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Abstract

How do innovation and education policy affect individual career choices and aggregate productivity?
This paper analyzes the effect of R&D subsidies and higher education policy on productivity growth
through the supply of innovative talent. We put scarce talent, higher education attainment, and career
choice at the center of a new endogenous growth framework with individual-level heterogeneity in talent,
financial resources, and preferences. We link the model to micro-level data from Denmark on the back-
grounds of who obtains a PhD and becomes an inventor and the outcomes of a set of policy interventions.
We find that R&D subsidies can be strengthened when combined with higher education subsidies, which
enable talented but poor youth to pursue a career in research. Education and innovation policies not
only alleviate different frictions, but also impact innovation at different time horizons. Education policy
is more effective in societies with higher income inequality.
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1 Introduction

Talent is a scarce resource and a key input into the innovation and growth process. There are only a
handful of people like Marie Curie and Thomas Edison with the potential to produce innovations that
transform the way we live. Similarly, certain occupations have greater potential of generating significant
spillovers to society. While some occupations (e.g., the production of goods) can be executed by a wide
range of people and have limited spillovers, other occupations, such as engineers or scientists in Research
and Development (R&D), require talent to push forward the technological frontier and generate spillovers
for society. Further, these inventive occupations require not just scarce talent but also training in order
to transform individual potential into creative and innovative use. These observations give rise to the
following important questions: How do societies select which individuals to allocate to higher education
with the potential to become inventors? What frictions prevent individuals from investing in human
capital to become an inventor? What policies can alleviate the potential talent misallocation? What are
the time horizons over which these policies show their full impact? The answers to these questions are
crucial to policy debates in innovation and economic growth, and our study is an attempt to address these
questions theoretically, empirically, and quantitatively.

This study provides a framework to connect the supply of talent in the economy and its development to
innovation and aggregate growth. We use this framework to study how education and innovation policies
affect innovation through its interaction with the supply of inventors. To do this, we first document results
on individuals who pursue higher education and become inventors using extensive individual-level micro-
data from Denmark. We show that IQ and parental background strongly predict outcomes such as PhD
attainment and an individual’s innovation. We also document the effect of innovation and education
policies and the supply of talent and innovation. Second, motivated by facts on the determinants of
education, innovation, and their interaction with public policies, we build an endogenous growth model
that centers on the development of scarce talent through higher education and innovation. We calibrate
our model to match the empirical results on the determinants of education — IQ, parental background,
individual preferences, and the availability of university slots — and the determinants of innovation
— education and IQ. We use the calibrated model to study the effects of counterfactual education and
innovation policies, which we verify alongside active Danish programs. This framework departs from the
endogenous growth literature, which has focused primarily on the firm side of innovation. By putting
individuals at the center of our analysis, we stress that the interaction of human capital, innovation, and
education policies is essential for understanding economic growth.

The Danish context provides an ideal environment to study the relationship between talent, education,
and innovation. To this end, we rely on administrative data, which includes detailed individual informa-
tion, such as educational attainment, employment and wages, age, and parental background. Crucially,
the data also features a measure of individuals’ IQ, which we use as a proxy for talent. In order to speak
to innovation and the effects of policies, we match the dataset to external patent data from the Euro-
pean Patent Office (EPO) and policy data from the Danish Ministry of Education. A unique feature of this
dataset is detailed information on an innovation and education policy change implemented in 2002, which
introduced new R&D subsidies and dramatically increased funding to universities and the level of PhD
enrollment. This policy change provides an excellent case study to jointly analyze the role of innovation
and education policy. We exploit this variation to better isolate the links between talent, education, and
innovation.
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With this data, we document three main sets of stylized facts. First, we discuss the determinants of
higher educational attainment. We show that individuals with higher IQs and higher family incomes
are more likely to obtain a PhD. Second, we analyze the determinants of becoming an inventor. We
observe that PhD graduates are over ten times more likely to file for a patent than college graduates and
about 30 times more likely than individuals with no college education. Individuals with higher IQs are
also more likely to file for a patent, even after controlling for education. Third, we document the role
of public policies in innovation. Starting in 2002, the Danish Government required the universities to
increase the number of PhD slots as part of a larger initiative to support education and innovation in
Denmark (Ministry of Education, 2016). We observe that as the number of slots for PhDs increases, the
average IQ of the enrolling students falls. We interpret this as evidence that the quality of PhD students is
heterogeneous, and expanding PhD slots may draw in a marginal researcher who is less talented than the
average researcher from the existing pool. Thus, even though policy can increase the supply of researchers,
there is a trade-off between expanding the pool of PhDs and the average talent of PhDs in the economy.

Motivated by the stylized facts in micro-level data from Denmark, we build an endogenous growth
model with new elements that connect the development of scarce talent to the innovative capacity of the
economy. This model builds in fundamental ingredients that relate human capital to aggregate innovation,
speaking to how the supply of innovative talent is formed and how this, in turn, shapes growth. We
emphasize five main elements in the theoretical framework: i) talent is necessary for innovation and
heterogeneous in quality, ii) higher education is important for innovation, iii) some talented individuals,
such as those born to poor families, may not have enough resources to afford higher education and
build inventive human capital, iv) regardless of access to resources, some talented individuals may dislike
research, and v) there are limited training slots at universities.

In the model, individuals are born with heterogeneous talent, preferences, and family financial re-
sources. They decide, depending on their talent and preferences, whether they want to get higher edu-
cation and become a researcher and contribute to aggregate innovation or enter the production sector. If
they lack the financial resources, they may not get the education necessary for innovation, even if they
have sufficient talent and desire. Once in the research sector, individuals produce ideas proportionally to
their talent. Schools have a fixed amount of PhD slots, which they give to the most talented individuals
who want to get a PhD and have sufficient resources to do it. A fundamental driving force in the model
is that talent is local and scarce. The key elements of the model are illustrated in Figure 1.

The model is tractable and delivers certain intuitive results. Higher incomes in research make indi-
viduals more likely to work in the research sector. Innovation is limited by the availability of educational
slots, talent, and the forces that generate a match of talent to education. Talented people might not end
up going into research due to either a dislike of research or a lack of resources to afford education. The
latter of these two, lack of financial resources due to parental background, delivers an inefficiency in the
allocation of talent. This inefficiency is linked to economic growth through idea production in the research
sector. The reader should note that, unlike earlier growth models, the innovation capacity of a society is
primarily affected not only by the quantity but also by the quality of the researcher pool, consistent with
the relationship between talent and innovation. Our model also enables intuitive policy counterfactuals, as
it delivers analytical solutions for the balanced growth path impact of innovation and education policies.

The framework is not only well-suited to connect to individual-level data on talent and family back-
ground, but also to understand the outcomes of policy interventions from the Danish government. From
2002-2013, the Danish government pursued a set of aggressive policies aimed at promoting innovation
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Figure 1: Summary of the Model

Figure 1: Summary of the Model
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and education through the “Innovation Danmark” program. We highlight how different policies affect the
economy through different channels. For instance, an R&D subsidy boosts profits in the research sector,
pulling talented individuals with enough resources into research. A subsidy to education, on the other
hand, enables access to the research sector to talented and interested individuals who would otherwise
lack the financial resources to access higher education due to their family background. The Danish gov-
ernment also required universities to increase their PhD slots. Our model highlights that this type of
policy introduces a trade-off between an increase in the pool of researchers in the economy and a decline
in the average talent of researchers, because the marginal individual pulled into the research sector is
less talented than the existing pool of researchers. This is consistent with the empirical evidence in the
micro-data.

Before proceeding to policy counterfactuals, we validate our model by illustrating its ability to match
out-of-sample moments. First, the model delivers surprising results on selection into higher education
depending on parental income. Individuals who enroll in a PhD with wealthier parents have higher IQs
than individuals with poorer parents. This result from the model is confirmed in the data. Second, we
evaluate the introduction of policies implemented in the Danish education and innovation market. We
run these policies through the model and observe the predicted change in the IQ and innovation of PhDs.
We then compare the model-predicted changes to the data and find a close match. After confirming the
ability of the model to match out-of-sample moments, we proceed to innovation and education policy
counterfactuals that alter the policy mix. We highlight four main findings.

First, we show that, in steady state, education policy is more effective dollar per dollar than R&D
policy. A 10% R&D subsidy has a long-run effect on the growth rate of 6.4%, compared to the same
allocation for education policy has an effect on growth of 9.6%.1 Both policies take time to see their full
effect.

Second, there is a pecking order among educational subsidies, R&D subsidies, and expanding the slots
for education. The optimal policy mix depends on the size of the budget the government has to allocate to
research. If the government has limited funding (less than 0.6% of GDP in our calibration), our framework
suggests it should only allocate to educational subsidies to improve the talent pool by enabling access
to education for talented individuals from poor families. For intermediate budget levels between 0.6%
and 1.2% of GDP, the government should mix only R&D and educational subsidies. For example, given
a budget of 1% of GDP, the optimal allocation is to use 58% of the budget for educational subsidies and
42% for R&D subsidies and no allocation of funds for expanding educational slots. With a larger budget,
the government should mix subsidies to education, subsidies to R&D, and an expansion in the supply
of education slots. Given a budget of 2% of GDP, it is optimal to allocate 35% to education subsidies,
46% of the budget to R&D subsidies, and 19% to expanding the educational slots available. The fact that
there is an optimal mix highlights the role of the complementarities of the policies in their contribution
to economic growth. The increase in slots expands the size of the talent pool in the economy, while R&D
and education subsidies sort talented individuals who either had better options in the production sector
or could not afford higher education into the research sector.

Third, our analysis suggests that education policy is more effective in more unequal societies in stim-
ulating innovation. We analyze the responsiveness of policy under different levels of financial access to
education. In an environment with a more equal distribution of family income, more individuals can
afford schooling; thus, subsidizing the cost of education is less effective in stimulating economic growth.

1By % in this case, we refer to percent changes from the baseline growth rate.
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In an extreme case, in an economy where everyone can afford education, educational subsidies have no
effect, as individuals who want to pursue a career in research will do so regardless. On the other hand, in
an economy where many individuals cannot afford education, educational subsidies are the most effective
policy tool for innovation.

Fourth, we solve for the transitional dynamics of our model and find that it takes time for all of these
policies to show their full effect. We find that R&D subsidies are the most effective policy for innovation
in the short run. On impact, R&D policy stimulates the purchase of R&D inputs other than human
capital (e.g., lab equipment) by the existing researchers, which translates into relatively more innovation.
Education policy, on the other hand, has limited effectiveness in the short run, but is more effective in the
medium to long run. It takes about nine years for educational subsidies to surpass R&D policy in terms
of its overall growth effect for an equivalent government expenditure.

We highlight some overarching themes from these results. First, education policy is an integral compo-
nent of a policymaker’s toolkit for overall innovation. It cannot be thought of separately from its impact
on the allocation of talent into research. Second, the model suggests a framework to think about how
inequality and educational opportunity affect economic growth. Third, when observing the aggregate
response to any policies, policymakers need to exert patience as each of these policies takes time for their
full effects to be realized.

The rest of the paper proceeds as follows. We complete this section with a review of the literature.
Section 2 discusses the institutional background in Denmark, the data, and the empirical stylized facts.
Section 3 describes the theory, starting with the environment and equilibrium, and moving to theoretical
counterfactuals on the introduction of policies and the frictions they alleviate. Section 4 describes the
calibration and illustrates the ability of the calibrated model to match out-of-sample moments. Section 5
performs the quantitative policy counterfactuals. Section 6 concludes.

Related Literature

This paper primarily builds on and extends the theoretical and empirical literature on innovation and
endogenous growth. One of the main departures of our analysis is the focus on individuals instead of
firms. In our model, as in the classical endogenous growth models, ideas are the main source of economic
growth (Romer, 1990; Aghion and Howitt, 1992), and idea production is heterogeneous in terms of quality,
as in Akcigit and Kerr (2018). Our departure from this literature is focusing on the individual sources of
economic growth and embedding realistic frictions grounded in the micro-data.

The relationship between scarce talent and aggregate innovation has received lively discussion in re-
cent papers. Aghion et al. (2017, 2023a), Akcigit et al. (2017), and Bell et al. (2018) find that parental
backgrounds influence who becomes an inventor in Finland, historical US, and modern US, respectively.
Through name-matching between modern and historical data, Celik (2023) also finds that a child’s like-
lihood of becoming an inventor is determined in part by family wealth. We verify this finding in the
case of Denmark. The allocation of talent to innovative occupations has important implications for eco-
nomic growth, as Waldinger (2016) finds that human capital is much more important than physical capital
for innovation in both the short and long run. We put human capital at the center of this framework,
recognizing that human capital must be built from raw talent.

Understanding the role of human capital in aggregate innovation can help enrich discussions on the
interaction between R&D policy and economic growth. Standard growth models of R&D in firms assume
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the supply of scientists is elastic in steady state (Romer, 1990; Grossman and Helpman, 1991; Aghion and
Howitt, 1992; Klette and Kortum, 2004) and predict large effects of R&D subsidies on economic growth.
However, there is empirical evidence that the general equilibrium effects of R&D policy are minimal
(Goolsbee, 1998; Wilson, 2009). Our analysis enriches this discussion and provides a more micro-founded
analysis of the scientists in research. We introduce a framework that includes matching of individuals to
occupations (Rosen, 1981), financial frictions (e.g., Jovanovic, 2014, Celik, 2023), and talent heterogeneity
(e.g., Jaimovich and Rebelo, 2017). Our new ingredients provide a quantitative framework that links this
primarily theoretical work to empirical studies on the impact of R&D policy.

Empirically, economists have found that R&D subsidies increase firm innovation levels (Hall and
Van Reenen, 2000; Bloom et al., 2002). Fiscal policies and public R&D investments also have positive
effects in partial equilibrium (Moretti and Wilson, 2014; Azoulay et al., 2018). However, there is also
evidence that this is much weaker in general equilibrium. For instance, Wilson (2009) finds that R&D sub-
sidies simply pull innovative activity away from states that do not have subsidies, creating small aggregate
effects. Moretti and Wilson (2014) find that R&D subsidies often simply lead to scientist reallocation across
states. Dimos and Pugh (2016) review the literature and find mixed effects of public expenditure on R&D
spending. Bloom et al. (2019) discuss this literature and suggest a potential combination of policies, which
this current paper explores. In particular, we find that innovation policy is much more effective when
combined with education policy, in line with empirical work that has noted optimal innovation allocation
(David et al., 2000).

The elasticity of the supply of human capital in research is an important component for explaining the
interaction between innovation and R&D policy, as noted by Goolsbee (1998) and Romer (2000). Goolsbee
(1998) finds that R&D subsidies mostly transmit to scientist wages. With an inelastic supply of scientists,
this price effect does not transmit significantly to overall innovation. Even if human capital is elastic in the
long run, it takes time to build and entering individuals may have different talent than the existing pool.
We build a model that formalizes these empirical observations and connects them through education and
innovation.

In linking educational opportunities and frictions to growth, we take theoretical motivation from work
dating back to Loury (1981), and developed by Glomm and Ravikumar (1992), Galor and Zeira (1993), and
Fernandez and Rogerson (1996). These works modeled the interaction between private investment and
public investment in education, which may diverge due to financial resources and financial opportunity.
Benabou (1996) shows that income distributions and the distribution of wealth and power in society
can have significant growth effects. More recent work has shown that credit constraints are relevant
for pursuing higher education (e.g., Lochner and Monge-Naranjo, 2011, 2012; Dahl and Lochner, 2012).
Hoxby and Turner (2015) also highlight the importance of information and knowledge about education
opportunities. These forces may generate intergenerational income inequality and hold back opportunities
for talented individuals. Our paper complements this work by building in a direct link between credit
constraints and macroeconomic outcomes through educational opportunity. Further, applying empirical
evidence on talent and talent development allows us to quantify these channels.

Education is a key channel of opportunity for individuals to lift their skills and contribute to economic
growth. The framework in this paper complements an extensive empirical literature on the role of ed-
ucation in developing the workforce of an economy. Many papers find significant effects of schooling
attendance on earnings (Angrist and Krueger, 1991; Ashenfelter and Krueger, 1994; Ashenfelter et al.,
1999; Card, 1999) and connected education and the development of cognitive skills and human capital to
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economic growth (Mankiw et al., 1992; Hanushek and Kimko, 2000; Barro, 2001; Krueger and Lindahl,
2001; Hanushek and Woessmann, 2008; Hanushek, 2016). Further, schooling may have different effects
depending on students (Aakvik et al., 2003) and the topics (Toivanen and Vaananen, 2016). Fujimoto et al.
(2023) find that broadening educational access can have limited effects due in part to negative talent selec-
tion, which connects to a message in our paper that expanding educational slots may bring in worse fits
for higher education. Kirkeboen et al. (2016) show how the chosen fields of students have an important
impact on future earnings and are consistent with endogenous occupational choice based on comparative
advantage. One central occupational choice is whether to take an innovative career. Previous papers have
noted the importance of education for innovation (Aghion et al., 2009, 2017; Toivanen and Vaananen, 2016;
Bianchi and Giorcelli, 2019; Aghion et al., 2023b; Biasi and Ma, 2022), and the role of education and human
capital formation for long-run economic growth (Mincer, 1984; Barro, 2001). Grossman et al. (2017) find
that increased education over time is a key component of sustaining balanced growth. College graduates
and PhDs make up a large share of inventors as Aghion et al. (2017) find in Finland, and which we also
find in the case of Denmark. We connect this literature to work on R&D in order to link the development
of talent to policies for economic growth.

Given its scarcity, the allocation of talent to specific occupations is central to the production of ideas
and growth of an economy. Murphy et al. (1991) note how occupational choice is an important force in
economic growth in the context of rent-seeking versus entrepreneurship. Using survey data, Arts and
Veugelers (2020) show that individuals with a strong taste for science make better inventors. Rosen (1981)
discusses how, in a world without financial frictions or heterogeneous preferences, high-ability individuals
will sort into careers with the highest returns to talent. Willis and Rosen (1979) show evidence based on
this fact in the sorting of ability to college attendance, Topel and Ward (1992) study this in the context of
early career occupational switches, while Aghion et al. (2018) and Pearce (2020) show this in the context
of teams, and Prato (2022) studies sorting of inventors by ability across countries. Burchardi et al. (2020)
find that migrants make important contributions to aggregate growth. However, this is complicated by
frictions in the allocation of individuals to occupations. Celik (2023) finds that misallocation of talent to
non-inventing occupations has a first-order effect on economic growth. Hsieh et al. (2019) find that better
occupational allocation for minorities and females over the last 50 years has contributed to aggregate
growth, which complements literature that has addressed this with rising female labor force participation
(Greenwood et al., 2005). We also find frictions in occupational allocation have significant implications for
economic growth.

We unite these facts on skill, education, occupational sorting, and innovation into an endogenous
growth framework with talent heterogeneity, education, financial frictions, preferences, and physical capi-
tal for R&D (e.g., lab equipment). These forces enable realism when it comes to addressing how education
and innovation policies interact with talent and human capital in the economy, allowing us in turn to es-
tablish a connection to the data and evaluation of the transmission of policies to innovation and economic
growth at different horizons, through the lens of policy experiments in Denmark. We next turn to the
institutional environment in Denmark, the data we apply, and the key facts that inform our model.
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2 Institutional Background, Data, and Stylized Facts

This project relies on Danish micro-data with individuals and firms. We primarily make use of individual
identifier data and extensive innovation and education policies in Denmark from Denmark’s Statistics
Office (DST) and external data sources from 2002-2013. The Danish context provides a laboratory to
understand the effects of specific economic policies targeted towards higher education and R&D. This
section describes the institutional background, data, and key stylized facts that connect talent, education,
innovation, and policy.

2.1 Institutional Background

This section provides details on the institutional background for higher education in Denmark and the
relevant education and innovation policies. We direct particular attention to PhDs due to their outsized
role in innovation and the fact they were an important target in the policies introduced in this time period.

A PhD is the highest level of educational attainment in the Danish education system, and the Danish
Ministry for Education and Research considers it a key element for supporting scientific capacity in Den-
mark (Ministry of Education, 2016). A typical PhD program has a duration of three years and begins after
the completion of a 2 years Master’s program. There are multiple ways of financing a PhD, including
University basic funding, external grants, and funding from research councils or foundations.

The Danish Government has introduced a number of education and innovation policies since 2002.
These policies were united in order to build “a comprehensive strategy for the development of Denmark
into a leading global growth and knowledge society” (Jensen et al., 2012). On the education side, alongside
targets for education attainment at lower levels, the goal was to increase the provision of higher education
in order to establish a highly qualified recruitment base of researchers in both the private and public
sectors. On the innovation side, the objective of the new R&D programs was to make Danish companies
among the most innovative in the world. The “Innovation Danmark” database contains information on
several education, research, and innovation programs since 2002. Figure 2a displays the number of active
programs in the "Innovation Danmark” database by year. Each box represents an active program in
the particular year. The identifiers inside each box represent the program instrument listed in Online
Appendix A. Each color code signifies a program that addresses a different element of the market for
idea production – R&D subsidies (blue), educational slots expansion (green), and educational subsidies
for PhDs (red).

As part of the investment in higher education, the government required universities to increase PhD
enrollment. This feature of the institutional environment motivates our modeling choice of a fixed number
of university slots, which can be expanded through government policy. Universities were required to
increase the annual intake of PhD students to a target number of 2,400 students, particularly within
natural science, technology, medical and health science, and ICT (Ministry of Education, 2016). PhD
enrollment, which had been relatively stable at about 1,200 individuals in the years up to 2002, started to
increase gradually and reached about 2,400 in 2012, as displayed in Figure 2b. This was accompanied by
increased funding for universities in the form of educational and research grants.

We will use these programs to discuss both qualitative and quantitative counterfactuals that resemble
these policies. In the process, we group the various programs into three main categories: (i) R&D subsidies,
(ii) subsidies to the cost of education, and (iii) increase in PhD slots. In Section 5, we will discuss the
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Figure 2: Innovation and Education Policies in Denmark
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from 1990-2012.

quantitative implications of the policies, making use of a calibrated version of our model from Section 4.
Next, we present additional details about the data and stylized facts that connect talent, education, and
innovation.

2.2 Data

The empirical and quantitative analysis in this project is built on detailed micro-level data from the Den-
mark Statistical Office (DST). For data on individuals, we rely on the Integrated Database for Labor Market
Research (IDA), where each individual in Denmark is assigned a unique identifier and is observed on an
annual basis. From different subsets of this dataset, we can leverage information on individuals’ high-
est completed education, background family characteristics (e.g., parental income), employment status,
occupation, and income. In addition, the firm-linked (FIDA) dataset connects individuals to their place
of employment (a unique employer identifier) each year. This comes with firm-level data such as sales,
profits, and employees.

In addition to the individual-level data in IDA, we make use of further internal data on an individual’s
academic pursuits. The PHD dataset contains detailed information on individuals who enrolled in a
PhD program. PHD contains information on most students’ subject of PhD, date of enrollment, and date
of graduation. Further, this data describes the funding source of their education and can be linked to
individuals’ socioeconomic background.

We combine these datasets with IQ data provided from the Danish military test, Borge Prien’s Prove,
which is required for conscripts at age 18.2 We interpret the IQ measure as a proxy for an individual’s

2Studies have indicated this data is a reliable measure of cognitive ability in a similar sense to IQ, e.g. Hartmann and Teasdale
(2005). Teasdale (2009) reviews the literature. In Online Appendix E, we present a robustness exercise to take into account the fact
that IQ is a noisy measure of talent.
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talent. The test data goes back to 1995 and, with tests mostly taken at age 18, it provides information
on most males entering the workforce or college after 1995. In total, we have approximately 500,000
observations for males with IQ data.

Lastly, we turn our focus to innovation, using information about policy interventions and innovation
outcomes. DST provides details on R&D project funding following the expansion of government R&D
support starting in 2002. We observe both funding through the broad “Innovation Danmark” program
and specific R&D subsidies. The innovation program also has information on funding to education, which
will be a key component of our policy discussion.

We combine DST data with innovation data made available through patents at the European Patent
Office (EPO). Using a disambiguation algorithm provided by the DST, we are able to match about 75%
of inventors on patents from Denmark to the individual information in the IDA dataset. We use these
patents as our primary measure of innovation.

While all background data is available from 1980-2013 (i.e., age, education, sex, country of origin), the
intersection of the datasets covers the years 2001-2013, which we will use for our analysis. This leaves
us with approximately 32 million employer-employee observations, 10,000 inventors, and 37,000 unique
PhDs.

The extensive data enables us to document the key elements of educational and occupational choices as
well as innovative outcomes. Detailed parental data enables a study of the determinants of who becomes
a PhD based on their background. Further, due to a host of policy tools the Danish government utilized
over the main sample period, we have information related to policy instruments. Next, we use this data
to document the stylized facts, which will also serve as motivation and quantitative tests for the model.

2.3 Stylized Facts

This section describes the stylized facts that connect talent, education, and family background to innova-
tion and policy. We present our results in three groups. First, we document the role of talent and parental
income in determining educational attainment. Second, we turn to innovation, documenting the role of
education and talent as determinants of patenting. Third, we analyze the role of policy, evaluating the
Danish reform to increase PhD enrollment and the corresponding change in incoming talent and over-
all innovation. These facts will also motivate the building blocks of our model, frame our quantitative
investigation, and provide out-of-sample moments to test the model.

Determinants of Educational Attainment

We start by documenting the role of IQ and parental background as determinants of educational choice.
Figure 3 presents the relationship between ability, proxied by IQ, and the likelihood of doing a PhD.
The figure displays the fraction of individuals who enroll in a PhD at any time in their life per each IQ
percentile.

We find a striking positive relationship between IQ and PhD attainment, where individuals with higher
IQ are more likely to obtain a PhD. The relationship between IQ and the probability of becoming a PhD is
convex; for each increase in an IQ percentile, an individual is increasingly more likely to enroll in a PhD.
While the lowest IQ percentile has essentially zero probability of enrolling in a PhD, the median percentile
has about 0.5%, and the top percentile has about a 6-7% probability of enrolling. Hence, more talented
people are more likely to enroll in a PhD.
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Figure 3: Probability of Enrolling in a PhD and IQ Percentile
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Source: DST, Note: This figure displays the fraction of individuals who enroll in a PhD by IQ percentile bin.

In addition to IQ being an important determinant of advanced education, we relate the socioeconomic
background of parents to the child’s likelihood of obtaining a PhD. Figure 4 displays the fraction of
individuals who enroll in a PhD at any point in their life as a function of their father’s age-adjusted
income percentile. We measure father’s income in the year 2000 and exclude mother’s income in order to
avoid the higher variance in female labor force participation in Denmark. We provide a robustness check
in Online Appendix E that includes the income of both parents.

Figure 4: Probability Child Enrolls in a PhD and Father’s income percentile
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Source: DST, Note: This figure displays the fraction of individuals who enroll in a PhD by father’s income percentile bin. Income percentile is
age-adjusted and measured in year 2000.

Figure 4 shows that children of higher-income fathers are more likely to enroll in a PhD. This interesting
fact could be driven by multiple forces. First, this could be due to the limited financial resources faced
by individuals born to poorer fathers. Second, talent or skill transmission across generations could also
be responsible for this relationship. In order to tease out the intergenerational talent transmission margin,
we next document the link between parental income and child IQ.
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How is talent related to parental income? To answer this question, we correlate a child’s IQ with their
father’s income percentile and we find a positive relationship. However, the correlation between parental
income and IQ is 0.18, which is a significant departure from a perfect correlation of 1 and indicates
imperfect sorting of talented children to high-income parents.

To jointly assess the importance of talent and parental income for PhD attainment, we perform regres-
sions that include both variables as predictors. Our findings, presented in Online Appendix C, show that
talent and father’s income separately impact the propensity to enter a PhD. In the same section, we also
show that parental income is still an important determinant of child’s PhD even conditioning on parents
who have a PhD, as a way to control for the transmission of information about career opportunities from
parents.

Finally, we note that not all talented individuals born from rich families choose to obtain a PhD. Even
when we consider individuals in the top 1% of the IQ distribution who are also children of the richest 5%
of fathers, we still observe that about 90% do not enroll in a PhD program. This result motivates us to
include in our model some distaste for research that drives individuals who could obtain a PhD into the
production sector.

To summarize the main findings on the determinants of obtaining a PhD, we find that:

• IQ is a key determinant of whether an individual enrolls in a PhD.

• IQ is correlated with parental income but not perfectly.

• Parental income matters for PhD attainment both through IQ transmission and on its own, implying
that some talented individuals may face financial hardship that prevents them from enrolling in
higher education even though they are born with a high IQ.

• Not all individuals with high IQ and high parental income choose to pursue a PhD.

These findings motivate the features of the education block of our model, where individuals need to
have sufficiently high talent and parental resources to obtain a PhD. Further, some individuals may prefer
a career outside of research and choose not to pursue a PhD even if they have high enough talent and
resources.

Determinants of Being an Inventor

We now turn to analyzing the determinants of becoming an inventor. Figure 5 plots the fraction of
individuals who are inventors (i.e., who have at least one patent) as a function of their highest level of
educational attainment, described by the six education categories in Denmark: primary, lower secondary,
upper secondary, post-secondary, college, and PhD.

The link between education and becoming an inventor is monotonically increasing. Most interestingly,
individuals with PhDs are disproportionately more likely to become inventors. College graduates are
also more likely to be inventors than those without a college degree. In particular, the probability that a
PhD graduate has a patent is 9.8%, while the probability a college graduate has a patent is 0.7%. When
we compare PhDs to the population with no college education, we find an even larger difference in the
probability of being an inventor, approximately 30 times larger for PhDs than for the general population.
This fact illustrates the tight link between higher education and innovation, motivating the focus on PhDs
in our analysis.
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Figure 5: Probability of Being an Inventor by Education Level
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We also find that individuals with higher IQs are more likely to become inventors even when we
condition on education. To formally test the importance of IQ and education as predictors of innovation,
in Online Appendix C, we document the results of a regression that includes both IQ and education as
predictors of becoming an inventor, and we find that the two elements are separately strongly associated
with the propensity to innovate.

Public Policy and Innovation

Our last set of empirical facts documents the role of public policies in innovation. Starting in 2002, the
Danish Government required the universities to increase the number of PhD slots as part of a larger
initiative to support education and innovation in Denmark, as discussed in Section 2.1. Figure 6 shows
the number of individuals enrolled in a PhD over time (blue line) and the average IQ of enrolled PhD
students (red line).

We observe that as the number of slots for PhDs increases, the average IQ of the enrolling students
falls.3 This indicates that the quality of enrollees is heterogeneous, and expanding slots may draw in a
marginal researcher who is less talented than the average researcher from the existing pool. Thus, even
though policy can increase the supply of researchers, there is a trade-off between expanding the pool of
PhDs and the average talent of PhDs in the economy.

As a result of the increase in the supply of PhDs, we would expect to find an increase in overall
innovation from newer PhD cohorts but less innovation per person, as the average IQ declines in the
larger cohorts. Indeed, we find these results, which are documented and discussed in further detail in the
Online Appendix C.4.4

Overall, some of our results confirm what the previous literature has shown on family background
determinants of who becomes an inventor (Akcigit et al., 2017; Bell et al., 2018) and the importance of IQ
for innovation (Aghion et al., 2017). We add new facts to this growing literature, such as the relationship

3The coefficients of a regression of IQ on year are significantly negative in the post-period. We also find a trend break and
threshold break through Wald and threshold tests.

4We further discuss how these results cohere with the model in Section 3.
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Figure 6: PhD Enrollment and Average IQ of Enrolled PhD Students
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between IQ and PhD enrollment, as well as the link between the incoming cohort size and average IQ (as
shown in Figure 6). All facts related to the interaction between IQ and PhD are introduced and used to
discipline a model for the first time in the growth literature.

This section presented empirical facts about the determinants of being an inventor, obtaining a PhD,
and the interaction of public policy and innovation. These facts motivate the key components of the model,
which focuses on three key forces determining educational attainment and occupational sorting: ability,
parental income, and preferences. The model will then provide a framework to study the effects of public
policy on the composition of the PhD pool, innovation, and economic growth.

3 Model

The three sets of facts above highlight the importance of ability and family background to obtain a PhD
and innovate. To speak to these facts, we build an endogenous growth model centered around talent
development and allocation to link human capital formation to the innovation production function. In-
dividuals are heterogeneous in talent, parental resources, and career preferences. When individuals are
born, they choose whether to enter the production sector or research sector as in Figure 1. In order to
enter the research sector, they must first obtain a PhD. Universities have a fixed number of slots that they
give to individuals who (i) have sufficiently high talent, (ii) choose to take a career in research, and (iii)
are able to afford the cost of education.

In the research sector, individuals produce and sell ideas to maximize income. On the production side,
the model features a competitive final good production market and intermediate goods monopolists, who
buy ideas from researchers in a market for ideas to improve the quality of their output. Innovation drives
the growth in aggregate output and productivity through the improvement of intermediate goods quality.
The economy is open to trade in the goods sector and capital markets, which implies that the interest rate
is exogenous, but the idea production sector is closed to trade, as in Grossman and Helpman (1991).
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The model is tractable and connects to the empirical facts discussed in the introduction and explored in
Section 2.3. We provide an analytical solution to the steady state of the model and then discuss transitional
dynamics from the introduction of subsidies. This framework is amenable to the introduction of various
policies, which we explore theoretically in Section 3.2. In Section 4, we bring the model closer to the data
by matching its quantitative features in order to inform policy counterfactuals.

3.1 Environment and Equilibrium

In this section, we will describe the basic environment and equilibrium. Our focus will be on a Balanced
Growth Path (BGP) equilibrium where all aggregate variables are growing at the same rate g. We open the
model discussion with occupational and educational choice and then turn to a discussion of the research
and final goods markets, and close the model with the discussion of the balanced growth path.

Preferences, Career and Education

A unit mass of individuals live in a small open economy. Time is continuous and individuals are born
and die at rate δ. Individuals garner hand-to-mouth log utility and attempt to maximize lifetime utility
with discount rate ρ. Individuals consume the final good and make educational or career choices based
on the expected value of occupations. Given the death rate δ, individuals’ overall discounting is δ + ρ.

Individuals are born with heterogeneous talent (z), family resources (m), and career preferences (ε),
which determine sorting into two different occupations. There is a mass of production workers L and a
mass of researchers N, such that:

L + N = 1.

Production workers work in final good production, while researchers need to first obtain a PhD and then
they will work in the research sector.

At the education stage, PhD slots are limited and the university offers a PhD slot to a share N of
individuals born in each cohort. The university attempts to offer the slots to the most talented individuals
and is aware of the distribution of preferences, financial constraints, and talent. As a result, there is an
equilibrium threshold z̄ such that the university admits individuals with talent z greater than z̄ that fills a
class of size N, considering that some individuals above the threshold will decline the PhD offer based on
their preferences and finances. In line with the facts about the determinants of education, the individual’s
education and career choice depends on (i) talent, (ii) financial resources, and (iii) preferences. We discuss
these three forces in order.

First, individual talent, z, is distributed according to a Pareto distribution with c.d.f. F(z) = 1−
( zmin

z
)θ

and we assume that zmin = 1. Thus, the fraction of individuals of a given cohort above the school’s
threshold z̄ will be 1− F(z̄) = z̄−θ .

Second, obtaining a PhD is costly: upon starting a PhD, an individual must pay an upfront cost of
education κ.5 Motivated by the evidence in Section 2.3 (and noted in work such as Lochner and Monge-
Naranjo, 2011, 2012), we assume that many individuals cannot afford education and must rely on parental

5We interpret this cost more broadly than tuition, in that it includes the opportunity cost of foregone income that might be
required by individuals to support their families. We note that in our data PhD students earn on average only 74% the income of
comparable individuals in the labor market, measured as the ratio of the average income of PhD students to the average income of
individuals without a PhD in the same age and talent group. The lower income while in the PhD program could cause more severe
hardship to individuals from poorer families.
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resources to cover the upfront cost of education. In line with our empirical facts, we assume that talented
individuals are more likely to have wealthier parents. We thus introduce the following reduced-form
relationship to capture the correlation between talent and parental income.

We assume that for a fraction µ of individuals, talent is proportional to their parents’ income, so
that more talented children are matched to richer parents and the child’s IQ percentile is the same as
their parents’ income percentile. For the remaining fraction (1− µ) of individuals, parental resources are
independent of their talent. For these individuals, we assume that income is distributed as a Pareto with
shape parameter θ̃. To pin down the scale of the parental income distribution, we assume that if income
were equally distributed, all students could afford education. This is equivalent to assuming that the scale
parameter of the parental income Pareto distribution takes value θ̃−1

θ̃
κ. As a result, due to the properties

of the Pareto distribution, the probability that these individuals can afford education is
(
(θ̃ − 1)/θ̃

)θ̃ .
Thus, the share of individuals in a given cohort that can afford education, µ̃, is given by:

µ̃ ≡ µ + (1− µ)×
(

θ̃ − 1
θ̃

)θ̃

. (1)

The first term on the right-hand side indicates the fraction µ of potential students above the school’s
cutoff with talent proportional to parental income; these individuals have high talent and are matched
to high-income parents, so they can afford education.6 The second term indicates the (1− µ) fraction of
individuals with talent independent of parental income, so that they can afford education with probability
(

θ̃−1
θ̃

)θ̃
.

Note that this structure allows us to capture the correlation between talent and parental income without
keeping track of the intergenerational income distribution.7 The degree of correlation between parental
income and children’s talent is captured by the parameter µ. This links to a literature that has pointed
to how educational opportunities may be shaped by previous generations wealth in ways that potentially
generate inefficiencies in the private market and induce intergenerational inequality (Loury, 1981; Glomm
and Ravikumar, 1992; Fernandez and Rogerson, 1996).

Third, even an individual with high talent and sufficient parental resources may not choose to become
a researcher because of career preferences. We assume that individuals have heterogeneous preferences
for working in the production sector, captured by a variable ε. If an individual has sufficient talent and
parental resources to obtain a PhD, she will compare the alternative of becoming a researcher and earning
profits π(z, t) or a production worker and earning a wage w(t). The preference for being a production
worker enters additively as ln(ε). We assume ερ+δ ∼ U(0, Ez), thus the preference shock scales with
individual talent with coefficient E. This assumption captures the idea that more talented individuals,
while facing higher returns in the research sector, also have larger outside options in the production

6For ease of exposition, we present the case where all individuals with a proportional match of IQ to parental income who are
above the school cutoff can afford education. This is true for the parameter values that we obtain from our calibration. In Online
Appendix B.5, we derive key model equations for the case where some of the individuals who are in the left tail of the talent
distribution and with talent proportional to parental resources cannot afford the cost of education.

7Our setup abstracts away from individual consumption-savings decisions and does not generate an endogenous wealth distri-
bution. The assumptions on parental income allow us to capture rich features, such as the correlation between talent and parental
income, while keeping the model tractable so that we can provide an analytical solution for the balanced growth path equilibrium.
As a result, we capture the interaction between child schooling and parental income net of savings.
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sector.8 Thus, the lifetime value function, V(z, ε, b), for an individual born in cohort b with talent z and
preference ε is given by:

V(z, ε, b) = max{Vphd(z, b), Vworker(b) + ln(ε)}, (2)

where Vphd(z, b) is the value of becoming a researcher for an individual with talent z and Vworker(b) is the
value of becoming a production worker. The lifetime value of being a PhD for individuals with talent z in
cohort b is given by

Vphd(z, b) =
∫ ∞

b
e−(δ+ρ)(t−b) ln(π(z, t))dt.

This equation indicates that individuals discount at rate at δ + ρ the lifetime path of their income, which
they consume with log utility hand-to-mouth. Similarly, the individual value of being a production worker
(without including the preference shock) is as follows:

Vworker(b) =
∫ ∞

b
e−(δ+ρ)(t−b) ln(w(t))dt.

Given wages and profits, forward-looking individuals decide whether they want to obtain a PhD. Some
individuals who would prefer to choose a research career may be prevented from obtaining it due to a lack
of financial resources or talent. To understand the forces determining the individual decision and school
cutoff, we turn to the research production and labor market in order to characterize wages and profits.

Research Production

Once individuals make their career choice, those who pursue a PhD work as researchers and produce
ideas to sell to intermediate goods producers. At each time t, a researcher produces a set of ideas using
as inputs her own talent and lab equipment, which is purchased at the marginal cost Ā. This research
production can be interpreted as the production of ideas in academic institutions or firms.9 For each total
quantity of ideas, a fraction φ are implemented successfully.10 Thus, an individual with talent z who
purchases a units of lab equipment produces a bundle of ideas q:

q = φzηa1−η .

The number of ideas produced is increasing in the researcher’s talent and in the amount of lab equipment.
The parameter η ∈ [0, 1] denotes the individual’s share in idea output. Given the per unit price of ideas p,

8While our model does not feature income heterogeneity in the production sector, in reality, more talented individuals have
higher wages outside of research and thus higher outside options. Assuming that the career preference shock scales with talent
allows us to proxy for higher outside options in the private sector for more talented individuals. This assumption also implies
that, conditional on sorting into research, individuals from higher-income families have higher talent, because they need a higher
premium to overcome a higher preference shock on average. We use this prediction to indirectly test our assumption in the data,
where we find that this surprising result is confirmed, as we document in Figure 10.

9We abstract away from the relationship between researchers and firms or academic institutions in producing research output.
10Another way of interpreting φ can be as the common R&D productivity in the economy.
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a researcher with talent z chooses the amount of lab equipment a to maximize her profits,11

π(z) = max
a≥0

{
pφzηa1−η − Āa

}
.

The profit maximization of the researcher delivers, for a given z, optimal lab equipment a, quantity of
innovation q, and profits π:

a(z) = z
(
(1− η)φ

p
Ā

) 1
η (3)

q(z) = φz
(
(1− η)φ

p
Ā

) 1−η
η (4)

π(z) =
η

1− η
z
(
(1− η)φ

p
Ā

) 1
η Ā. (5)

The resulting profits determine the value of being a researcher and will inform an individual’s occupa-
tional choice. We now turn to the final good production to characterize the wages of production workers
and then to intermediate goods producers who buy ideas.

Final Good Production

The final good Y(t) is competitively produced at time t using production labor L and a continuum of
intermediate goods k j:

Y(t) =
1

1− β
L(t)β

∫ 1

0
Aj(t)βk j(t)1−βdj,

where Aj(t) represents the quality of the intermediate good j at time t. The price of the final good is
normalized to 1. The time indices will be suppressed henceforth when it does not cause confusion. The
profit of the final goods producer is equal to their total output minus the prices they pay for intermediate
goods Pjk j and wages paid to labor wL. This leads to demand for the intermediate good as follows:

Pj = Lβ Aβ
j k−β

j . (6)

The marginal cost of producing each intermediate good for the monopolist is ψ in terms of the final
good and the monopolist maximizes profits subject to the demand curve as follows:

Πj = max
kj ,Pj

{
Pjk j − ψk j

}
, subject to (6).

The resulting equilibrium profits for the intermediate good producer can be shown to be linear in the
quality Aj such that:

Πj = πI LAj,

where πI ≡ β [(1− β) /ψ]
1−β

β . We define aggregate productivity in the economy, Ā as the average quality
of intermediate goods: Ā ≡

∫ 1
0 Ajdj. In line with the literature (Akcigit and Kerr, 2018), we assume that

11Later in this section, we show that the price p is independent of the intermediate good producer to whom a researcher sells the
idea.
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ψ = 1− β.12 It follows that the wage of unskilled workers and aggregate output are linear in aggregate
TFP as follows:

w =
β

1− β
Ā (7)

Y =
1

1− β
LĀ. (8)

Given their profit πI LAj, intermediate goods monopolists have incentives to invest in technology.
They can increase their productivity (Aj) by buying ideas from researchers. We now turn to the process
of purchasing an idea to characterize prices.

The Market for Ideas

The intermediate goods monopolists buy ideas from researchers. A bundle of ideas q increases the inter-
mediate good’s productivity by a step size qĀ, such that a monopolist with technology Aj can increase
the quality to Aj + qĀ.

The surplus or change in value from buying an idea is appropriated by the researcher. The intermediate
goods producers pay unit price pj, which is the unit value of innovation, for a bundle of ideas q that arrive
at rate x.13 Without loss of generality, we assume that researchers are randomly matched to intermediate
goods producers.14 Let us denote the value of owning a product line Aj as V(Aj), which looks as follows:

rV
(

Aj
)
= πI LAj + x

[
V
(

Aj + qĀ
)
−V

(
Aj
)
− pjq

]
. (9)

This continuous time Hamilton-Jacobi-Bellman has the following interpretation: the left-hand side equates
the safe flow return, rV(Aj), to the risky return on the right-hand side, which has the following compo-
nents. The first term is the per-period profit flow πI Aj; the second term captures the change in firm value
due to the increased quality by qĀ minus the total cost of the idea to the firm, pjq.

Proposition 1 The equilibrium value function of monopolist j takes the following form:

V(Aj) =
πI
r

LAj,

and the unit price of an idea pj is equal to:

pj = p =
πI
r

LĀ. (10)

Proof. Since the researcher appropriates all of the surplus from the idea sale, then the surplus to the
intermediate goods producer from purchasing the idea is 0, i.e.,

V
(

Aj + qĀ
)
−V

(
Aj
)
− pjq = 0 (11)

Conjecture the following form of the value function from Equation (9): V(Aj) = vAj + ωĀ. Substituting
the guess into Equation (9), it follows in a straightforward manner that v = πI L

r and ω = 0. Substituting

12This is without loss of generality as the model structure is the same regardless, and a combination of ψ and β can be used to
target profits in Section 4.

13The rate x does not need to be pinned down in order to solve for the price of the idea.
14The exact market structure in the market for ideas is irrelevant because the value function is linear in Aj, so that the return

to an additional unit of productivity is the same across all intermediate goods producers and independent of their current level of
productivity. See Akcigit et al. (2018).
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this result into Equation (11) delivers the unit price pj described in Equation (10).

Note that the per unit price of an idea is independent of buyer j. The interpretation of this price is that
the flow gain associated with an idea bundle q is qπI LĀ and r encapsulates the discounted sum of this
gain. Alternatively, it can be interpreted as the discounted value of innovation to buying firms. With the
price of ideas closing the model, we can characterize the research pool and growth rate of the economy.

Balanced Growth Path Equilibrium

We next describe the solution to the occupational choice problem along a balanced growth path where all
aggregate variables are growing at the same rate g. Forward-looking individuals observe the research and
final good production market and make their career choice as described in Equation (2).15 This equation
governs how the research market influences occupational choice and the school cutoff z̄. Let ŵ and π̂z
denote the detrended values of being a production worker and a researcher with talent z respectively.16

Then, along the balanced growth path, the values of a production worker and a researcher of talent z are:

Vworker(b) =
ln(ŵ)

ρ + δ
, and Vphd(z, b) =

ln(π̂z)
ρ + δ

.

Using these expressions to solve Equation (2), we obtain that the fraction of individuals in a given
cohort who prefer the research sector, α, is also time-invariant and independent of z 17:

α ≡ Pr
(
Vphd > Vworker + ln(ε)

)
=

1
E

π̂

ŵ
. (12)

We return to the fixed set of slots N that the school holds for students, also recalling the three elements
that determine entry into PhD. Individuals who prefer working in the research sector, α, have talent above
the school cutoff (z ≥ z̄), and with sufficient financial resources, µ̃, will enter the PhD filling up the N
slots:18

N = Pr(z ≥ z̄)× µ̃× α. (13)

The occupational choice and school cutoff determine the availability of researchers in the economy.19

We can solve for the partial equilibrium expression for the school cutoff, z̄, by plugging Equations (1) and
(12) into Equation (13) to obtain:

z̄ =

[
µ̃

NE
π̂

ŵ

] 1
θ

. (14)

Given prices and wages, Equation (14) delivers a partial equilibrium expression for the school cutoff
z̄. Higher research profits (π̂) and lower production wages (ŵ) pull in more talent and induce a higher
cutoff for the university. In addition, preferences for production and lack of financial resources reduce
the propensity of individuals to enter the research market. The larger the mean of the preference shock
for working outside the research sector (through larger E), the lower the school has to make the cutoff. If

15Online Appendix B solves this equation and shows that the solution to the occupational choice problem is time-invariant.
16We look for a balanced growth path of the economy where the growth rate of final output g is constant. Then, the expressions

for the detrended values ŵ, and π̂z are such that: w(t) = ŵA0egt ; πH(z, t) = π̂zA0egt.
17See Online Appendix B for derivation.
18In Online Appendix B we show that financial constraints and preferences are independent of z.
19Notice that, given that population size is constant, along the balanced growth path the share of individuals in a cohort who

enroll in a PhD, N, is equal to the share of researchers in the population.
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there are fewer individuals lacking financial resources (higher µ̃), the school would have a higher cutoff
for the same number of enrollees.

Next, we solve for the general equilibrium allocation of talent in the economy. From Equations (5) and
(7) we obtain the values for the detrended variables π̂ and ŵ. Plugging these two variables into Equation
(14) allows us to solve for the analytical general equilibrium expression for the school’s cutoff, which
contains the elements of the financial frictions µ̃, preferences E, slots N, as well as the other fundamental
parameters in research and final good production, described in the following proposition.

Proposition 2 The threshold z̄ to enter the research sector is time-invariant and is given by:

z̄ =

[
µ̃

NE
(1− β)η

(
(1− N)

φ

r
((1− η)πI)

1−η

) 1
η

] 1
θ

, (15)

Proof. See Online Appendix B.
We note that the cutoff is increasing in the returns to innovation (πI), the rate of successful innovation

(φ), and the size of the market (L). Additionally, z̄ is more responsive to these three forces the larger η

is, governing the importance of talent in idea production. On the other hand, the cutoff is decreasing in
the mean of the preference shock (E), the number of education slots, N, and the interest rate r. All these
factors affect the talent cutoff as a function of the shape of the talent distribution, θ.

Figure 7 illustrates the allocation of PhD slots, which determine the research pool. The school accepts
lower-quality students as a result of the lack of financial resources (low µ̃) and heterogeneous preferences
(high E). If all individuals prefer a career in research and can afford education, the school’s cutoff would be
at the black vertical line (highest talent pool). When some high-talent people prefer a career in production
due to a distaste for research, this shifts the cutoff to the red vertical dashed line. In addition, when some
high-talent people cannot afford education, this shifts the cutoff even further down to the blue vertical
dashed line (lowest talent pool). This latter case generates the misallocation of talent in society.

Figure 7: The pool of educated researchers
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F(z)

z
z̄

Financial Frictions
Preferences

Having characterized z̄, we now characterize the growth rate of the economy as a function of the
research market producing ideas. The ideas produced by researchers shape the growth rate of aggre-
gate productivity, Ā(t), by increasing the quality of intermediate goods, as described in the following
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proposition.20

Proposition 3 The aggregate growth rate of the economy is given by:

g = z̄N
θ

θ − 1

(
φ

(
(1− η)

πI(1− N)

r

)1−η
) 1

η

. (16)

Proof. See Online Appendix B.2.
Equation (16) delivers growth as a function of fundamental parameters and z̄. We note that g is

increasing in the quantity of researchers, N, and the quality of researchers, which itself is a function of z̄.
It is increasing in the fraction of effective ideas in the economy, φ, and the price of ideas. The parameters
for the share of talent in research production, η, and the shape of the talent distribution, θ, interact with
g through both the production of ideas conditional on the talent pool and its effect on the talent pool, z̄.
Preferences and financial resources affect the growth rate through the talent threshold z̄.

Recall from Equation (8) that aggregate final good output is linear in productivity. Thus, if aggregate
productivity grows at rate g, final good output also grows at rate g. We now summarize the characteristics
of the balanced growth path of the economy, on which the economy’s growth rate is constant and the cutoff
z̄ is time-invariant.

Definition 1 : Balanced Growth Path. A balanced growth path consists of a constant growth rate g, paths for
the wage w, research profits π(z), optimal lab equipment a(z), new ideas q(z), price of ideas p and cutoff z̄ such
that:

1. Lab equipment a(z), idea qualities q(z), and profits πH(z), are given by Equations (3)-(5).

2. The path for the unskilled wage solves Equation (7);

3. The school’s cutoff is given by Equation (15);

4. Aggregate productivity Ā and aggregate output Y grow at rate g, described in Equation (16).

We note that the BGP equilibrium can be solved analytically and is unique. The novelty of this balanced
growth path is summarized by the talent cutoff (human capital quality z̄) and slots (quantity N) as the
central determinants of growth. Talent allocation, in turn, depends on the frictions and preferences of
potential researchers, their educational and occupational decisions, as well as the supply of education
slots.21 This concludes the characterization of the balanced growth path equilibrium. Next, we will
discuss the implications of innovation and education policies.

3.2 Policy Intervention: Innovation and Education Policies

The balanced growth path equilibrium provides a framework to address the steady state response of the
economy to the introduction of policies, which we describe in this section.22 In Section 5, we discuss
transitional dynamics as the economy responds to policy in the short run from its initial steady state.

20We focus on growth coming from endogenous innovation, but discuss an extension where people outside the research market
also produce ideas with an exogenous arrival rate in Online Appendix E.

21There are no strategic decisions, so the cutoff represents a unique equilibrium given the constraints, preferences, and talent of
agents.

22We thus continue without the t index in this analysis.

22



Tapping into Talent: Coupling Education and Innovation Policies for Economic Growth

We compare three types of interventions: R&D subsidies, educational financing subsidies, and expanding
university slots. Each subsidy affects the economy through different channels. An R&D subsidy stim-
ulates innovation through both (i) expanding the expenditures on lab equipment from the existing pool
of researchers and (ii) improving the talent of new researchers by increasing the returns to the research,
and thus attracting into the research sector talented individuals who would otherwise choose production
work. A subsidy to education enables talented individuals from poor families, who would otherwise
be unable to afford education, to enter the research sector. Finally, increasing the number of PhD slots
expands the pool of researchers that create new ideas in the economy. We assume that the government
finances these policies with a proportional tax τ on intermediate firms’ profits.

We now introduce each of the three types of policies (R&D subsidies, education subsidies, and univer-
sity slots expansion) and analyze how they affect the equilibrium growth rate of the economy. We will
then discuss the quantitative effect of these subsidies in Section 5.

3.2.1 R&D subsidy

The government can stimulate research efforts with an R&D subsidy. We assume that the government
subsidizes the price of ideas that are being purchased by firms from researchers by a rate s, so that
researchers receive a total compensation of p(1 + s) per unit of ideas.

More formally, the R&D subsidy increases the school’s cutoff as follows:23

z̄ =

[
µ̃

NE
(1− β)η

(
(1− N)

φ

r
(1 + s)(1− τ)((1− η)πI)

1−η

) 1
η

] 1
θ

,

where, recall πI = β [(1− β) /ψ]
1−β

β = β. The resulting growth rate is described by the following
expression:

g = z̄N
θ

θ − 1

(
φ

(
(1− η)

(1 + s)(1− τ)πI(1− N)

r

)1−η
) 1

η

.

In our model, R&D subsidy has two effects, as can be seen in the above expressions. First, it has a
direct effect, which appears in the expression of the growth rate, of boosting research profits. Thus, given
the existing pool of talent, researchers will have the incentive to produce more ideas by purchasing more
lab equipment. When the subsidy rate goes up, the growth rate g goes up as a function of the relative
importance of lab equipment in the research production function, captured by 1− η. In the extreme case,
as η → 1, the subsidy has no direct effect on the growth rate. Second, and more interestingly, there is a
new channel in our framework where subsidies to R&D indirectly affect the growth rate by increasing the
threshold z̄. The subsidy increases the return to being a researcher through increasing research profits,
hence making the research sector more attractive. This will attract talented individuals into the research
sector who would otherwise choose the production sector, resulting in an increase in the average talent of
researchers. However, poor individuals who cannot afford education will not be affected by the subsidy.
This mechanism is depicted in Figure 8a, where the shaded green region represents the group of people
who initially prefer the production sector and then decide to enter research, resulting in an increase of the
education cutoff z̄.

23Please see Online Appendix B.3 for the formal derivation.
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Figure 8: Policy and Talent Allocation

Researchers

F(z)

z
z̄

Preferences

(a) R&D Subsidy

Researchers

F(z)

z
z̄

Financial
Resources

(b) Subsidy to Cost of Education

Researchers

F(z)

z
z̄

(c) Increase in PhD Slots

3.2.2 Subsidy to Cost of Education

The government can introduce a subsidy sκ to the cost of education, such that students pay a net cost
(1− sk)κ to enroll in a PhD program. This policy has a direct impact on the fraction of people who can
afford education. This means that the probability that an individual can afford education is:

µ̃κ = µ + (1− µ)

(
θ̃ − 1

θ̃(1− sκ)

)θ̃

.

This subsidy allows some talented individuals born in poor families to pay for education and enter the
research sector, thus increasing the average quality of researchers. This is illustrated in Figure 8b, where
the shaded green area indicates individuals who could not afford education but can access the research
sector with the education subsidy. As a result, the schools’ cutoff increases as follows:

z̄ =

[
µ̃κ

NE
(1− β)η

(
(1− N)

φ

r
(1− τ)((1− η)πI)

1−η

) 1
η

] 1
θ

,

The increase in the average quality of researchers affects the growth rate through z̄:

g = z̄N
θ

θ − 1

(
φ

(
(1− η)

(1− τ)πI(1− N)

r

)1−η
) 1

η

.

We note that with educational subsidies there is no direct effect of the subsidy on the growth rate. The
entire effect of the subsidy comes through µ̃κ , which allows talented individuals born in poor families to
afford education and, as a result, it increases z̄ and thus increases the growth rate. We also note an effect
of the increased tax rate to finance the subsidy that lowers the returns to innovation. Up to this point, we
analyzed the two subsidies holding the number of researchers fixed; we now turn to an expansion in the
supply of researchers.
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3.2.3 Increasing the number of PhD slots

Another policy tool discussed in the Ministry of Education (2016) report is the expansion of university
slots. When the university increases the share of educational slots per cohort from N to Ns, more people
flow into the research sector. As a result, we obtain the following expression for the university’s cutoff
with the new number of slots Ns:

z̄ =

[
µ̃

NsE
(1− β)η

(
(1− Ns)

φ

r
(1− τ) ((1− η)πI)

1−η
) 1

η

] 1
θ

,

Increasing the number of slots reduces the cutoff z̄, because it induces individuals with less talent to
enter into research. This result operates through two direct effects, which are amplified by general equi-
librium mechanisms. First, as there are more available slots, the school admits less talented individuals to
fill them, as captured by the Ns in the denominator of the equation. Second, increasing the slots reduces
researchers’ profits through a market size effect, as seen in the term (1−Ns). The market size effect means
that research profits increase when there is a larger market to sell ideas to, which can be noted in the price
of an idea in Equation (10). As the number of researchers increases, the number of production workers
declines, and there is a smaller downstream market size for innovation. The decline in research profits
then induces some talented individuals to choose the production sector rather than the research sector,
reducing the average talent of the research pool. The tax τ further reduces research profits, amplifying the
decline in marginal talent.

The decline in average inventors’ talent is illustrated in Figure 8c, where the green shaded area indi-
cates the additional individuals brought into the research sector by the increase in slots and the resulting
decrease in the talent threshold z̄.

The increase in the number of slots delivers the following equation for the growth rate of the economy:

g = z̄Ns
θ

θ − 1

(
φ

(
(1− η)

(1− τ)πI(1− Ns)

r

)1−η
) 1

η

.

When the number of slots increases, the growth rate is affected through four channels. First, growth
is affected by the increase in the number of people producing ideas, Ns; second, by a reduction in their
average quality, z̄; third, there is a reduction in lab equipment investment due to the reduced market size

effect, (1− Ns)
1−η

η ; finally, there is an additional reduction in lab equipment due to the tax τ to finance
the increased slots. All these interesting channels will have implications for policy design, which we
will study quantitatively in Section 5. In order to do that, we first turn to calibrating the fundamental
parameters that enable our study of counterfactuals and external checks on the model fit.

4 Calibration

This section describes the calibration and fit of the model. We use the empirical facts from Section 2.3
to discipline the parameters that govern the key forces in the model, such as the link between education,
career choice, innovation, and growth. The goal of the calibration is to use the calibrated parameters to
quantify the impact of counterfactual policies on growth, which we analyze in Section 5.
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Section 4.1 discusses the matching process and the fit with targeted moments. Section 4.2 evaluates
how the model performs with non-targeted moments, including leveraging the policy experiment in Den-
mark.

4.1 Calibration Technique

To calibrate our model, we perform a Simulated Method of Moments (SMM) matching exercise to back out
the parameters. We describe the quantitative moments we target in the data and the calibrated parameters
in Tables 1 and 2, respectively.

Our model has 12 parameters: {ρ, r, δ, β, N, µ, η, θ, θ̃, φ, ψ, E}.24 We refer to the literature for three
parameters {ρ, r, β} and directly match two with the data (N, δ). For the seven remaining parameters, we
select seven informative empirical moments (ME) from our stylized facts in Section 2.3. We simulate a
BGP equilibrium and calibrate it to the data prior to the 2002-2003 policy introduction for the relevant
moments in order to focus on the PhD distribution before any major government intervention. We then
utilize the SMM to jointly calibrate the seven parameters. To do so, we minimize the distance between
model-simulated moments, M(Θ), and their empirical counterparts, ME, by searching over the parameter
space Θ, using a simulated annealing algorithm, as follows:

min
Θ

7

∑
i=1

(ME
i −Mi(Θ))2.

We now proceed with a detailed explanation of the various steps in the calibration.

4.1.1 External Calibration

The production side of our model is very similar to the existing literature. The key departure in our
framework is how an individual’s life cycle and career choice relate to aggregate innovation. To calibrate
the parameters on the production side, we follow the literature and set ψ = 1− β in line with Akcigit and
Kerr (2018), set r = ρ, and set the discount factor to 97% (ρ = 0.03).

4.1.2 Internal Calibration

We first match the number of researchers (N) and the death rate (δ) directly to the data. We set the number
of researchers to be equal to the share of PhDs as a fraction of the adult working population before the
major policy interventions in our data, which is 1%. We set the death rate to generate an expected working
life of 40 years, which implies a value of δ = 0.025.

For the remaining seven parameters {η, θ, φ, β, E, µ, θ̃}, we target seven moments (M1-M7) jointly. Even
though the parameters are identified together, below we provide a heuristic discussion of the parameters
that each moment informs.

We begin with the moments that inform PhD attainment. We recall that, in the model, individuals may
not obtain a PhD either because they cannot afford it (governed by the parameters µ and θ̃) or because
they prefer a production career (governed by dispersion parameter E).

24Note that we do not need to make assumptions on the cost of education κ to solve the model. However, estimating the costs of
each policy is necessary to understand the budgetary costs of each policy and assess budget equivalence. In Online Appendix D.1,
we explain in detail how educational costs are backed out.
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M1 Correlation between IQ and Parental Income: In the model, there is a reduced-form correlation between
individuals’ talent and parental income, governed by the parameter µ. To inform this parameter, in
the data we measure the correlation between IQ and father’s income, obtaining a value of 0.175.

M2 Ratio of Standard Deviation (SD) to Mean of Parental Income Distribution: In the model, the distribution
of parental income is governed by the parameter θ̃. To inform this parameter, in the data, we compute
the ratio of the standard deviation to the mean of the distribution of fathers’ income and find a value
of 0.663. We then compute and target the same ratio in our model.25

M3 Mean Percentile IQ of PhDs: In the model, we compute this moment as the average talent of re-
searchers. In the data, the mean IQ percentile of PhD students prior to policy interventions in 2002
takes a value of 0.83. This moment is informative for the dispersion of preferences E, together with
other determinants of average researchers’ talent such as µ and θ̃.

We now turn to the moments that inform the career choice between the research and the production
sectors. In the model, this decision is primarily governed by the relative returns in the research sector as
compared to the wage in the production sector, which depend on the following three parameters. First,
the labor share in the output sector, β, influences the unskilled wage and intermediate goods producers’
return. Second, the R&D efficiency φ affects the relative return to production versus research and the
growth rate. Third, the shape parameter of the talent distribution, θ, influences the dispersion of returns
in the research sector. These parameters are primarily informed by the following three moments.

M4 Skill Premium of PhDs: In the model, we compute this moment as the ratio of the average profits of
researchers to the wage of production workers. This primarily informs the human capital share in
idea production η and the R&D efficiency φ. In the data, we measure the skill premium of PhDs
as the ratio of the average income of PhD graduates to the average income of individuals without a
PhD and obtain a value of 1.747.

M5 Ratio of Standard Deviation (SD) to Mean of PhDs’ Income: In the model, we compute this moment
as the ratio of the standard deviation to the average profits of researchers. This moment primarily
informs the talent shape parameter θ. In the data, we measure this moment as the ratio of the
standard deviation of the income of PhD graduates relative to the average of their income during
their peak income year, and we obtain a value of 1.44.26

M6 Profits to Wages Ratio: In the model, we compute this moment as the ratio of the total intermediate
goods profits to the total wages paid out to production workers. This primarily informs the labor
share in production β. In the data, it is measured as the ratio of profits of production firms27 to total
wages, obtaining an estimate of 0.073.

Finally, we turn to the moment that informs innovation and the growth rate of the economy.

25We restrict to the sample of individuals in the labor market when their children are of college graduation age (e.g., 21-22 years
old). We test robustness to this measure in Online Appendix E.

26The peak income year captures a “mature” inventor to avoid life-cycle income dynamics. We test variations on this in Online
Appendix E.

27Our data on firms includes firms with employees as well as self-employed individuals with no employees. We restrict our
measure of profits to non-innovating firms with at least one employee.
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M7 Growth Rate of the Economy: In the model, the aggregate growth rate of the economy is determined by
the frequency of innovations and the composition of the research pool. Alongside other moments,
this informs the R&D efficiency φ and talent share in innovation, η. We target a growth rate of 1%.

Table 1 summarizes the values of these moments in the data and the corresponding model-generated
values. As can be seen, our model is generating a close match to the data.

Table 1: Moments

Moment Data Model
Correlation between IQ and parental income 0.175 0.175
Ratio of SD to mean of parental income 0.663 0.663
Mean percentile IQ of PhDs 0.830 0.830
Skill premium of PhDs 1.747 1.747
Ratio of SD to mean of PhD income 1.442 1.442
Profits to wages ratio 0.073 0.073
Growth rate (percentage points) 1.000 1.000

Table 2: Parameter Values

Parameter Description Value
— Panel A. External Calibration —

ρ Discount rate 0.030
r Interest rate 0.030

— Panel B. Internal Calibration —
N PhD share of the labor force 0.010
δ Death rate 0.025
β Labor elasticity in final good 0.926
η Inventor share in idea production 0.718
θ Talent Pareto shape 2.217
φ R&D efficiency 0.250
E Preference shock parameter 8.311
µ Fraction assortative match IQ - parental income 0.175
θ̃ Parent income Pareto shape 2.810

Notes: All parameters are estimated jointly.

The resulting parameter values are reported in Table 2. Here, we discuss key parameters of interest.
The human capital share of idea production η indicates that the researcher’s own talent accounts for
about 70% in idea output, with the remaining being attributed to capital such as lab equipment, data, and
factories. This is consistent with survey data on R&D expenses for labor versus other inputs in Denmark.
Other interesting parameters worth discussing are µ and θ̃. These parameters suggest that around 1/3rd
of the potential PhD population (µ̃) can afford to pursue a PhD. We would like to reemphasize that the
cost of schooling is broader than tuition cost, in that it includes living expenses and the opportunity cost
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of foregone income that might be required by individuals to support their families.

Figure 9: The allocation of talent in the economyFigure 1: The allocation of talent in the economy
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Figure 9 indicates the distribution of individuals above the talent threshold in the economy. Our model
predicts that the fraction of people who are talented and able to afford education but dislike research is
13% of the population. More interestingly, the pool of people who are talented and willing to do research
but are not able to afford education is about twice as large as the current pool of researchers (2% versus
1%). This group is misallocated in society.28 We revisit this point in the policy counterfactuals in Section
5. Before turning to policy counterfactuals, we observe how the model hits non-targeted moments in the
data.

4.2 Non-Targeted Moments

In order to assess the out-of-sample validity of the model, we explore how our model performs with non-
targeted moments in the data. We perform two main out-of-sample matching exercises. First, we consider
the relationship between parental income and IQ for individuals who obtain a PhD. To match the model,
we only relied on the pairwise correlations between parental income, PhD, and IQ, but not the interaction
of these three components. Second, we use our model to simulate the observed policy interventions in
2002 and compare the implied results for the talent of PhD enrollees to what we observe in the data.

Relationship between Paternal Income and IQ for PhDs

Figures 3 and 4 show that those who enroll in a PhD tend to have higher IQ and higher parental in-
come. However, we have not discussed the relationship between IQ and parental income conditional on
enrolling in a PhD. In this exercise, we use our simulated model to trace out the different IQs of the rela-
tively wealthier and poorer individuals who enter a PhD program. The model implies that PhD enrollees
with wealthier parents have higher talent. The result in the model comes from the fact that, on average, in-
dividuals with higher IQs have a higher preference shock, which proxies for greater opportunities outside
the research sector. We find empirical support for this particular implication as shown in Figure 10.

28A social planner would always want to allocate individuals above the school cutoff who cannot afford education to research.
We discuss the social planner’s problem in greater detail in Online Appendix B.6.
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Figure 10: IQ by Income Group, Data and Model Predicted
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This figure illustrates model-simulated talent alongside the IQ from or data for two income groups of
PhDs. We calculate the mean of parental resources for PhD enrollees, and we plot the average IQ for PhD
students with parental resources below the mean and above the mean. Both in the model and in the data,
average IQ increases in parental income conditional on being a PhD enrollee. We now turn to our second
out-of-sample exercise.

Government Policy Intervention

Here, we explore the responsiveness of PhD enrollee quality to a host of policy interventions. We did not
directly use any Danish government policy interventions to calibrate the model, yet the major break in our
sample provides an opportunity to test the power of our calibrated framework. Thus, we use the outcome
of the policy interventions introduced in 2002 as an out-of-sample test of our model.

The Danish government introduced a number of education and innovation policies starting in 2002
with the goal of fostering innovation and technological progress. The “Innovation Danmark” database
contains information on education and innovation programs, including the amount of funding and grants.
We group the interventions into the three types of policies discussed in our model: R&D subsidies, sub-
sidies to the cost of education, and increases in PhD slots. We estimate the expenditure for each type
of policy from the data. Then, we feed the estimated policy rates into our model, and we compare the
predicted outcome for the average IQ of PhD enrollees predicted by our model to the empirically observed
outcome. The procedure to estimate policy rates from the data is outlined in Online Appendix D.2. We
start from the initial calibrated steady state and solve for the transitional dynamics after the introduction
of different policies. We assume that prior to the announcement of the program “Innovation Danmark”
there is no expectation of a policy introduction but, once the policy is announced, all agents know the
future paths: individuals understand the entire horizon of the policy and foresee the path of incomes.

Figure 11 displays the increase in PhD enrollees and the corresponding change in IQ after the policy
intervention in both the data and model. Because we calibrate our model to the average IQ of PhDs
before the policy intervention, both the data and the model predict the average IQ of enrollees at the 83rd
percentile of the IQ distribution in 2002, prior to the introduction of these subsidies and slot expansion.

After 2002, in the model, the introduction of the policies and the expansion of slots then push average
talent in opposite directions: subsidies to R&D and the cost of education lead to an increase in average
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Figure 11: Policy Intervention and IQ of PhD enrollees: data vs. model.
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IQ, while the expansion of PhD slots leads to a decline in average IQ. Nonetheless, the relative strength of
these two forces predicted by our model overall matches the declining pattern in the average IQ of PhD
enrollees observed in the data.

One point worth stressing is that the downward movement in IQ does not follow mechanically from
the model. Due to the fact that Denmark combined policies for education, innovation, and enrollment
slots, the quantitative and qualitative result depends on the mix of policies implemented. Both education
and innovation policies increase the average IQ, while the increase in slots induces a decline in average IQ.
Nonetheless, the quantitative fit between the out-of-sample model prediction and data is still very close,
with both predicting a decline in IQ of 6 percentage points over 10 years.

On top of matching the decline in the average IQ of incoming students, we also are able to hit the
patterns in patenting after the policy implementation, as we illustrate in Online Appendix C.4. We find
that overall PhD innovation increases, in large part due to the increased class size. However, the average
PhD has fewer innovations.

The two out-of-sample tests show that our model not only does well with the targeted moments but
also is able to reproduce both specific facts in the data and the policy intervention that was implemented
in 2002. We are now ready to study the implications of our model for education and innovation policies.

5 Policy Experiments

Our calibration enables us to study the impact of policies in the short and long run and speak to policy
combinations that maximize growth. In this section, we use our model to perform a number of coun-
terfactual policy exercises to quantify the strength of different policies in increasing the growth rate. We
explore the quantitative impact of each policy individually and then introduce them simultaneously in
order to evaluate their interaction and the optimal policy mix. We then discuss how the effectiveness of
each policy depends on the underlying parameters of the economy.

Our results are organized as follows. Section 5.1 looks at the comparison of steady states under
different subsidies and puts our new mechanisms into perspective by comparing our findings to the
literature. We highlight the implications of educational and occupational decisions in our model and
what this suggests for longstanding debates in the literature on R&D policies. Section 5.2 illustrates
the complementarity of education and innovation policies – directing particular focus to the growth-
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maximizing policy mix for different budgets. Section 5.3 focuses on how the optimal policy depends on
the inequality of parental income in the economy. Section 5.4 discusses the transitional dynamics with the
introduction of each policy to illustrate the intertemporal tradeoffs and to describe what a policymaker
should expect on the horizon of the impact.

5.1 Steady State Impact of Policies

We begin by describing the impact of our policies individually in steady state. We focus on revenue
equivalent policies and their effects on the quality of PhDs, the total number of PhDs, and the overall
growth rate. To generate policies that are revenue equivalent for the government, we impose policy rates
that generate the same tax rate, as described in more detail in Online Appendix D.1.

There are three main policies of interest: R&D subsidies, educational subsidies, and expansion of edu-
cational slots. Each policy on its own increases innovation but through different channels. One important
point to note is that an expansion in the number of PhD slots will increase the number of researchers, but
induce a decline in their average talent, while R&D and educational subsidies, without expansion of the
pool of researchers, increase the talent of the average researcher through different margins. The effects
from R&D subsidies, educational subsidies, and educational slots expansion were illustrated in Figures
8a, 8b, and 8c in Section 3.2 respectively. Table 3 compares these three policies by showing the overall
growth rate effect of a budget equivalent to a 10% R&D subsidy spent on R&D, education subsidies, and
slot expansion, respectively.29

Table 3: Simulation of Alternative Policy Interventions (10% R&D Subsidy Equivalence)
%∆Innovation Avg. PhD IQ percentile

Baseline 0% 83
R&D subsidy 6.4% 84
Educational subsidy 9.6% 87
University slots 3.8% 78

A number of important observations are in order. First, a 10% subsidy rate to R&D increases the
baseline innovation by 6.4%. Note that unlike the standard growth models (Romer, 1990; Aghion and
Howitt, 1992), this intervention keeps the number of researchers fixed (e.g., no scale effect), and the effect
comes mostly through the quality composition of the inventor pool. The rest of the effect comes from
the additional use of lab equipment for researchers with a given subsidy. The change in inventor talent
happens due to an increase in the compensation of researchers as a result of the subsidized R&D. The
return to being a researcher increases, pulling in individuals who can afford a career in research but, on
the margin, would prefer working in production in the absence of the subsidy.

Second, when we use the same amount of resources to subsidize education, the impact on innovation
is 50% larger (9.6% versus 6.4%) than the R&D subsidy. This is due to the fact that educational subsidies
alleviate financial frictions by bringing in high-ability individuals who could not afford education into
research. There is evidence in the literature that there are many talented individuals from poor family
backgrounds who have the ability for a research career (Aghion et al., 2017; Akcigit et al., 2017; Bell et al.,
2018), but their inability to enter the research sector could have large effects on innovation (Celik, 2023).

29This equals approximately 0.25% GDP in our framework and corresponds approximately to the amount spent on R&D subsidies
and education subsidies in Denmark from 2000–2014. We use this as our baseline expenditure, but we present our results for a wider
range of budgets in Online Appendix D.3 and we explore how changing the budget changes the optimal allocation in Section 5.2.
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Third, when we use the same amount of resources to expand the PhD slots, we observe only a 3.8%
increase in innovation. Given this subsidy level, an expansion in slots is about half as effective as an
R&D subsidy. Note that, unlike standard models that often assume homogeneous skills of inventors,
our framework with talent heterogeneity introduces a trade-off between the quantity and quality of re-
searchers. When researcher supply is increased, schools lower the cutoff and the marginal additional
researcher will be less talented than the existing inventors. This would create a non-linear relationship
between policy and aggregate innovation response (as in Jaimovich and Rebelo, 2017). This finding also
squares facts related to an increasing pool of researchers not creating a significant impact on aggregate
innovation (Jones, 1995; Bloom et al., 2020).

Lastly, we want to relate the growth implications of these policies in our framework to existing models
in the literature. Standard workhorse models of endogenous growth (such as Aghion and Howitt, 1992),
assume that labor is homogeneous and can be allocated to both production and R&D, obtaining a very
elastic margin of effective researchers. These models have been criticized for giving very high responses
of growth to policy that are not observed empirically (e.g., Goolsbee, 1998; Romer, 2000; Wilson, 2009,
among others).

In our model, there are two reasons why talented individuals may not enter a PhD: financial resources
to access education and preferences. Each channel dampens the response of the growth rate to R&D
subsidies compared to standard models. For instance, if all high-talent individuals cannot afford educa-
tion, R&D subsidies have minimal effects because these individuals do not have the ability to respond
to the increased wage in the research sector. Similarly, in models in the literature where the supply of
researchers is inelastic and there is a fixed endowment of researchers, R&D subsidies only increase the
wage of researchers and have no effect on the growth rate (Goolsbee, 1998; Romer, 2000).

The response of the growth rate to R&D subsidies in our model is modulated by the importance of lab
equipment in idea production, as the subsidy induces researchers to spend more on lab equipment. For
instance, setting the coefficient of lab equipment to zero in our model (and thus η = 1) would reduce the
change in growth rate in response to a 10% R&D subsidy to only 3.9% (as opposed to 6.4% in our bench-
mark model with lab equipment). We next turn to a discussion of the complementarities of innovation
and education policies when introduced jointly.

5.2 Policy Complementarities and Growth-Maximizing Policy Mix

Motivated by the different margins that each policy hits, we now investigate how these policies interact.
First, we consider the growth-maximizing mix of R&D and education subsidies for the existing level of
slots, N = 0.01. More specifically, the solid blue line in Figure 12 plots the optimal share of education
subsidy (with the remaining share going to R&D policy) for any given budget. In the same graph, the
dotted black line plots the resulting growth rate.

The results show a pecking order of the two policies. The policymaker prioritizes education subsidies
by allocating 100% of the policy budget to education when the budget is low (≤ 0.6% of GDP). This is
due to the fact that the policymaker first finds it most effective to sort talented but poor individuals into
higher education to strengthen the talent pool, because the education subsidy is more cost-effective than
the R&D subsidy. To see that, note that for R&D policy to be effective, it must induce individuals with
high-valued outside options to switch to research. Given that the subsidy is proportional to researchers’
profits, it becomes increasingly more expensive for highly talented individuals. On the other hand, the
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Figure 12: Growth Maximizing Policy Mix
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education subsidy is proportional to the cost of education and so it is equally expensive for all individuals.
Only when all individuals seeking a PhD are fully subsidized, it is then optimal to devote part of the

budget left over to R&D subsidies. This happens when the level of budget is larger than 0.6% of GDP, at
which point the policymaker introduces a mix between education and R&D policies. For instance, when
the government allocates 1% of GDP to maximize innovation, it is optimal to split it with 42% going to
R&D and 58% going to education subsidies.

We now investigate what the growth-maximizing policy mix would be if the government could also
expand the number of slots available in universities. Figure 13 shows the maximum growth rate attainable
at different levels of slots for budgets of 0.5, 1, and 2% of GDP. The x-axis shows the number of slots
available, N. The vertical bars display the share of budget spending going to each policy for each level
of slots. In particular, the bars represent (i) R&D subsidy (dark blue bars), (ii) subsidizing the cost of
education (light blue bars), and (iii) slot creation (grey bars). The grey bars compute the share of the
budget going to slots creation corresponding to the level of slots given on the x-axis. The other bars show
the optimal allocation of the remaining budget between R&D subsidies and education subsidies at the
given slots level. The solid red curve displays the growth rate at each level of slots for the aforementioned
policy mix.

Panels (A), (B), and (C) of Figure 13 display the growth-maximizing mix given 0.5% of GDP, 1% of GDP,
and 2% of GDP respectively. The black dashed line indicates that in both cases the optimal policy mix
does not involve any spending on additional PhD slots. In particular, the optimal policy mix at a budget
of 0.5% of GDP consists in spending the entire budget on education subsidies, whereas at a budget of 1%
of GDP, it allocates 42% of resources to R&D subsidies and 58% to education subsidies, consistent with
the results in Figure 12.

For larger budgets, it is optimal to use a mix of all policy tools available, including adding PhD
slots, which target complementary margins of talent allocation. Figure 13c indicates that the growth-
maximizing mix given 2% of GDP, indicated by the black dashed line, corresponds to roughly spending
46% on subsidizing R&D, 35% of the budget on subsidizing the cost of education, and 19% of the budget
on the creation of new slots. The increase in slots expands the size of the talent pool in the economy, while
R&D and education subsidies sort talented individuals who either had better options in the production
sector or could not afford higher education into the research sector.

To summarize our results on the growth-maximizing policy mix, if the government has limited re-
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Figure 13: Growth Maximizing Policy Mix
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(a) Budget = 0.5 pp GDP
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(b) Budget = 1 pp GDP
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(c) Budget = 2 pp GDP

This figure compares the change in patenting per PhD cohort after the 2002 increase in PhD enrollment in the data (red dashed lines) and to the
change in innovation predicted by the model (blue solid lines). Figure (A) displays the total PhD innovation per cohort. Figure (B) shows the

average innovation per student in the enrolling PhD class .

sources (less than 0.6% of GDP in our calibration), our framework suggests that it should allocate all of its
resources towards educational subsidies only, to improve the talent pool by enabling access to education
for talented individuals from poor families. For intermediate budget levels between 0.6% and 1.2% of
GDP, the government should mix only R&D and educational subsidies. With a larger budget, the govern-
ment should mix subsidies to education, subsidies to R&D, and an expansion in the supply of education
slots.

5.3 Inequality and Education Policy

In this section, we use our quantitative model to explore the link between the distribution of parental
income and the impact of education policy. In our model, we assume that the economy has enough re-
sources so that all potential students could afford education if parental resources were evenly distributed.
Yet, the extent of inequality reduces the fraction of people who can afford education, generating a poten-
tial source of misallocation. The measure linking inequality to access to education is given by µ̃ as defined
Equation (1): as µ̃ tends to 1, the fraction of individuals who cannot afford education tends to 0.

Figure 14 analyzes the effectiveness of education policy depending on the access to financial resources
in the economy. The x-axis represents the fraction of individuals who can afford education, µ̃. We then
compute the growth rate in response to a 0.5% of GDP subsidy to the cost of education, ignoring taxes used
to finance expenditure. On the y-axis, we plot the difference between the growth rate with the subsidy
and the baseline growth rate of the economy without subsidy. The figure shows that as the fraction of
individuals who can afford education increases, the effectiveness of subsidizing the cost of education
declines. This is because the subsidy to the cost of education targets talented individuals who would like
to obtain higher education but cannot afford it.

The overall takeaway from this result is that, as society becomes more unequal and more families can-
not afford education, government intervention to subsidize education becomes more desirable to develop
the innovative capacity of the economy.
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Figure 14: Effectiveness of Education Policy at Different Levels of Education Access
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5.4 Transitional Dynamics

We next turn to the dynamic evolution of the economy in response to each policy. A key component
of the dynamics is that human capital takes significantly longer than physical capital to affect aggregate
innovation and will thus induce longer delays in the transmission of policies.30 We start from the initial
calibrated steady state and solve for the transitional dynamics after the introduction of different policies.
We assume prior to the announcement of the program “Innovation Danmark” there is no expectation of
a policy introduction but, once the policy is announced, all agents know the future paths. Individuals
understand the entire horizon of the policy and foresee the path of wages and profits.

Figure 15: Transitional dynamics response to 0.5% GDP
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Figure 15 illustrates the dynamic evolution of the economy in response to each of the three policies

30This occurs through two channels. First, due to the cohort structure of the human capital life cycle. Second, Akcigit et al. (2020)
explicitly model time to build human capital in innovation.
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discussed in this paper, education subsidies, R&D subsidies, and the expansion of educational slots.31 In
particular, we perform and compare three counterfactuals. At time 0, we introduce three distinct budget
equivalent policies using 0.5% of GDP into the economy that will remain in place permanently. This
budget corresponds to a 20% R&D subsidy rate, which is approximately the rate of R&D support in OECD
countries. We compare these policies over the following 40-year period to observe the corresponding
evolution of the growth rate. The solid dark blue line corresponds to an R&D subsidy, the dotted light
blue line corresponds to an educational subsidy, and the dashed grey line corresponds to an expansion in
PhD slots.

We highlight the following findings. First, it takes time for each policy to show its full impact. All
education policies take more than ten years to get halfway to the new steady state. Second, the policies
that look more effective in the short run are different from the policies that look effective in the medium to
long run. For instance, R&D subsidies generate the strongest immediate growth effects through increased
use of lab equipment, while educational subsidies take some time to bring in new talent and surpass R&D
in 9 years. Educational subsidies take the longest to transmit to the growth rate, but gradually become the
most effective policy tool in the long run by increasing the quality of researchers. The new cohorts with
higher talent eventually replace older cohorts with lower talent and then transmit their skill to aggregate
innovation.

An important takeaway from these transitional dynamics is that it takes time to build a high-quality
talent pool. For instance, it takes educational subsidies over ten years to reach the halfway point to the
new steady state. Hence, empirical innovation policy evaluations based on data with short time spans
could potentially lead to wrong conclusions about their effectiveness if the lagged nature of these policies
is not taken into account.

6 Conclusion

This paper puts the development of scarce talent and career choice at the center of an endogenous growth
framework and uses this framework to understand the effects of education policies, innovation policies,
and their interaction. Individuals decide their career path as a function of their talent, preferences, and
family financial background. These choices eventually transmit to aggregate innovation as talent builds
into human capital and contributes to idea production. We discipline these micro-level decisions and
outcomes with rich micro-level datasets from Denmark. Our estimated model not only matches a host of
facts in the data, but replicates the response of the talent pool to policy interventions in the 2000s. We then
use this framework to study policy counterfactuals of education and innovation policies. The framework
delivers several important messages for understanding and designing optimal policies.

We highlight four main findings. First, we find that the introduction of a subsidy to innovation is less
effective than in standard models, squaring the empirical evidence with the theory, due to a host of forces,
such as talent heterogeneity, preferences, the elasticity of education supply, and the distribution of finan-
cial resources. However, the impact of R&D subsidies can be strengthened when combined with higher
education policy that sorts talented but credit-constrained individuals into research. Second, education
and innovation policies are tapping into a different part of the talent distribution depending on the types

31We solve the transition dynamics numerically by guessing a vector of cutoffs {z̄(t)}t along the transition and verifying whether
the implied wages and profits are consistent with individuals’ decisions. The algorithm we use to numerically solve for the equilib-
rium of the economy along the transition is discussed in Online Appendix D.4.
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of frictions individuals face. Third, R&D and education policies impact innovation at different horizons,
which makes the optimal policy design a function of the time horizon of the policymaker. Finally, the
optimal policy will depend on the amount of parental income inequality in society. In highly unequal
societies, education policy is likely to be significantly more effective than R&D policy because education
policy targets talented individuals who cannot afford education. In societies with a more even distribu-
tion of financial resources, R&D subsidies are more likely to be effective because, while the inability to
afford higher education will be limited, R&D subsidies can increase the available capital for researchers
and induce those who would have otherwise not worked in research to enter the research sector.

We conclude with a discussion of some interesting extensions for the individual-based endogenous
growth agenda put forward in this paper. First, policies to expose talented youth to education can be
broadened to think about access to information about career opportunities (e.g., Hoxby and Turner, 2015),
and this study could provide a framework to analyze these other margins of educational exposure. Second,
the financial risk in innovative careers could play an important role in the allocation of talent and, thus,
preferences not just over careers but over risk will also be important to understand the choice of innovative
careers. Third, in light of the increasing inequality observed around the world, it would be interesting
to apply the current framework to societies with more extreme income inequality relative to Denmark.
Fourth, our results highlight that domestic talent is scarce and induces a country to run into diminishing
returns when relying only on a domestic talent pool. One way to ameliorate this problem could be to tap
into international talent, drawing implications for immigration policy. These are very fruitful extensions
that await further research.
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7 Data Availability and Provenance Statement

The data underlying this article were provided by the Danish Statistical Office (DST) by permission. The
raw data can be accessed with an application to DST (see Statistics Danmark). Some intermediate and
final data outputs are available directly in the article and in the replication files, together with the code
underlying this research, available on Zenodo at https://doi.org/10.5281/zenodo.10456771.
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