60.4 percent.40

The e�ect of reneging is negligible for a variety of reasons. First and foremost, most donors do

not enter D queue to begin with. Table 2 shows that, when there is no reneging, only 31 percent of

donors ever enter D. Second, when a donor in D reneges, it reduces the chance that another donor

enters D, thus reducing the risk of additional reneges in the future. This endogenous e�ect mitigates

the risk of reneging for Unpaired. Indeed, the results show that while the number of donations

from donors in D decreases, the one from donors who are still paired with their associated patient

increases. Finally, donors who eventually renege tend to be less valuable than the average donor, as

they are precisely the donors who tend to wait longer in the D queue.

We now discuss the second practical challenge: How does the possibility of patients waiting for

a long time in the P queue a�ects the performance of Unpaired? Would they still opt to donate a

kidney before receiving one?41 We �rst note that donating before receiving still increases the chance

of receiving a kidney relative to waiting for a cross-compatible match. Thus, the question is whether

the increased chance is enough to compensate for the risk of donating a kidney and never receiving a

kidney back. Data from the Advanced Donation Program implemented by NKR (see Flechner et al.

(2015) and Section 5) suggest that many individuals are willing to donate a kidney with a promise

of receiving a kidney years after.

In addition, the long wait-time of patients in P is largely due to the small size of the French

KEP. Once we do simulations on larger market sizes, we observe that the waiting time in P shrinks

40These results are for n = 0.05 patients/day, a size similar to the French KEP, and we obtain the same negligible
e�ect of donor reneging for a larger market with n = 0.2 patients/day, corresponding to the size of the Spanish KEP.

41In Table S2 in online appendix S.6, we report the results of simulations assuming that some types of patients
opt out from donation-before-receipt. We simulate Unpaired and our practical proposal de�ned in Section 4.2 under
two scenarios: (i) all hypersensitized patients opt out and (ii) only patients with a PRA above 0.98 opt out. In these
simulations, we still con�rm that Unpaired systematically outperforms the other algorithms and is close to Omniscient.
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substantially, as depicted in Figure 5. It shows that the median waiting time of patients in the P

queue substantially decreases as the market size gets bigger. When n = 0.2 (size of the Spanish

KEP), the median waiting time of unpaired patients drops to 115 days. When the market is n = 0.4

(size of the UK KEP), it is as low as 76 days. If we have a market of the size of the NKR, the

median waiting of unpaired patients is 39 days.
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Figure 5: Median Waiting Time of Unpaired Patients in P for Various Market Sizes

Notes: This �gure shows the performance of Unpaired in markets of eight di�erent sizes, n ∈ {0.05, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2}
patients/day. The vertical lines indicate the size of some real-life KEPs.

4 Integrating Deceased Donors into the KEP

While the results in the previous section make us cautiously optimistic that patient-donor pairs

will opt into donate-before-receipt in a relatively large KEP, policymakers in countries with a small

KEP, such as France, may still have legitimate concerns with the two incentive issues. We now

propose a new algorithm that, by integrating deceased donors into the unpaired exchange program,

substantially reduces the waiting time of the unpaired patients (as well as the unpaired donors).

In Section 4.1, we introduce and extend the theoretical results of Section 2.2 to this new setting.

Then, in Section 4.2, we empirically analyze this idea and we make a �nal proposal for a practical

implementation of the unpaired algorithm.

4.1 Integrating Deceased Donors: Theory

We now introduce the extended model. Deceased donors arrive in the market at rate µ. A patient

is compatible with a deceased or a living donor with the same independent probability (i.e. pH for

an H patient and pE for an E patient). Moreover, we assume that patients are indi�erent between

receiving a graft from a compatible living or a compatible deceased donor.42

42In our empirical analysis, we will consider only kidneys from deceased donors that are comparable to living donors
in terms of quality. Hence, in the theoretical analysis, we implicitly assume that only kidneys from deceased donors
of �high quality� will be o�ered to patients in the KEP. Thus, we should think of µ as the rate of arrival of �high
quality� DDL kidneys.
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To integrate Unpaired and Pairwise with DDL, we will allow DDL kidneys to be o�ered to

patients in the KEP, while living donations still follow the same rules as the standard Unpaired/Pairwise

algorithm. We assume that when a DDL kidney is matched with a patient in the KEP, one living

donor waiting in the KEP donates her kidney to a patient on the DDL. By doing this, we ensure

that our proposed algorithm will not hurt patients waiting on the DDL. In such a case, we simply

say that the donor is removed from the KEP.43

De�nition 4.1 (Unpaired with DDL). If any new patient-donor pair vi = (pi, di) enters the market

at time t, match pi to a compatible donor (if any), breaking ties arbitrarily, and match di to a

compatible patient (if any), breaking ties in favor of hard-to-match patients. If any deceased donor

ddi arrives at t, match ddi to a compatible patient (if any), breaking ties in favor of hard-to-match

patients. When ddi is matched with a patient, one living donor is selected at random and removed

from the market. If ddi is incompatible with all the patients in the market, remove ddi.

In the above de�nition, we assume that an incoming DDL kidney that is incompatible with all

current patients in the KEP will not be o�ered to the KEP. This is reasonable since each DDL

kidney in reality is only available for a very short period of time.44

Note that we are implicitly assuming that we can immediately �nd a patient on the DDL

compatible with our living donor. This is a weak assumption since in virtually all countries, the size

of the KEP is marginal relative to the number of patients waiting for a deceased donor.45

The following result generalizes Proposition 2.6 by characterizing average waiting times of patients

under Unpaired with DDL.

Proposition 4.2. Under the Unpaired with DDL algorithm, for the average waiting time of hard-

to-match patients and that of easy-to-match patients, we have:

lim
pH→0

pHWH(Unpaired DDL) =
ln (n(1 + λ) + µ)− ln (n+ µ)

λ · n
.

and limpH→0 pHWE(Unpaired DDL) = 0. Hence,

lim
pH→0

pHW(Unpaired DDL) =
ln (n(1 + λ) + µ)− ln (n+ µ)

n
.

We prove this result in the Appendix A.

43For the theoretical analysis, the identity of the donor removed from the market does not matter.
44In practice, deceased donor kidneys are proposed, by order of priority, to compatible patients who are waiting

on the DDL. Deceased-donor kidneys are exposed to the so-called cold ischemia time (from �ush to out-of-ice) and
it is well-documented that each additional hour of cold ischemia time signi�cantly increases the risk of graft failure
and mortality following renal transplantation. Hence, in practice, kidneys from deceased donors are being o�ered to
patients for a short period of time.

45In January 2013, there were 4,500 patients waiting for a deceased donor in the New York Organ Donor Network
(NYRT) (Agarwal et al., 2021). Over the period 2012-2020, the average length of the (active) DDL was around 5,500
patients in the UK and 8,150 patients in France. Since a compatible living donor is, on average, of better quality than
many compatible deceased donors (Massie et al., 2016), it is reasonable to think that a living donor proposed to the
DDL will �nd a compatible patient who is willing to accept her kidney.
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Di�erentiating with respect to µ clari�es that the waiting time of hard-to-match patients is

decreasing in the arrival rate of deceased donors. The new in�ow from deceased donors gives more

opportunities to match patients quickly.46

Integrating deceased donors into Pairwise and Optimum. Of course, the in�ow of deceased

donors can help any algorithm. It is, therefore, unclear whether our previous results comparing

Unpaired, Pairwise, and Optimum will continue to hold: Is Unpaired with DDL still substantially

better than Pairwise with DDL and close to the Optimal algorithm with DDL? To answer this

question, we �rst de�ne a natural version of the Pairwise with DDL algorithm.

As under unpaired (not to exert any negative externalities on patients waiting for DDL kidneys),

we assume that whenever a DDL kidney is assigned to a patient in the KEP, one living donor is

removed from the market. As before, the interpretation is that this living donor gives his kidney

to a patient waiting on the DDL. Under Pairwise, however, the selected living donor naturally

corresponds to the intended living donor of the patient getting matched to the deceased donor (in

order not to create any unpaired patient/donor).

De�nition 4.3 (Pairwise with DDL). If any new patient-donor pair vi enters the market at time

t, then match them with any cross-compatible patient-donor pair (if any), breaking ties in favor of

hard-to-match patients. If any deceased donor ddi arrives at t, match ddi to a compatible patient

(if any), breaking ties in favor of hard-to-match patients. When ddi is matched with a patient, the

living donor associated with the matched patient is removed from the market. If ddi is incompatible

with all the patients in the market, remove ddi.

The following result, proved in the online appendix S.2, characterizes the waiting time of the

Pairwise with DDL algorithm.47

Proposition 4.4. Under the Pairwise with DDL algorithm, for the waiting time of easy-to-match

patients, we have:

lim
pH→0

pHWE(Pairwise DDL) = 0.

For the waiting time of hard-to-match patient,

1. If µ > n(2λ− 1), we have:

lim
pH→0

pHWH(Pairwise DDL) =
c

λ · n
,

46In our theoretical investigations, we do not distinguish between paired and unpaired patients. Nevertheless, when
the algorithm treats paired and unpaired patients in a symmetric way, both types of patients would bene�t from
the in�ow of deceased donors. Indeed, at an intuitive level, when the algorithm treats paired and unpaired patients
symmetrically, the waiting time of unpaired patients corresponds to the waiting time of an arriving patient conditional
on the event that he is not matched upon arriving (recall that, by de�nition, unpaired patients are not matched upon
arriving). Using our main result that the unconditional waiting time decreases in µ, one can show that the same holds
true for this conditional waiting time.

47We did not �nd a closed form expression for the waiting time of the Pairwise with DDL algorithm in the knife-edge
case where µ = n(2λ− 1).
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where c solves

n(1− λ)e−cpE + µe−c = n(1− 2λ) + µ.

2. If µ < n(2λ− 1), we have:

lim
pH→0

p2HWH(Pairwise DDL) =
ln (2λn)− ln (n+ µ)

λ · n
.

When the rate of arrival of deceased donor is large, the performance is mainly determined by

deceased donors, and thus the exchange algorithm is less important. Proposition 4.4 formalizes this

intuition: When µ is high, the average waiting time of Pairwise with DDL is close to Unpaired with

DDL, in the sense that they are both proportional to 1/pH . Note, however, that even in this case,

the waiting time of Pairwise is always larger than Unpaired (see Figure 6 panel A for an illustration).

On the other hand, when µ is not too large (µ < n(2λ − 1)), then the results of Theorem 2.7

extend: the scaling of the average waiting time under Pairwise is 1/p2H , an order of magnitude higher

than Unpaired. Panel B of Figure 6 illustrates this result.

Finally, in the online appendix S.1, we de�ne and analyze a modi�ed version of the Optimal

algorithm that may use deceased donors.48 We prove that the Unpaired algorithm's performance is

close to the Optimal algorithm�even closer than what we obtained under µ = 0 in Theorem 2.8.

Taken together, these �ndings show that even though the availability of deceased donors improves

the performance of all algorithms, our previous theoretical results remain qualitatively similar. This

is clear from comparing Figure 2 and Figure 6.

Remark 4.5. In our context, one can also naturally de�ne the Chain with DDL algorithm.49 We

do not formally characterize the expected waiting times of Chain with DDL. Chain algorithm is

challenging to study (even with no DDL, Ashlagi et al. (2019) had to assume that pE = 1). However,

in the one-type model (i.e., λ = 1), one can easily show that Unpaired with DDL outperforms Chain

with DDL. Indeed, under Chain with DDL, an arriving patient has probability pH to be matched with

the altruistic/bridge donor right away. With the complement probability (which tends to 1 as pH

vanishes), this patient will be unmatched and enter the pool. In that event, she will have to wait (1)

either for an arriving patient to be compatible with the altruistic/bridge donor (which is necessary

to initiate a chain-segment), which occurs with rate npH ; (2) or for a compatible deceased donor

to arrive which occurs with rate µpH . Thus, in expectation, this patient will have a waiting time

48Essentially, the Optimal algorithm with DDL is the one that�among all matching algorithms�achieves the
minimal average waiting time when using both kidneys from living and deceased donors under the constraint that,
each time a deceased donor is matched to a patient, a living donor is removed from the system. The motivation
for imposing this constraint is the same as under Unpaired/Pairwise: we do not want our algorithms to impose any
negative externalities on patients waiting for a deceased donor. The interpretation is thus that the living donor
removed gives his kidney to one of the (numerous) patients waiting for a deceased donor. A formal de�nition of
Optimal with DDL algorithm is given in Section S.1 of the online appendix where, generalizing Theorem 2.8, we
provide a lower bound on the average waiting time achieved under this version of the Optimal algorithm.

49Informally, under Chain with DDL, patients in the pool will be o�ered kidneys from chain-segment (sparked by
arriving patients compatible with the altruistic/bridge donor) as well as arriving DDL kidneys. In the latter event,
the intended living donor will have to donate his kidney to a patient waiting on the DDL.
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bounded from below by 1
(n+µ)pH

. This is larger than ln
(
2n+µ
n+µ

)
/(npH), the waiting time of patients

under the Unpaired with DDL algorithm (see Proposition 4.2).50,51

(A) Waiting time of hard-to-match patients for a �large" µ (B) Waiting time of hard-to-match patients for a �small" µ
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Figure 6: Waiting Time under Each Algorithm and the Arrival Rate of Hard-to-match Patients (λ).

Notes: Given pE = 1, n = 1, the above graph shows for µ = 2 for panel (A) and µ = 3/4 for panel (B), as a function of

the arrival rate of hard-to-match patients (λ), the average waiting times of hard-to-match patients under Pairwise with DDL,

Unpaired with DDL, as well as a lower bound of the average waiting time achieved under the Optimal algorithm with DDL.

Impact of the market size. What happens to these performances of the algorithms that employ

DDLs when the arrival rates of pairs increases? On one hand, an increase in the arrival rate of

patient-donor pairs n (while �xing µ, the arrival rate of deceased donors) can increase the demand

for deceased donors, which in turn can increase the waiting time of patients. On the other hand, an

increase in the arrival rate of pairs makes the market thicker, which in turn can decrease the waiting

time. Which force is more powerful is ex ante non-obvious.

A simple inspection of Proposition 4.2 shows that the second e�ect always dominates the �rst

e�ect for the Unpaired with DDL�an increase in the arrival rate of pairs always deceases the waiting

time.52 This seemingly obvious comparative static becomes less obvious when one notes that this

is not the case for Pairwise with DDL; that is, an increase in n can either increase or decrease the

waiting time, depending on the parameters.

50That ln
(

2n+µ
n+µ

)
/n ≤ 1/(n + µ) holds since this can be rewritten as ln(n/(n + µ) + 1) ≤ n/(n + µ) which holds

true since n/(n+ µ) is a positive number smaller than 1.
51Further note that the argument applies to the case where the Chain algorithm identi�es a chain-segment both in

a greedy fashion or optimally.
52As discussed in footnote 46, if paired and unpaired patients are treated in a symmetric way by our algorithm,

the decreasing relationship between waiting time and n should hold true for both paired and unpaired patients. We
indeed observe this pattern for unpaired patients in our simulations (see Section 4.2).
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To get a simple intuition for this observation, consider a patient p currently waiting in the system.

A new arriving patient will `compete' with patient p for deceased donors. However, the new patient

comes into the system with an incompatible donor, who is as likely to be compatible with p as any

deceased donor. Thus, the new donor more than compensates for the reduction in the probability of

getting matched to a deceased donor. This simple intuition though does not apply to the Pairwise:

the likelihood of being compatible with an arriving deceased donor is larger than the likelihood of

being cross-compatible with an arriving pair. This is particularly problematic when many arriving

patients are hard-to-match. As illustrated in Figure 7, the negative force can dominate the positive

force when λ is large. One can show that for low values of λ, the positive force can dominate, whereas

for intermediate values of λ, the comparison is more tricky and the waiting time under Pairwise can

be a U-shaped function of n.53
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Figure 7: Waiting Time of Hard-to-match Patients as a Function of the Arrival Rate of Pairs (n).

Notes: Given pE = 1, λ = 3/4 and µ = 2, the above graph shows, the average waiting times of hard-to-match patients, as a

function of the arrival rate of pairs (n) under Pairwise and Unpaired algorithms.

4.2 Integrating Deceased Donors: Empirics

Using the same data from France as in Section 3, we now evaluate the performance of Unpaired with

DDL and compare it with Pairwise with DDL.54

A practical challenge of this algorithm is that DDL kidneys typically have lower quality than

living kidneys. If we were to o�er any type of DDL kidneys, some pairs would receive a kidney that

is of lower quality than the kidney they provide (in expectation), which then may discourage them

joining the system to begin with. We address this issue by selecting, for each patient, a DDL kidney

53We formally show in Section S.3 of the online appendix that for large values of λ the waiting time under Pairwise
with DDL is increasing in n in the most favorable regime for Pairwise, i.e., when µ > n(2λ− 1).

54In our simulations, under Pairwise with DDL we remove a paired patient's associated living donor from the market
when that patient receives a DDL kidney. This is feasible since all patients are paired. Under Unpaired with DDL, we
do this as long as this is feasible. For unpaired patients (whose donor has already donated), we remove one unpaired
donor from the market. This is feasible because there always exist an equal number of unpaired patients and donors.
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that has a KDPI below the LKDPI of the patient's paired incompatible donor.55 As we explained

in footnote 34, KDPI and LKDPI are two comparable quality measures for DDL and living donor

kidneys, respectively.

While we control and vary the market size by the daily Poisson arrival rate of pairs n, we keep

the arrival of DDL kidneys �xed. This captures the fact that, while the arrival rate of patient-donor

pairs changes as a KEP is more or less successful, the arrival of DDL kidneys is typically exogenous.

We also assume that each DDL kidney arrives on its actual arrival date in the data and is available

for transplant on that date only.

Assessment of algorithms with DDL. We �rst evaluate Unpaired and Pairwise with DDL

algorithms. Figure 8 (panel A) shows the results for various market sizes. Relative to Pairwise and

Unpaired without DDL (online appendix Figure S1), both algorithms have a signi�cantly improved

performance: the mean waiting time of patients is reduced by about 88 to 91 percent. Yet, Unpaired

still performs better than Pairwise, and is fairly close to the Omniscient. For the market size of

the French KEP, for instance, the mean waiting time of Unpaired with DDL is around 43 days, the

Omniscient is 38 days, and the Pairwise with DDL is 54 days. Unpaired with DDL also diminishes

the waiting time of unpaired patients. For the market size of the French KEP, the median waiting

time in P falls to 50 days (vs. 245 days for Unpaired without DDL). Hence, even in small markets,

the main practical challenge associated with the Unpaired algorithm is drastically reduced thanks

to the integration of the DDL. This is even more the case in larger markets. As shown in online

appendix Figure S2 (Panel A), time in P decreases sharply as the arrival rate of pairs increases.56
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Figure 8: Performance of Pairwise/Unpaired with DDL: Various Market Sizes

Notes: This �gure shows the performance of the three algorithms with DDL in markets of eight di�erent sizes, n ∈
{0.05, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2} patients/day. The vertical lines indicate the size of some real-life KEPs. In each simulated

market, Omniscient is allowed to use the DDL kidneys that are actually taken by Unpaired with DDL.

The improved performance of Unpaired and Pairwise with DDL comes, at least partially, from

55In online appendix S.4.4, we present the selection process of Deceased-Donor Kidneys in details. Moreover, we
show in online appendix S.6 that our results are robust to the use of a more demanding screening criterion.

56We �nd the same pattern for the median waiting time of Unpaired donors. It falls to 65 days (vs. 339 days for
Unpaired without DDL) for n = 0.05 and it is decreasing in n, reaching 38 days for n = 2.
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the patients' access to DDL kidneys. As depicted in Figure 8 (panel B), for both algorithms, the

share of patients receiving a kidney from a living donor increases with market size and is signi�cantly

higher under Unpaired with DDL compared to Pairwise with DDL for all market sizes. Moreover,

this match rate with living donors is close to zero under Pairwise with DDL for a market size

corresponding to the French KEP (n = 0.05 patients/day). Hence, in that con�guration, the system

will de facto reduce to what is known as List Exchange.57

A low match rate with living donors can have important fairness consequences such as hurting

blood-type O patients who already have the longest waiting time.58 Indeed, many incompatible

pairs have an O patient and a non-O donor.59 Then, with a low match rate with living donors,

many pairs will donate a non-O kidney to the DDL while they will eventually obtain an O-donor.

This problem constitutes a major objection against List Exchange (Ross and Woodle, 2000). The

impact for O patients of algorithms like Unpaired and Pairwise with DDL is twofold. On the one

hand, O patients waiting on the DDL are likely to su�er a loss (measured by the di�erence between

the number of O deceased donors o�ered to patients in the program and the number of O living

donors given back to the DDL). On the other hand, many O patients would have access to a graft

in the program thanks to those algorithms. In the sequel, we focus on the overall gains (or losses)

for O patients (measured by the di�erence between the number of O patients grafted in the system

and the loss for O patients waiting on the DDL). As reported on Table S4 (in online appendix

S.7), the loss for O patients waiting on the DDL is systematically higher under Pairwise with DDL

than under Unpaired with DDL. Moreover, the overall gains generated by Unpaired with DDL are

always positive and always higher than those generated by Pairwise with DDL. Hence, compared to

Pairwise with DDL, the good performances of the Unpaired with DDL algorithm do not come at

the expense of O patients.

As pointed out by Zenios et al. (2001), the fairness issue for O-patients might also be mitigated

if patients were incentivized to bring an O rather than a non-O donor. However, in algorithms

o�ering a high priority for DDL kidneys for patients participating to the KEP, these incentives are

weak since patients expect to receive DDL o�er quickly, regardless of the type of donor they bring

to the system. This is con�rmed in our simulations. For both Pairwise and Unpaired with DDL, we

observe that patients bringing an O donor wait longer time than patients bringing a non-O donor

(see Table S4).

Final proposal. The above discussion motivates us to consider a version of the Unpaired algorithm

with DDL, as de�ned below, as the most practically plausible solution:60

57List Exchange allows a living donor to donate to a patient on the DDL and, in return, her paired patient obtains
a high priority on the DDL (Delmonico et al., 2004). See also Section 5 for further details on List Exchange.

58Glander et al. (2010) report the waiting time of patients in the US, showing that O patients wait the longest. The
same pattern is observed in France as reported here (see Table R9): https://www.agence-biomedecine.fr/annexes/
bilan2017/donnees/organes/06-rein/synthese.htm#tR9.

59Among the 586 incompatible pairs of our data set, almost 60% have an O patient while more than 60% have a
non-O donor (see Table 1).

60We also de�ne further a related version of Pairwise with DDL.
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De�nition 4.6 (Unpaired with DDL with δ Delay). Each patient is required to wait for δ months

before receiving any DDL kidney o�ers. Patients can always receive living donor o�ers based on

the rules of the Unpaired algorithm. Patients whose donors have already donated can receive DDL

kidney o�ers at any time.

This modi�ed algorithm works like the standard Unpaired with DDL algorithm, but requires

patients to wait for at least δ months before receiving any DDL kidneys if their donor has not

already donated. This will provide incentives for patients to �nd a donor who is likely to donate

soon to a patient in the KEP (e.g., an O donor who is likely to be compatible with many patients),

so that they can receive high quality DDL kidneys as soon as possible.61

One can also similarly de�ne Pairwise with DDL with δ Delay, where a patient is also required

to wait for δ months before receiving any DDL kidney o�ers; however, living donations are based on

the rules of the Pairwise algorithm.62 This algorithm can be seen as a practical version of Pairwise

with DDL, which can be a good alternative if policymakers have strong preferences for avoiding

unpairing patients and donors.

Notice that if δ = 0, these algorithms turn into the standard Unpaired with DDL/Pairwise with

DDL. Thus, the key question is, for practical purposes, what is the right value of δ? On one hand,

a smaller delay parameter creates an incentive for patients to enter with low-value donors. On

the other hand, a larger delay parameter disincentives some patients to join the system and, more

importantly, imposes a waiting cost on patients who are under dialysis.

Finding the �optimal� value of δ is a context-dependent exercise that requires a comprehensive

evaluation of various factors beyond the scope of this paper. Nevertheless, we simulate the system

for a series of reasonable delay parameters. Here, we only focus on δ = 6 months, though results

are qualitatively similar for δ = 3 or 9 months, as well as a wide range of δ values (we discuss the

robustness of the results with respect to δ in Figure S3 of the online appendix).63 In general, the

match rate with living donors increases with δ, ceteris paribus. Hence, a KEP may also use historical

data to select the lowest δ value to approximately achieve its desired match rate with living donors.

Figure 9 presents the results for various market sizes. Naturally, relative to δ = 0 (Figure 8), the

mean waiting time increases when δ = 6 months (panel A). Despite the fact that we require patients

to wait for 180 days before receiving a DDL kidney (unless their donors have already donated), the

Unpaired algorithm manages to keep the waiting time under 90 days. In addition, panel B shows

that the match rate with living donors is signi�cantly increased. Unpaired with DDL matches 55 to

73 percent of patients with a living donor, a sizable increase relative to δ = 0.

For the market size n = 0.05 patients/day, or a size similar to the French KEP, columns (6) and

61Table S4 reports the average waiting time of patients as a function of the blood-type of the donor they bring to
the system. As already mentioned, when δ = 0, on average the patients with an O donor wait the longest. However,
when δ = 6 this result is reversed, patients having an O donor wait the shortest.

62Pairwise with DDL (without delay) su�ers from the same drawbacks as Unpaired with DDL in terms of fairness
for the O patients waiting on the DDL and incentives to bring an O donor to join the KEP (see Section 4.2). Hence,
Pairwise with DDL with δ Delay might be viewed as an implementable version of the Pairwise with DDL algorithm.

63We consider δ = 6 months as a reasonable waiting time in the French context. As discussed in footnote 27, an
incompatible pair usually participates in KEP for 3.4 match runs, amounting to waiting for 9-12 months.
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Figure 9: Performance of Pairwise/Unpaired with DDL & δ = 6 months: Various market sizes

Notes: This �gure shows the performance of the two algorithms with DDL and with delay in markets of eight di�erent sizes,
n ∈ {0.05, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2} patients/day. The vertical lines indicate the size of some real-life KEPs. Each patient to
wait for δ = 6 months before receiving any DDL kidney o�ers under each algorithm, while the patient can still receive living
donor o�ers during that δ months.

(7) of Table 2 show more statistics. In particular, for Unpaired with DLL and δ = 6 months, the

two potential issues discussed in Section 3.4 are almost negligible. A median unpaired patient only

waits for 6 days before receiving a kidney, and a median unpaired donor waits 39 days in donating a

kidney.64 Even the hard-to-match patients (high PRA patients and O patients) do not need to wait

long: median waiting time for such unpaired patients is below 55 days.

Figure 9 and Table 2 also allow us to compare the versions with delay of Unpaired with DDL

and Pairwise with DDL. The performances of Pairwise with DDL, in terms of waiting time of

patients, transplant rate, and match rate with living, are substantially worse than those of Unpaired

with DDL. However, by construction, Pairwise with DDL entirely removes the two incentives issues

because it does not create any unpaired patient/donor.

5 Practices Related to the Unpaired Algorithm

Our proposed Unpaired algorithm eliminates the timing constraints on the donation and receipt

for any incompatible pair. Speci�cally, it allows receipt-before-donation (i.e., a patient can receive

a kidney before her paired donor donates to some other patient) as well as donation-before-receipt

(i.e., a donor can donate before her paired patient receives a transplant). Some recent practices also

relax the timing constraints, and we discuss their connection to the Unpaired algorithm below.

Vouchers. A voucher program, introduced in Veale et al. (2017), allows donation-before-receipt.

An example of such program is the Advanced Donation Program (ADP) implemented by NKR.65

64Interestingly, the introduction of a delay to the Unpaired with DDL algorithm reduces the waiting time of patients
in P (see online appendix Figure S2 for a comparison of waiting times in P for the algorithms without and with delay).
Indeed, in the absence of any delay, more patients outside P receive a kidney from a deceased donor such that more
living donors are given back to the DDL. This reduces the chance of getting a match for a patient in P.

65Flechner et al. (2015) report 10 advanced donations within NKR from August 2011 to August 2014. Since then,
ADP has expanded. As of April 27, 2020, there have been about 500 advanced donations. Half of these donations are
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When an advance donation happens, the paired patient obtains a voucher that gives her a higher

priority for a kidney in the future. In the ADP, a patient with a voucher will have a high priority

for receiving a kidney from a donor who would otherwise end a chain.66

Combined with the Chain algorithm, the ADP allows both donation-before-receipt and receipt-

before-donation, but with important restrictions. For example, a patient with a voucher is o�ered

a donor kidney only when the donor's paired patient has already received a transplant in a chain

and when the donor kidney is incompatible with all patients in the remaining pairs. Moreover, an

advanced donor can only donate to patients whose donors have not donated. As a result, patients

with a voucher in ADP tend to wait for a long time.67

In contrast, an unpaired patient under the Unpaired algorithm can receive a kidney from any

donor, paired or unpaired, while a donor can donate to any compatible patient, paired or unpaired.

In this sense, the Unpaired algorithm generalizes advanced donation by relaxing the constraints on

donation-before-receipt and integrating it with receipt-before-donation.

List Exchange. The Unpaired with DDL algorithm that we introduced combines the Unpaired

algorithm with the DDL. Certain integrations of DDL and living donation are already observed in

practice. Upon the approval of the United Network for Organ Sharing, the New England region

implemented a program called List Exchange. It allows a living donor to donate to a patient on the

DDL and, in return, her paired patient obtains a high priority on the DDL (Delmonico et al., 2004).

In other words, it allows donation-before-receipt for donations to the DDL.

As already discussed, one important objection against List Exchange lies in the fact that it

can hurt blood-type O patients who already have the longest waiting time on the DDL (Ross and

Woodle, 2000). As discussed in Section 4.2, Unpaired with DDL is less detrimental to O patients

waiting on the DDL and more bene�cial to O patients in general (including those participating to the

KEP) compared to Pairwise with DDL (which essentially corresponds to List Exchange). Moreover,

List Exchange does not incentivize patients to �nd an O donor since any healthy kidney will be

quickly accepted by some patients on the DDL due to the huge excess demand. In contrast, our

�nal proposal (Unpaired with DDL and δ delay) may increase the supply for highly sought-after

kidneys, O kidneys in particular, because a patient with an O donor is likely to be matched earlier.

Indeed, in this proposal, a paired patient can only receive from a deceased donor after a few months

while an unpaired patient is o�ered deceased donor kidneys immediately. By de�nition, a patient

from donors whose paired incompatible patient is in urgent need of a kidney (see NKR's quarterly report on paired
kidney exchange for Q1 2020; available at https://www.kidneyregistry.org/pages/c6/nkr_quarterly_reports).

66In the priority order, the patients with a voucher are right after former NKR donors in need of a kidney transplant
and patients involved in real-time swap failures where the donor has donated but the patient did not receive a kidney;
see Tenenbaum (2018).

67Among NKR's 10 advanced donations during August 2011 to August 2014, by the end of that period, 8 of the
10 patients had received a kidney 178 days on average after their donors had donated (Flechner et al., 2015). In
our simulations of market sizes comparable to NKR, the Unpaired algorithm leads to an average waiting time in P,
conditional on receiving a transplant, of 61 days. Moreover, Tenenbaum (2018) reports that ADP noti�es hard-to-
match patients (typically hypersensitized) that the waiting time after their donor has donated may often exceed 1�2
years. In our simulations the mean waiting time in P (conditionally on receiving a transplant) for hypersensitized
patients is only 147 days.
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becomes unpaired as soon as the paired donor has donated, which is more likely to happen if this

donor is of blood-type O.

Deceased donor-initiated chain. Roth et al. (2004) contains a proposal on how to integrate

List Exchange with kidney exchange programs: Instead of donating directly to the DDL, a donor

could initiate a chain of transplants within the KEP, in exchange for a high priority on the DDL for

her intended patient. This proposal is close to our Unpaired with DDL algorithm as it integrates

the DDL and the KEP and it allows donation-before-receipt (the �rst donor of the chain donates

before her patient receives from a deceased donor) and possibly receipt-before-donation (along a

chain of transplants initiated by this �rst donor). The main di�erence between the two lies in the

fact that, under Unpaired with DDL, the patient who was associated with the �rst donor of the

chain not only bene�ts from a high priority on the DDL but can also receive a living donation.

While the proposal made by Roth et al. (2004) has not been implemented so far, the latest revision

of the bioethics law in France allows a variant of it (Combe et al., 2022). Moreover, another kind of

deceased donor-initiated chain has been at work in Italy since 2019 (Furian et al., 2019). Under this

alternative design, patients from incompatible pairs bene�t from a high priority on the DDL, and a

donor of those pairs initiates a chain only after her intended patient has received a deceased donor

kidney. As discussed in Section 4.2, all those mechanisms giving a high priority on the DDL for

patients participating in the KEP mitigate the incentives that patients have to bring an O donor.

One possibility to restore those incentives would be to impose a delay between the arrival date of an

incompatible pair in the program and the date at which the patient of this pair bene�ts from a high

priority on the DDL, as suggested by Wang et al. (2021).68 This is in line with our �nal proposal:

Unpaired with DDL with δ Delay.

In sum, the implementation of the voucher program and List Exchange in practice and the reform

in France make us optimistic about the potential of Unpaired, as well as Unpaired with DDL, to

promote kidney exchange. The innovations in our algorithm have been shown to be acceptable in

practice, while our algorithms enjoy signi�cant performance advantages relative to state-of-the-art

algorithms.

6 Conclusion

We have proposed a new matching algorithm, Unpaired kidney exchange, and argued that it

signi�cantly improves upon the outcome of currently utilized state-of-the-art algorithms. The main

reason is that Unpaired eliminates the common simultaneity constraints. In this sense, our results

provide not only a new policy but also a tool to evaluate the costs of those constraints.

68Wang et al. (2021) simulate the impact of authorizing deceased donor-initiated chain in the US. They write �It
may seem important to have a period of time before a new arrival to the kidney paired donation pool is eligible for a

deceased donor chain-initiating kidneys transplant, so the delay time of 0, which is optimum in terms of the number

of transplants achieved, may not be acceptable. A delay time of 3 months or possibly 6 months may be a reasonable

compromise.�
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Eliminating those simultaneity constraints brings two practical challenges, the potentially long

waiting times of a patient after her paired donor's donation and of a donor after her paired patient's

transplantation. We have proposed several solutions and recommended a practical version, an

integration of Unpaired with the deceased donor list, while a patient becomes eligible for a deceased-

donor kidney after a pre-speci�ed time or immediately after her paired donor's donation.

One thing we have not systematically examined is endogenous participation in the kidney

exchange. In practice, seeing the algorithm in use, a patient-donor pair will decide if they want

to participate in the exchange, a participating pair will decide if they want to quit and choose

desensitization, and a patient may even be incentivized to �nd a di�erent type of donor. Ignoring

such endogenous responses, our results are likely to provide a lower bound of the advantages of

Unpaired. When more pairs participate in a more e�cient exchange, the performance of the exchange

will be further enhanced because a larger market size, in general, improves the performance of every

algorithm. We believe that a systematic analysis taking into account endogenous participation is a

fruitful avenue for future research.69

When taking a new algorithm into practice, patients and donors may be skeptical. Here we are

hopeful that the combination of theory and evidence in this paper will alleviate this skepticism. We

have shown that if Unpaired or Unpaired with DDL had been employed in some existing markets,

participants' outcomes would have been meaningfully improved. We have also explained theoretically

why we should expect this to be the case. This combination of evidence and theory gives us con�dence

that any future application of the Unpaired algorithms will improve patients' outcomes.

Data Availability Statement

All the data have been provided by the French biomedicine agency (Agence de la biomédecine)

in charge of the kidney transplants and the Kidney Exchange Program. We signed a data access

agreement which prevents us from making the data available to third parties. The replication package

for this research is available on Zenodo at https://doi.org/10.5281/zenodo.10606469.

69The rational queueing literature (see Hassin (2016)) deals with decisions of participation in queueing systems where
agents trade o� their waiting times to get served/matched with their outside option. There are only few attempts to
adapt these frameworks to dynamic matching environments (see Baccara et al., 2020 and Che and Tercieux, 2020).
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�APPENDIX�

A Waiting Time Characterization for Unpaired

In Proposition 4.2, we characterize the average waiting time of patients under the Unpaired with

DDL algorithm de�ned in Section 4.1 (De�nition 4.1). This algorithm corresponds to the Unpaired

algorithm except for the fact that patients may receive a graft from deceased donors who arrive in

the market at rate µ. It is clear from De�nition 4.1 that the two algorithms are equivalent when

there is no deceased donor (i.e. when µ = 0). Hence, the waiting times under the unpaired algorithm

can be directly deduced from the waiting time under the unpaired with DDL algorithm (provided

in Proposition 4.2) �xing µ = 0. Thus Proposition 2.6 is a direct corollary of Proposition 4.2. In

the sequel, we prove the latter.A.1

This section is organized as follows. We �rst give the basic description of the Markov chain (over

the number of patients of each type (kH , kE)) induced by the Unpaired algorithm as well as some

basic de�nitions that will be used all along the proofs (Section A.1). We de�ne k∗H as the number

of hard-to-match patients which equalizes the transition rates from k∗H to k∗H + 1 and that from

k∗H to k∗H − 1 assuming that no easy-to-match patient is in the pool. Then, the formal argument

is presented and we prove that, at the invariant distribution, as pH vanishes, the number of hard-

to-match patients waiting in the system is highly concentrated around k∗H . We split the proof into

two blocks. In the �rst block, we show that the number of hard-to-match patients remaining in the

system at the invariant distribution puts vanishing weight above k∗H (Section A.2). In the second

block (Section A.3), we prove the concentration result, i.e., show that this upper bound is indeed

tight. In order to prove the tightness result, we need to prove that with probability going to 1,

the number of easy-to-match patients remaining in the pool is �small,� i.e., we show that it is of

order smaller than 1/pH . Finally, we explain how we can use the bounds to obtain Proposition 2.6

(Section A.4).

A.1 Preliminaries

We make several preliminary remarks. First, under the Unpaired algorithm, one can easily check

that the number of patients remaining in the system equals the number of donors remaining (St = Zt

for all t). This is useful since we can simply focus on the evolution of the number of patients of each

type remaining in the system.

We denote the transition rate matrix over states N× N by Q. We will focus on the following

A.1Note that, throughout the proof, the waiting time of patients for the Unpaired with DDL algorithm will be
denoted W(Unpaired) while we use the notation W(Unpaired DDL) in the statement of Proposition 4.2.
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transition rates:

Q([kH , kE ], [kH + 1, kE ]) = nλ(1− pH)kE+kH (1− pE)kE (1− pH)kH

Q([kH , kE ], [kH − 1, kE ]) = n
{
λ[1− (1− pH)kE+kH ][1− (1− pH)kH ]+

(1− λ)[1− (1− pE)kE+kH ][1− (1− pH)kH ]
}

+µ[1− (1− pH)kH ]

Q([kH , kE ], [kH , kE + 1]) = n(1− λ)(1− pE)kE+kH (1− pE)kE (1− pH)kH

Q([kH , kE ], [kH , kE − 1]) = n
{
λ[1− (1− pH)kE+kH ](1− pH)kH [1− (1− pE)kE ]+

(1− λ)[1− (1− pE)kE+kH ](1− pH)kH [1− (1− pE)kE ]
}

+µ(1− pH)kH [1− (1− pE)kE ]

Q([kH , kE ], [kH + 1, kE − 1]) = nλ(1− pH)kE+kH (1− pH)kH [1− (1− pE)kE ]

Q([kH , kE ], [kH − 1, kE + 1]) = n(1− λ)(1− pE)kE+kH [1− (1− pH)kH ]

Let also �rst recall that the Global Balance Equations (GBE) are a set of equations that

characterize the invariant distribution of a Markov chain when such a distribution exists. The above

stochastic process is a Markov chain which has an invariant distribution as proved in Appendix A.5.

In the sequel, we let π be this invariant distribution. The GBE can be stated as follows: for any

subset S ⊂ N× N, we must have:∑
j∈S

π(j)
∑
i/∈S

Q(j, i) =
∑
i/∈S

π(i)
∑
j∈S

Q(i, j). (A.1)

Finally, let us de�ne k∗H as the real number ensuring

nλ(1− pH)2k
∗
H = nλ

[
1− (1− pH)k

∗
H

]2
+ (n(1− λ) + µ)

[
1− (1− pH)k

∗
H

]
. (A.2)

Simple algebra shows that

(n(1 + λ) + µ)(1− pH)k
∗
H = n+ µ (A.3)

and so

k∗H =
ln [n(1 + λ) + µ]− ln (n+ µ)

− ln(1− pH)
.

In what follows, we sometimes use the notation πH (resp. πE) for the marginal distribution π on

the �rst (resp. second) dimension of the state space, i.e., πH(kH) :=
∑∞

kE=0 π(kH , kE).

A.2 Upper-bound Result

In the sequel, we �rst prove the following result providing an upper-bound on the number of hard-

to-match patients.
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Proposition A.1. Fix any δ > 0,

πH

{
kH :

kH
1/(− ln(1− pH))

≥ ln [n(1 + λ) + µ]− ln (n+ µ) + δ

}
→ 0

as pH vanishes.

In order to show this, the following intermediary result is useful.

Lemma A.2. The following must hold

nλ
[
1− (1− pH)k+1

]2
+ (n(1− λ) + µ)

[
1− (1− pH)k+1

]
nλ(1− pH)2k

≥

nλ
[
1− (1− pH)k+1

]
+ (n(1− λ) + µ)

[
1− (1− pH)k+1

]
nλ(1− pH)k

if k ≥ k∗H . The inequality holds in the other direction if k ≤ k∗H − 1.

Proof of Lemma A.2. Using simple algebra, one can show that the inequality stated in Lemma A.2

is equivalent to

n+ µ ≥ nλ(1− pH)k+1 + (n+ µ)(1− pH)k.

If k ≥ k∗H , using (A.3), we have that (n(1 + λ) + µ)(1− pH)k ≤ n+ µ. Since

(n(1 + λ) + µ)(1− pH)k ≥ nλ(1− pH)k+1 + (n+ µ)(1− pH)k,

we are getting the above inequality for k ≥ k∗H , as claimed. If k ≤ k∗H − 1, using (A.3) again,

(n(1 + λ) + µ)(1− pH)k+1 ≥ n+ µ. Since

(n(1 + λ) + µ)(1− pH)k+1 ≤ nλ(1− pH)k+1 + (n+ µ)(1− pH)k,

we are getting the reverse inequality for k ≤ k∗H − 1, as claimed.

We can now show the following lemma.

Lemma A.3. For any ε > 0, there exists a constant ρ ∈ (0, 1) such that, for any pH > 0 and for

any integer kH ≥ k∗H(1 + ε)
πH(kH + 1)

πH(kH)
≤ ρ.

Proof of Lemma A.3. Fix any ε > 0, and an arbitrary kH ≥ k∗H(1 + ε) and let us consider the set

S = {0, 1, ..., kH} × N. The GBE (Equation (A.1)) gives us

∞∑
kE=0

π(kH , kE) [Q([kH , kE ] , [kH + 1, kE ]) +Q([kH , kE ] , [kH + 1, kE − 1])]

=
∞∑

kE=0

π(kH + 1, kE) [Q([kH + 1, kE ] , [kH , kE ]) +Q([kH + 1, kE ] , [kH , kE + 1])] .
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Using the expressions of the transition rates, this can be rewritten as:

∞∑
kE=0

π(kH , kE)
[
nλ(1− pH)kE+kH (1− pH)kH

]

=

∞∑
kE=0

π(kH + 1, kE)

[
nλ
[
1− (1− pH)kE+kH+1

] [
1− (1− pH)kH+1

]
+(n(1− λ) + µ)

[
1− (1− pH)kH+1

] ]
.

Observing that the term in brackets on left-hand side is maximized at kE = 0 while the term in

brackets on the right-hand side is minimized at kE = 0, we get

∑∞
kE=0 π(kH , kE)

[
nλ(1− pH)2kH

]
≥

∑∞
kE=0 π(kH + 1, kE)

[
nλ
[
1− (1− pH)kH+1

]2
+ (n(1− λ) + µ)

[
1− (1− pH)kH+1

]]
.

It implies that

πH(kH)

πH(kH + 1)
≥
nλ
[
1− (1− pH)kH+1

]2
+ (n(1− λ) + µ)

[
1− (1− pH)kH+1

]
nλ(1− pH)2kH

, (A.4)

where we recall that πH(kH) =
∑∞

kE=0 π(kH , kE).

From the inequality above, we deduce:

πH(kH + 1)

πH(kH)
≤ nλ(1− pH)2kH

nλ [1− (1− pH)kH+1]
2

+ (n(1− λ) + µ) [1− (1− pH)kH+1]

≤ nλ(1− pH)kH

(n+ µ) [1− (1− pH)kH+1]

≤ nλ(1− pH)k
∗
H(1+ε)

(n+ µ)
[
1− (1− pH)k

∗
H(1+ε)

]
=

nλ
(

n+µ
(1+λ)n+µ

)1+ε
(n+ µ)

[
1−

(
n+µ

(1+λ)n+µ

)1+ε] := ρ

<
nλ
(

n+µ
(1+λ)n+µ

)
(n+ µ)

[
1−

(
n+µ

(1+λ)n+µ

)] = 1,

where the �rst inequality comes from the Equation (A.4). The second inequality comes from Lemma

A.2 and kH ≥ (1 + ε)k∗H ≥ k∗H . The third inequality comes from the fact that (1 − pH)kH+1 ≤
(1− pH)kH ≤ (1− pH)(1+ε)k

∗
H . The �rst equality comes from equation (A.3).

Hence we obtain a positive constant, denoted by ρ, strictly smaller than one and independent of

pH , such that for all kH ≥ k∗H(1 + ε): πH(kH+1)
πH(kH) ≤ ρ.

Using the result stated in Lemma A.3, we can show the following:
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Lemma A.4. For any ε > 0, there exists a constant ρ ∈ (0, 1) such that, for any pH > 0 and for

any integer z > 0:

πH {kH : kH ≥ k∗H(1 + ε) + z} ≤ ρz

1− ρ
.

Proof of Lemma A.4. We know from Lemma A.3 that for all kH ≥ k∗H(1+ε), πH(kH+1) ≤ ρπH(kH)

with ρ ∈ (0, 1).A.2 Then by induction we get that:

πH(k∗H(1 + ε) + i) ≤ ρiπH(k∗H(1 + ε)). (A.5)

It implies that

πH {kH : kH ≥ k∗H(1 + ε) + z} =
+∞∑
i=z

πH(k∗H(1 + ε) + i)

≤
+∞∑
i=z

ρiπH(k∗H(1 + ε))

≤
+∞∑
i=z

ρi =
ρz

1− ρ
,

where the �rst inequality comes from the Equation (A.5), the second inequality immediately comes

from the fact that πH(k∗H(1+ε)) ≤ 1, and the last equality is obtained using the fact that ρ < 1.

Completion of the proof of Proposition A.1. Fix any δ > 0. We want to show that

πH

{
kH :

kH
1/(− ln(1− pH))

≥ ln [n(1 + λ) + µ]− ln (n+ µ) + δ

}
→ 0

as pH vanishes. Fix ε > 0. Let z = 1/
√
pH and pH > 0 small enough so that

[ln [n(1 + λ) + µ]− ln (n+ µ)] (1 + ε) +
√
pH ≤ ln [n(1 + λ) + µ]− ln (n+ µ) + δ.

Hence, we obtain

πH

{
kH :

kH
1/(− ln(1− pH))

≥ ln [n(1 + λ) + µ]− ln (n+ µ) + δ

}
≤ πH

{
kH :

kH
1/(− ln(1− pH))

≥ [ln [n(1 + λ) + µ]− ln (n+ µ)] (1 + ε) +
√
pH

}
≤ πH

{
kH : kH ≥ k∗H(1 + ε) +

√
pH

− ln(1− pH)

}

≤ ρ

√
pH

− ln(1−pH )

1− ρ
→ 0,

A.2In the sequel, for notational convenience, when we write k∗H(1 + ε), we assume it is an integer. If this is not the
case, the argument simply goes through replacing k∗H(1+ ε) by dk∗H(1+ ε)e. Similar abuses of notations (where a real
number has to be replaced by its �oor or ceiling) will be used all along the proof.
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where the �rst inequality is ensured by our choice of ε and pH while the last inequality is by

Lemma A.4, and the convergence result holds since ρ ∈ (0, 1) (still by Lemma A.4) and since

−(1/pH) ln(1− pH) goes to 1 as pH vanishes and so
√
pH

− ln(1−pH) explodes as pH vanishes.

A.3 Lower-bound Result

So far, we have provided an upper-bound on the number of hard-to-match patients in the pool.

Recall that the upper-bound, i.e., k∗, is computed by equalizing the transition rates from k∗H to

k∗H + 1 and that from k∗H to k∗H − 1, assuming that no easy-to-match patient is in the pool. Hence,

mathematically, to show that this bound is tight it will be necessary to show that the number of

easy-to-match patient remaining in the pool is �small�. At an intuitive level, if there were many

easy-to-match patients remaining in the pool, then hard-to-match agents could be matched quickly

and the upper-bound we obtained would be unlikely to be tight.

One issue to prove that the number of easy-to-match patients in the pool is small is the following.

In the (small probability) event that an easy-to-match patient joins the pool, given the priority rule

under Unpaired, he will have to wait for an arriving donor to be incompatible with all hard-to-match

patients remaining in the system. Given that the number of hard-to-match patients in the system

explodes, one may expect the conditional waiting time to be very long. However, we can use our

upper-bound result (Proposition A.1) which bounds the rate at which the number of hard-to-match

patients explodes to show that the number of easy-to-match patients remaining in the pool is small.

This is what we show in Section A.3.1 below. Once this is proved, we prove that our upper-bound

is indeed tight in Section A.3.2.

A.3.1 An Upper-bound on the Number of Easy-to-match Patients

Lemma A.5. There is an integer k∗E such that, for any k and for any pH small enough,

πE{kE : kE ≥ k∗E + k} ≤ 3 + k

(1− ρ̂)2
ρ̂k,

where ρ̂ < 1.

Proof of Lemma A.5. Fix an arbitrary kE ≥ 0 and let us consider the set S = N×{0, 1, ..., kE}.
Then, the GBE (Equation (A.1)) writes as:

∞∑
kH=0

π(kH , kE) [Q([kH , kE ] , [kH , kE + 1]) +Q([kH , kE ] , [kH − 1, kE + 1])]

=

∞∑
kH=0

π(kH , kE + 1) [Q([kH , kE + 1] , [kH , kE ]) +Q([kH , kE + 1] , [kH + 1, kE ])] .
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Using the expressions of the transition rates, this can be rewritten as:

∞∑
kH=0

π(kH , kE)n(1− λ)

[
(1− pE)kE+kH (1− pE)kE (1− pH)kH

+(1− pE)kE+kH [1− (1− pH)kH ]

]

=
∞∑

kH=0

π(kH , kE + 1)


nλ[1− (1− pH)kE+1+kH ](1− pH)kH [1− (1− pE)kE+1]

+n(1− λ)[1− (1− pE)kE+1+kH ](1− pH)kH [1− (1− pE)kE+1]

+µ(1− pH)kH [1− (1− pE)kE+1]

+nλ(1− pH)kE+1+kH (1− pH)kH [1− (1− pE)kE+1]

 .

This can be simpli�ed to

∞∑
kH=0

π(kH , kE)
[
n(1− λ)(1− pE)kE+kH

]

≥
∞∑

kH=0

π(kH , kE + 1)

 nλ(1− pH)kH [1− (1− pE)kE+1]+

n(1− λ)[1− (1− pE)kE+1+kH ](1− pH)kH [1− (1− pE)kE+1]

+µ(1− pH)kH [1− (1− pE)kE+1]

 .
Observing that the expression in brackets on the left-hand side is maximized at kH = 0 and that

the expression in brackets on right hand-side may be bounded below by disregarding the last two

terms, we get that:

(1− λ)(1− pE)kEπE(kE) ≥
∞∑

kH=0

π(kH , kE + 1)λ(1− pH)kH [1− (1− pE)kE+1], (A.6)

where πE denotes the marginal of π on the number of easy-to-match patients in the pool, i.e.,

πE(kE) =
∑∞

kH=0 π(kH , kE).

In the sequel, for each kE and any ε > 0, we de�ne S(kE) := {kH : kH ≤ (1 + ε)k∗H + ln(2)/pH +

kE} as well as πS(kE)(kE) :=
∑

kH∈S(kE) π(kH , kE). We must have:

πE(kE)− πS(kE)(kE) =
∑

kH /∈S(kE)

π(kH , kE)

≤
∞∑

kE=0

∑
kH /∈S(kE)

π(kH , kE) =
∑

kH /∈S(kE)

πH(kH).

Hence, by Lemma A.4, for any kE ,

πE(kE)− πS(kE)(kE) ≤ ρln(2)/pH+kE

1− ρ
, (A.7)

where ρ ∈ (0, 1). Note that for each kH ∈ S(kE), for pH small enough, we have

(1− pH)kH ≥ (1− pH)(1+ε)k
∗
H+ln(2)/pH+kE ≥ 1

3

(
1

1 + λ

)1+ε

(1− pH)kE ,
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where the second inequality comes from the fact that as pH vanishes, (1− pH)ln(2)/pH converges to(
1
e

)ln(2)
= 1

2 >
1
3 .

Given the above, let us rewrite Equation (A.6). The right-hand side can be lower-bounded by

∞∑
kH∈S(kE+1)

π(kH , kE + 1)λ(1− pH)kH [1− (1− pE)kE+1]

≥
∞∑

kH∈S(kE+1)

π(kH , kE + 1)λ
1

3

(
1

1 + λ

)1+ε

(1− pH)kE+1[1− (1− pE)kE+1].

Clearly, the left-hand side of Equation (A.6) can be rewritten as

(1− λ)(1− pE)kEπS(kE)(kE) + (1− λ)(1− pE)kE
(
πE(kE)− πS(kE)(kE)

)
.

Hence, Equation (A.6) can be rewritten as

(1− λ)(1− pE)kEπS(kE)(kE) + (1− λ)(1− pE)kE
(
πE(kE)− πS(kE)(kE)

)
≥ 1

3

(
1

1 + λ

)1+ε

λ(1− pH)kE+1[1− (1− pE)kE+1]πS(kE+1)(kE + 1).

Let us denote

ρ̄(kE) :=
(1− λ)(1− pE)kE

1
3

(
1

1+λ

)1+ε
λ(1− pH)kE+1[1− (1− pE)kE+1]

.

The above inequality can be rewritten as

ρ̄(kE)πS(kE)(kE) + ρ̄(kE)
(
πE(kE)− πS(kE)(kE)

)
≥ πS(kE+1)(kE + 1).

Since

ρ̄(kE) ≤ 1− λ
λ
3

(
1

1+λ

)1+ε
pE(1− pH)

(
1− pE
1− pH

)kE
,

it must be that for any pH small enough, there is an integer k∗E large enough (which does not depend

on pH) so that supkE≥k∗E ρ̄(kE) =: ρ∗ < 1.A.3 Hence, from the de�nition of ρ∗ and from Equation

(A.7) we obtain

ρ∗πS(kE)(kE) + ρ∗
ρln(2)/pH+kE

1− ρ
≥ πS(kE+1)(kE + 1)

for any kE ≥ k∗E . Clearly, for pH small enough, ρ
ln(2)/pH

1−ρ < 1, and since ρ∗ < 1, we have

ρ∗πS(kE)(kE) + ρkE ≥ πS(kE+1)(kE + 1)

A.3k∗E is simply de�ned as the smallest integer kE ensuring 1−λ
λ
2 (

1
1+λ )

1+ε
pE(1−p)

(
1−pE
1−p

)kE
< 1, where p ∈ (0, pE) is

an arbitrary number. We then require that pH is smaller than p.
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for any kE ≥ k∗E . Now, setting ρ̂ := max(ρ∗, ρ) < 1, we obtain

ρ̂πS(kE)(kE) + ρ̂kE ≥ πS(kE+1)(kE + 1).

Now, proceeding inductively, we can rewrite for any kE ≥ k∗E

ρ̂iπS(k∗E)(k
∗
E) + iρ̂k

∗
E+i ≥ πS(k∗E+i)(k

∗
E + i). (A.8)

Now, we have

∞∑
kE≥k∗E+k

πE(kE) =
∞∑
i=k

πE(k∗E + i)

=
∞∑
i=k

πS(k∗E+i)(k
∗
E + i) +

∞∑
i=k

[πE(k∗E + i)− πS(k∗E+i)(k
∗
E + i)]

≤
∞∑
i=k

πS(k∗E+i)(k
∗
E + i) +

∞∑
i=k

ρ
ln(2)
pH

+k∗E+i

1− ρ

≤
∞∑
i=k

πS(k∗E+i)(k
∗
E + i) +

∞∑
i=k

ρ̂i

1− ρ̂

≤
∞∑
i=k

ρ̂iπS(k∗E)(k
∗
E) + ρ̂k

∗
E

∞∑
i=k

iρ̂i +
ρ̂k

(1− ρ̂)2

≤
∞∑
i=k

ρ̂i +

∞∑
i=k

iρ̂i +
ρ̂k

(1− ρ̂)2

≤ ρ̂k

1− ρ̂

(
1 +

1 + k

1− ρ̂
+

1

1− ρ̂

)
≤ ρ̂k

1− ρ̂
3 + k

1− ρ̂
, (A.9)

where the �rst inequality uses (A.7). The second uses ρ̂ ≥ ρ. The third uses (A.8). The fourth

uses the fact that both πS(k∗E)(k
∗
E) and ρ̂ are smaller than one. The penultimate inequality uses the

following fact:
n∑
i=0

iρ̂i =
ρ̂− (n+ 1)ρ̂n+1 + nρ̂n+2

(1− ρ̂)2
(A.10)
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and the fact that

+∞∑
i=k

iρ̂i =

+∞∑
i=0

iρ̂i −
k−1∑
i=0

iρ̂i

=
ρ̂

(1− ρ̂)2
− ρ̂− kρ̂k + (k − 1)ρ̂k+1

(1− ρ̂)2

=
kρ̂k + ρ̂k+1 − kρ̂k+1

(1− ρ̂)2
(A.11)

≤ kρ̂k + ρ̂k

(1− ρ̂)2
, (A.12)

where the second equality comes from equation (A.10), and ρ̂ ∈ (0, 1) is used for the second equality

as well as for the inequality.

A.3.2 Completing of the Lower-bound Result for Hard-to-match Patients

Proposition A.6. Fix any δ > 0,

πH

{
kH :

kH
1/(− ln(1− pH))

≤ ln [n(1 + λ) + µ]− ln (n+ µ)− δ
}
→ 0

as pH vanishes.

In the sequel, we �x k∗E as de�ned in Lemma A.5 and de�ne S := {kE : kE ≤ k∗E + 1/
√
pH} and,

as before, πS(kH) =
∑

kE∈S π(kH , kE). We �rst prove the following lemma.

Lemma A.7. For any ε ∈ (0, 1) and any pH small enough, there exist constants ρ̂ ∈ (0, 1) such

that, for any integer z > 0:

πS(k∗H(1− ε)− z) ≤ ρ̃zπS(k∗H(1− ε)) + φ(pH)ρ̃
1− ρ̃z

1− ρ̃
,

where φ(pH) :=
(

3 + 1√
pH

)
ρ̂1/
√
pH

(1−ρ̂)2 .

Proof of Lemma A.7. Let us recall that using the GBE we obtained

∞∑
kE=0

π(kH , kE)nλ(1− pH)kE+kH (1− pH)kH

=
∑
kE∈S

π(kH + 1, kE)

[
nλ
[
1− (1− pH)kE+kH+1

] [
1− (1− pH)kH+1

]
+(µ+ n(1− λ))

[
1− (1− pH)kH+1

] ]

+
∑
kE /∈S

π(kH + 1, kE)

[
nλ
[
1− (1− pH)kE+kH+1

] [
1− (1− pH)kH+1

]
+(µ+ n(1− λ))

[
1− (1− pH)kH+1

] ]
.

Note that for pH small enough, (1 − pH)kE ≥ (1 − pH)k
∗
E .c
√
pH with c ∈ (0, 1) whenever kE ∈ S =
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{kE : kE ≤ k∗E + 1/
√
pH}.A.4 This observation allows us to lower-bound the left-hand side of the

equation displayed above. Thus, by upper-bounding the right-hand side as well (simply using the

facts that for kE ∈ S, kE ≤ k∗E + 1/
√
pH , and 1− (1− pH)kE+kH+1 ≤ 1), we get

πS(kH)
[
nλ(1− pH)k

∗
Ec
√
pH (1− pH)2kH

]
≤ πS(kH + 1)

[
nλ
[
1− (1− pH)k

∗
E+1/

√
pH+kH+1

] [
1− (1− pH)kH+1

]
+((1− λ)n+ µ)

[
1− (1− pH)kH+1

] ]

+(πH(kH + 1)− πS(kH + 1))

[
nλ
[
1− (1− pH)k

∗
E+1/

√
pH+kH+1

] [
1− (1− pH)kH+1

]
+((1− λ)n+ µ)

[
1− (1− pH)kH+1

] ]
.

In the sequel, we �x ε ∈ (0, 1) and consider kH ≤ k∗H(1−ε). We will use the following two inequalities

which hold for pH small enough: k∗E + 1/
√
pH + kH + 1 ≤ k∗H and kH + 1 ≤ k∗H . Since the second

inequality holds if the �rst one holds, we just provide the argument for the �rst one. Since k∗H goes

to [ln [n(1 + λ) + µ]− ln (n+ µ)]/ pH as pH vanishes, we must have εk∗H ≥ k∗E + 1/
√
pH + 1 for pH

small enough (recall by Lemma A.5 that k∗E is a constant which does not depend on pH). Since we

assumed that kH ≤ k∗H(1− ε), we must have k∗E + 1/
√
pH + kH + 1 ≤ k∗E + 1/

√
pH + k∗H(1− ε) + 1,

which is thus smaller than k∗H for pH small enough, as claimed. These two inequalities allow us to

further bound the right-hand side of the equation above:

πS(kH)
[
nλ(1− pH)k

∗
Ec
√
pH (1− pH)2kH

]
≤ πS(kH + 1)

[
nλ
[
1− (1− pH)k

∗
H

]2
+ (n(1− λ) + µ)

[
1− (1− pH)k

∗
H

]]
+(πH(kH + 1)− πS(kH + 1))

[
nλ
[
1− (1− pH)k

∗
H

]2
+ (n(1− λ) + µ)

[
1− (1− pH)k

∗
H

]]
.

Then, using the fact that kH ≤ k∗H(1 − ε), we can lower-bound the left-hand side of the above

equation to get

πS(kH)
[
nλ(1− pH)k

∗
Ec
√
pH (1− pH)2k

∗
H(1−ε)

]
≤ πS(kH + 1)

[
nλ
[
1− (1− pH)k

∗
H

]2
+ (n(1− λ) + µ)

[
1− (1− pH)k

∗
H

]]
+(πH(kH + 1)− πS(kH + 1))

[
nλ
[
1− (1− pH)k

∗
H

]2
+ (n(1− λ) + µ)

[
1− (1− pH)k

∗
H

]]
.

A.4Simply note that, for any kE ∈ S,

(1− pH)kE ≥ (1− pH)k
∗
E (1− pH)1/

√
pH

= (1− pH)k
∗
E

(
(1− pH)1/pH

)√pH
.

Since (1 − pH)1/pH converges from below to 1/e, we can ensure that for pH small enough, (1 − pH)kE ≥ (1 −
pH)k

∗
E
(
0.9
e

)√pH .
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This may be rewritten as:

πS(kH) ≤ ρ̃1(pH)πS(kH + 1) + ρ̃1(pH)(πH(kH + 1)− πS(kH + 1)) (A.13)

where

ρ̃1(pH) :=

(
(1− pH)2εk

∗
H

(1− pH)k
∗
Ec
√
pH

)
nλ
[
1− (1− pH)k

∗
H

]2
+ (n(1− λ) + µ)

[
1− (1− pH)k

∗
H

]
nλ(1− pH)2k

∗
H

.

Now, we claim that, for pH small enough, ρ̃1(pH) ≤ ρ̃1, where ρ̃1 < 1 does not depend on pH .

Indeed,

ρ̃1(pH) =

(
(1− pH)2εk

∗
H

(1− pH)k
∗
Ec
√
pH

)
nλ
[
1− (1− pH)k

∗
H

]2
+ (n(1− λ) + µ)

[
1− (1− pH)k

∗
H

]
nλ(1− pH)2k

∗
H

=
(1− pH)2εk

∗
H

(1− pH)k
∗
Ec
√
pH

=
1

(1− pH)k
∗
E .c
√
pH

(
n+ µ

n(1 + λ) + µ

)2ε

,

where the penultimate equality holds by Equation (A.2) while the last one holds by Equation (A.3).

Now, 1
/(

(1− pH)k
∗
Ec
√
pH
)
converges from above to 1 as pH vanishes (recall by Lemma A.5 that

k∗E is a constant which does not depend on pH), thus, the above term converges from above to(
n+µ

n(1+λ)+µ

)2ε
< 1 as pH vanishes. So, for pH small enough, ρ̃1(pH) ≤ ρ̃1, where ρ̃1 < 1 does not

depend on pH .

Thus, from inequality (A.13), we get that for pH small enough,

πS(kH) ≤ ρ̃1πS(kH + 1) + ρ̃1(πH(kH + 1)− πS(kH + 1)).

Now, by Lemma A.5, for any kH ,

πH(kH + 1)− πS(kH + 1) =
∑
kE /∈S

π(kH + 1, kE)

≤
∞∑

kH=0

∑
kE /∈S

π(kH , kE)

≤
3 + 1/

√
pH

1− ρ̂

(
ρ̂1/
√
pH

1− ρ̂

)
,

where ρ̂ ∈ (0, 1). Hence, for kH ≤ k∗H(1− ε), we obtain

πS(kH) ≤ ρ̃1

[
πS(kH + 1) +

3 + 1/
√
pH

1− ρ̂

(
ρ̂1/
√
pH

1− ρ̂

)]
≤ ρ̃ [πS(kH + 1) + φ(pH)] ,
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where ρ̃ := max(ρ̂, ρ̃1) and

φ(pH) :=
3 + 1/

√
pH

1− ρ̃
ρ̃1/
√
pH

1− ρ̃
.

An inductive argument yields

πS(k∗H(1− ε)− i) ≤ ρ̃iπS(k∗H(1− ε)) + φ(pH)ρ̃
1− ρ̃i

1− ρ̃
. (A.14)

Completion of the proof of Proposition A.6. Fix any δ > 0. We claim that

πH

{
kH :

kH
1/(− ln(1− pH))

≤ ln [n(1 + λ) + µ]− ln (n+ µ)− δ
}
→ 0,

which is equivalent to showing that

πH

{
kH : kH ≤

1

pH
[ln [n(1 + λ) + µ]− ln (n+ µ)]− 1

pH
δ

}
→ 0.

Pick pH and ε small enough so that

1

pH
[ln [n(1 + λ) + µ]− ln (n+ µ)]− 1

pH
δ ≤ k∗H(1− ε)− 1/

√
pH .

Clearly, for our purpose, it is enough to show that

πH{kH ≤ k∗H(1− ε)− 1/
√
pH} → 0

as pH vanishes. In order to see this, observe that
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πH{kH ≤ k∗H(1− ε)− 1/
√
pH}

=

k∗H(1−ε)∑
i=1/

√
pH

πH(k∗H(1− ε)− i)

=

k∗H(1−ε)∑
i=1/

√
pH

[πH(k∗H(1− ε)− i)− πS(k∗H(1− ε)− i)] +

k∗H(1−ε)∑
i=1/

√
pH

πS(k∗H(1− ε)− i)

≤
∞∑

kH=0

∑
kE /∈S

π(kH , kE) +

k∗H(1−ε)∑
i=1/

√
pH

πS(k∗H(1− ε)− i)

≤ φ(pH) +

k∗H(1−ε)∑
i=1/

√
pH

πS(k∗H(1− ε)− i)

≤ φ(pH) +

k∗H(1−ε)∑
i=1/

√
pH

ρ̃iπS(k∗H(1− ε)) +

k∗H(1−ε)∑
i=0

φ(pH)ρ̃
1− ρ̃i

1− ρ̃

≤ φ(pH) +
∞∑

i=1/
√
pH

ρ̃i +

k∗H(1−ε)∑
i=0

φ(pH)ρ̃
1− ρ̃i

1− ρ̃

≤ φ(pH) +
ρ̃1/
√
pH

1− ρ̃
+ k∗H(1− ε)φ(pH)

ρ̃

1− ρ̃
→ 0,

where the second inequality comes from Lemma A.5 and the third from Lemma A.7. In order to

prove the convergence result, let us �rst note that as pH vanishes, φ(pH) → ρ̃
1√
pH

(1−ρ̃)2√pH . Besides,

since k∗H is of order 1/pH , k∗Hφ(pH) → cρ̃
1√
pH

(1−ρ̃)2pH
√
pH

= cρ̃
1√
pH

(1−ρ̃)2(√pH)3
, c being a positive constant. In

order to prove that these two terms tend to zero, it is su�cient to prove that, for any α ∈ (0, 1) and

any �nite integer n ≥ 1, we have xnαx → 0 as x → +∞. We prove this fact by applying n times

L'Hospital's Rule:

lim
x→+∞

xn(
1
α

)x = lim
x→+∞

∏n−1
i=0 (n− i)[

ln
(
1
α

)]n ( 1
α

)x = 0. (A.15)

The second inequality holds since the product is a �nite constant independent of x and α ∈ (0, 1).

A.4 Completion of the Proof of Proposition 4.2

Here, we complete the proof of Proposition 4.2 by providing the expressions of pHWH(Unpaired)

and pHWE(Unpaired) when pH vanishes.

Waiting time of hard-to-match patients. Given pH , denote the random variable corresponding

to the number of hard-to-match patients at the invariant distribution πH by KH(pH). Proposition

A.1 and A.6 imply that, as pH vanishes,KH(pH)pH converges in probability to constant ln [n(1 + λ) + µ]−
ln (n+ µ). One can show that {KH(pH)pH} is uniformly integrable, i.e., for a given δ > 0, there
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exists M < ∞ large enough such that E [KH(pH)pH1{KH(pH)pH ≥M}] ≤ δ. For all the random

variables in our collection {KH(pH)pH} where 1{KH(pH)pH ≥M} stands for the indicator function
equal to 1 if and only if KH(pH)pH ≥M . This implies (for instance, see Williams, 1991) that

lim
pH→0

E [KH(pH)pH ] = ln [n(1 + λ) + µ]− ln (n+ µ) . (A.16)

To see that the collection {KH(pH)pH} is uniformly integrable, �x δ, ε > 0 and let M :=

k∗H(1 + ε)pH + z ≤ [ln [n(1 + λ) + µ]− ln (n+ µ)] (1 + ε) + z, where z ≥ 1 is an integer yet to be

speci�ed.A.5 Note that

E [KH(pH)pH1{KH(pH)pH ≥M}] = pH

∞∑
i=z/pH

πH (k∗H(1 + ε) + i) [k∗H(1 + ε) + i]

≤ pH

∞∑
i=z

πH (k∗H(1 + ε) + i) [k∗H(1 + ε) + i]

≤
∞∑
i=z

πH (k∗H(1 + ε) + i) [ln [n(1 + λ) + µ]− ln (n+ µ)] (1 + ε)

+pH

∞∑
i=z

πH (k∗H(1 + ε) + i) i

≤ [ln [n(1 + λ) + µ]− ln (n+ µ)] (1 + ε)
∞∑
i=z

ρiπH (k∗H(1 + ε))

+pH

∞∑
i=z

ρiπH (k∗H(1 + ε)) i

≤ [ln [n(1 + λ) + µ]− ln (n+ µ)] (1 + ε)
∞∑
i=z

ρi +
∞∑
i=z

ρii

≤ [ln [n(1 + λ) + µ]− ln (n+ µ)] (1 + ε)
ρz

1− ρ
+
zρz + ρz

(1− ρ)2
,

where the third inequality uses (A.5) while the last inequality uses (A.12). Since ρ ∈ (0, 1), the

above term is smaller than δ when z is large enough, and so when M is large enough.

Hence, as stated in (A.16), we obtain

lim
pH→0

E [pHKH(pH)] = ln [n(1 + λ) + µ]− ln (n+ µ) .

Now, by Little's law, we get that:

lim
pH→0

pHWH(Unpaired) = lim
pH→0

pH
E [KH(pH)]

λ.n

= lim
pH→0

E [pHKH(pH)]

λ.n
=

ln [n(1 + λ) + µ]− ln (n+ µ)

λ.n
.

A.5For the inequality k∗H(1 + ε)pH + z ≤ [ln [n(1 + λ) + µ]− ln (n+ µ)] (1 + ε) + z, we simply used the fact that
pH ≤ − ln(1− pH) together with the de�nition of k∗H .
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Waiting time of easy-to-match patients. First, we prove that, at the invariant distribution,

as pH vanishes, the number of easy-to-match patients is concentrated around the constant k∗E as

de�ned in Lemma A.5. This indeed comes from the lemma and is similar to Proposition A.1 but

now applied to easy-to-match patients.

Proposition A.8. Fix any δ > 0,

πE

{
kE :

kE
1/(− ln(1− pH))

≥
k∗E

1/(− ln(1− pH))
+ δ

}
→ 0

as pH vanishes.

Proof. Fix any δ > 0 and let pH > 0 be small enough so that
√
pH ≤ δ. We know that

πE

{
kE :

kE
1/(− ln(1− pH))

≥
k∗E

1/(− ln(1− pH))
+ δ

}
≤ πE

{
kE :

kE
1/(− ln(1− pH))

≥
k∗E

1/(− ln(1− pH))
+
√
pH

}
= πE

{
kE : kE ≥ k∗E +

√
pH

− ln(1− pH)

}

≤
3 +

√
pH

− ln(1−pH)

(1− ρ̂)2
ρ̂

√
pH

− ln(1−pH ) → 0 as pH vanishes,

where the �rst inequality is ensured by our choice of pH while the last inequality holds by Lemma A.5.

The convergence result holds since ρ̂ ∈ (0, 1) (again by Lemma A.5), and since − ln(1−pH)/pH goes

to 1 as pH vanishes, it implies that
√
pH

− ln(1−pH) explodes as pH vanishes.

Now, given pH , let us denote the random variable corresponding to the number of easy-to-match

patients at the invariant distribution πE by KE(pH). As for the case of hard-to-match patients, we

want to show that the collection {KE(pH)pH} is uniformly integrable. To see this, �x δ > 0 and let

M := k∗EpH + z, where z ≥ 1 is an integer yet to be speci�ed. Then, note that:

E [KE(pH)pH1{KE(pH)pH ≥M}] = pH

∞∑
i=z/pH

πE (k∗E + i) [k∗E + i]

≤ pH

∞∑
i=z

πE (k∗E + i) [k∗E + i]

≤ k∗E

∞∑
i=z

πE (k∗E + i) +

∞∑
i=z

iπE (k∗E + i)

≤ k∗E

(
ρ̂z

1− ρ̂

)
3 + z

1− ρ̂
+
∞∑
i=z

iπE (k∗E + i) , (A.17)
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where the last inequality comes from (A.9). Moreover, we have:

∞∑
i=z

iπE (k∗E + i) =
∞∑
i=z

iπS(k∗E+i)(k
∗
E + i) +

∞∑
i=z

i[πE(k∗E + i)− πS(k∗E+i)(k
∗
E + i)]

≤
∞∑
i=z

iπS(k∗E+i)(k
∗
E + i) +

∞∑
i=z

i
ρ

ln(2)
pH

+k∗E+i

1− ρ

≤
∞∑
i=z

iπS(k∗E+i)(k
∗
E + i) + ρ̂k

∗
E

∞∑
i=z

iρ̂i

1− ρ̂

≤
∞∑
i=z

iρ̂iπS(k∗E)(k
∗
E) + ρ̂k

∗
E

∞∑
i=z

i2ρ̂i + ρ̂k
∗
E

∞∑
i=z

iρ̂i

1− ρ̂

≤
∞∑
i=z

iρ̂i +
∞∑
i=z

i2ρ̂i +
∞∑
i=z

iρ̂i

1− ρ̂

≤ 2

1− ρ̂

∞∑
i=z

iρ̂i +
∞∑
i=z

i2ρ̂i

≤ 2(1 + z)ρ̂z

(1− ρ̂)3
+
∞∑
i=z

i2ρ̂i, (A.18)

where the �rst inequality uses (A.7). The second uses ρ ≤ ρ̂ ≤ 1. The third uses (A.8). The fourth

and the �fth use the fact that πS(k∗E)(k
∗
E) and ρ̂ are smaller than one. The last inequality comes

from (A.12). Finally, we have:

∞∑
i=z

i2ρ̂i = ρ̂

∞∑
i=z

i2ρ̂i−1

= ρ̂
d

dρ̂

[ ∞∑
i=z

iρ̂i

]

= ρ̂
d

dρ̂

[
zρ̂z + (1− z)ρ̂z+1

(1− ρ̂)2

]
= ρ̂

[
(1− ρ̂)

(
z2ρ̂z−1 + (1− z)(1 + z)ρ̂z

)
+ 2

(
zρ̂z + (1− z)ρ̂z+1

)
(1− ρ̂)3

]

≤ ρ̂

[
z2ρ̂z−1 + (1 + 3z)ρ̂z + 2ρ̂z+1

(1− ρ̂)3

]
≤ ρ̂

[
z2ρ̂z−1 + (1 + 3z)ρ̂z−1 + 2ρ̂z−1

(1− ρ̂)3

]
=

(3 + 3z + z2)ρ̂z

(1− ρ̂)3
, (A.19)

where the third equality comes from (A.11), and the last inequality uses the fact that ρ̂ is smaller

than one.

Combining (A.17), (A.18), and (A.19) we obtain:

E [KE(pH)pH1{KE(pH)pH ≥M}] ≤
[

(3 + z)k∗E
(1− ρ̂)2

+
(5 + 5z + z2)

(1− ρ̂)3

]
ρ̂z.
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Since ρ̂ ∈ (0, 1), the above term is smaller than δ when z and M are large enough. Thus, the

collection {KE(pH)pH} is uniformly integrable.

Again, this, together with Proposition A.8, imply (e.g., Williams, 1991) that

lim
pH→0

E [pHKE(pH)] ≤ lim
pH→0

pHk
∗
E = 0.

Then, by Little's law we get that:

lim
pH→0

pHWE(Unpaired) = lim
pH→0

pH
E [KE(pH)]

(1− λ).n
= 0.

A.5 Existence of Invariant Distribution

We now prove that the Markov chain induced by the Unpaired with DDL algorithm has a unique

invariant distribution. The very same argument can be used to prove that the Markov chain induced

by Pairwise with DDL has a unique distribution as well.

Proposition A.9. The transition matrix Q has a unique invariant distribution.

Proof. As in Ashlagi et al. (2019), we use the following lemma from Meyn and Tweedie (1993), which

is especially useful in proving our proposition.

Lemma A.10 (Meyn and Tweedie (1993)). Suppose that Xt is an irreducible continuous-time

Markov chain with the transition matrix Q over states S = N × N. If there exist a nonnegative

function V on S, a function w ≥ 1 on S, a �nite set C ⊂ S, and constants c > 0 and b ∈ R such

that for all i = (kE , kH) ∈ S: ∑
j∈S

Q(i, j)V (j) ≤ −cw(i) + b.IC(i),

where IC denotes the indicator function of the set C, then the Markov chain Xt is ergodic.

It is clear that our Markov chain is irreducible, so our proof will focus on �nding a suitable set

C, functions V and w, and constants c and b.

Recall that for a continuous Markov chain,
∑

j 6=iQ(i, j) = −Q(i, i). Hence, we must have∑
j∈S

Q(i, j)V (j) =
∑
j 6=i

Q(i, j)(V (j)− V (i)).

Now, let V (kE , kH) = kE + kH . For any state i = (kE , kH) ∈ S, we have:∑
j 6=i

Q(i, j)(V (j)− V (i))

= Q([kH , kE ], [kH+1, kE ])−Q([kH , kE ], [kH−1, kE ])+Q([kH , kE ], [kH , kE+1])−Q([kH , kE ], [kH , kE−1]).
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Let λH = λn and λE = (1− λ)n. Then the expression above is equal to:

λH(1− pH)kH+kE (1− pE)kE (1− pH)kH − λH(1− (1− pH)kH+kE )(1− (1− pH)kH )

−λE(1−(1−pE)kH+kE )(1−(1−pH)kH )−µ(1−(1−pH)kH )+λE(1−pE)kH+kE (1−pH)kH (1−pE)kE

−λH(1−(1−pH)kH+kE )(1−pH)kH (1−(1−pE)kE )−λE(1−(1−pE)kH+kE )(1−pH)kH (1−(1−pE)kE )

−µ(1− (1− pH)kH )(1− (1− pE)kE )

= −n+ n(1− pH)kH (1− pE)kE + λE(1− pE)kH+kE + λH(1− pH)kH+kE

−2µ+ 2µ(1− pH)kH + µ(1− pE)kE − µ(1− pH)kH (1− pE)kE .

Let b = 2(n+ 3µ), w = n+ 3µ, and c = 1
3 . Now take M such that (1− pH)M ≤ 1

3 , (1− pE)M ≤ 1
3 ,

and set C = {(kE , kH)|kE ≤M,kH ≤M}. Note that C is �nite.

For any i = (kE , kH) 6∈ C, we must have:

∑
j 6=i

Q(i, j)(V (j)− V (i)) ≤ −n+
1

3
n+

1

3
λE +

1

3
λH − 2µ+

2

3
µ+

1

3
µ = −n+ 3µ

3
= −cw(i) + b.IC(i).

For any i = (kE , kH) ∈ C, we have:

∑
j 6=i

Q(i, j)(V (j)−V (i)) ≤ −n+n+λE+λH−2µ+2µ+µ = n+µ ≤ −n+ 3µ

3
+2(n+3µ) = −cw(i)+b.IC(i).

Thus, the Markov chain is ergodic, which means that it has a unique invariant distribution.

B Comparison of Unpaired with Other Algorithms

In this section, we prove our results comparing Unpaired with three other algorithms: Pairwise,

Optimal, and Chain. More precisely, Section B.1 establishes Theorem 2.7, which compares Unpaired

with Pairwise. The comparison of the Unpaired with the Optimal algorithm corresponding to

Theorem 2.8 (and Remark 2.9) in the main text is proved in Section B.2. Finally, Section B.3 provides

a proof for the comparison of the Unpaired with the Chain algorithm stated in Theorem 2.10.

B.1 Comparison with Pairwise

We deduce from the Theorem 1 and Lemma 4 in Ashlagi et al. (2019)B.6 that

lim
pH→0

pHW(Pairwise) =


ln(2λ)
npH

if λ > 1
2

ln( 1−λ
2λ−1)
npE

if λ < 1
2

. (B.20)

B.6Theorem 1 enunciates the average waiting time of hard-to-match patients while Lemma 4 proposes an upper
bound for the waiting time of easy-to-match patients. From this Lemma, we get that limpH→0 pHWE(Pairwise) = 0.
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Using (B.20) and the average waiting time under Unpaired derived in Proposition 2.6, we immediately

get that

lim
pH→0

W(Pairwise)

W(Unpaired)
=


ln(2λ)
ln(1+λ) ·

1
pH

if λ > 1
2

ln( 1−λ
1−2λ)

ln(1+λ) ·
1
pE

if λ < 1
2

.

B.2 Comparison with Optimal

The following result implies the statements in Theorem 2.8 as well as in Remark 2.9.

Proposition B.1. Fix a matching algorithm ALG inducing a stochastic process with an invariant

distribution. (1) We must have

lim
pH→0

sup
W(Unpaired)

W(ALG)
≤ 2

ln (1 + λ)

λ
.

(2) Assume that limpH→0 pHWE(ALG) = 0. Then,

lim
pH→0

sup
W(Unpaired)

W(ALG)
≤ (1 + λ)

ln (1 + λ)

λ
.

Let us denote the size of the pool by k̃. In the sequel, W̃(ALG) is the random variable describing

the average waiting time of an arriving patient. Note that a necessary condition for a patient to be

matched is that he is compatible with a donor in the pool upon arriving or, in case this does not

occur, he is compatible with a donor in the future. In the former case, his waiting time is simply 0

while in the latter case, by the Poisson thinning property, the expected waiting time is 1
npT

if the

patient is of type T ∈ {H,E}.B.7 Hence, we obtain

E
[
W̃(ALG)

∣∣∣k̃ = k
]
≥ λ(1− pH)k

1

npH
+ (1− λ) (1− pE)k

1

npE

≥ λ

[
(1− kpH)

1

npH

]
+ (1− λ)

[
(1− kpE)

1

npE

]
=

λ

npH
+

1− λ
npE

− k 1

n
.

The second inequality uses the Bernouilli inequality. Thus, using the fact that W(ALG) =
E[k̃]
n by

Little's law, we have

W(ALG) = E
[
E
[
W̃(ALG)

∣∣∣k̃ = k
]]

≥ λ

npH
+

1− λ
npE

− 1

n
E
[
k̃
]

=
λ

npH
+

1− λ
npE

−W(ALG).

B.7The argument below works for any pE ≤ 1.
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This gives us

W(ALG) ≥ λ

2npH
+

1− λ
2npE

. (B.21)

Now, we are in a position to prove the point (1) of Proposition B.1. Indeed,

lim
pH→0

sup
W(Unpaired)

W(ALG)
=

limpH→0 pHW(Unpaired)

limpH→0 inf pHW(ALG)
≤

ln(1+λ)
n
λ
2n

= 2
ln (1 + λ)

λ
,

where the inequality holds by Proposition 2.6 and Equation (B.21).

Now, to show point (2) of Proposition B.1, further note that using a similar logic one can show

that

WH(ALG) = E
[
E
[
W̃H(ALG)

∣∣∣k̃ = k
]]

≥ λ

npH
− 1

n
E
[
k̃
]

=
λ

npH
−W(ALG)

=
λ

npH
− λWH(ALG)− (1− λ)WE(ALG),

where W̃H(ALG) is the random variable describing the average waiting time of an arriving hard-

to-match patient. It yields

(1 + λ)WH(ALG) ≥ λ

npH
− (1− λ)WE(ALG).

Now, under the assumption that WE(ALG)pH goes to 0 as pH vanishes, obtain that

lim
pH→0

pHW(ALG) = lim
pH→0

pHWH(ALG) ≥ λ

n(1 + λ)
.

Hence,

lim
pH→0

sup
W(Unpaired)

W(ALG)
≤

ln(1+λ)
n
λ

n(1+λ)

= (1 + λ)
ln (1 + λ)

λ
.

We now complete the proof of Theorem 2.8.

Completion of the proof of Theorem 2.8. Using the point (2) of Proposition B.1, we obtain

that

lim
pH→0

sup
W(Unpaired)

W(Optimal)
≤ 2

ln (1 + λ)

λ
.

Indeed, assume that limpH→0 sup W(Unpaired)
W(Optimal) > 2 ln(1+λ)

λ . By de�nition of the Optimal algorithm,

there exists a sequence of matching algorithms {ALGn}n≥1 such that W(ALGn) →W(Optimal).

Then, this means that for n large enough, W(Unpaired)
W(ALGn)

> 2 ln(1+λ)
λ , a contradiction with point (2) of

Proposition B.1.
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B.3 Comparison with Chain

We know from the Proposition 1 in Ashlagi et al. (2019) that, when pE = 1B.8

lim
pH→0

pHW(Chain) =
ln
(

1
1−λ

)
n

. (B.22)

Using (B.22) and the waiting time under unpaired derived in Proposition 2.6, we immediately get

that

lim
pH→0

W(Chain)

W(Unpaired)
=

ln
(

1
1−λ

)
ln(1 + λ)

= − ln(1− λ)

ln(1 + λ)
.

B.8Note that, when pE = 1, an arriving easy-to-match patient is immediately matched by the bridge donor so that
limpH→0 pHW(Chain) = limpH→0 pHλWH(Chain).
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