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Abstract

The strategic importance of commitment in bargaining is widely ac-

knowledged. Yet disentangling its role from key features of canonical

models, such as proposal power and reputational concerns, is difficult.

This paper introduces a model of bargaining with strategic commitment

at its core. Following Schelling (1956), commitment ability stems from

the costly nature of concession and is endogenously determined by play-

ers’ demands. Agreement is immediate for familiar bargainers, modelled

via renegotiation-proofness. The unique prediction at the high conces-

sion cost limit provides a strategic foundation for the Kalai bargaining

solution. Equilibria with delay feature a form of gradualism in demands.
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1 Introduction

If two agents seek to divide some surplus, what division will they agree on and

when and how? This set of questions, that I collectively label the bargaining

problem, is key to a vast range of economic interactions. Economic models rely

on the strategic theory of bargaining to resolve it, either directly or indirectly

by informing the appropriate choice of a bargaining solution.

Strategic models of bargaining that allow negotiations to unfold over time

typically have at their core either the alternating-offers model of Rubinstein

(1982) or the reputation model of Abreu and Gul (2000). Schelling (1956, 1960)

proposes a third approach. As summarized in Crawford (1982), Schelling views

the bargaining process as a struggle between players to commit themselves to

—that is, to convince their opponent of their inability to retreat from —ad-

vantageous bargaining positions. Schelling’s own treatment of his approach was

impressionistic and by way of examples. Subsequent work has either developed

the theory in static environments or focused on evaluating the role of commit-

ment while relying on one of the two canonical models mentioned above to resolve

the underlying bargaining problem.1

This paper presents a formalization of Schelling’s theory with an infinite-

horizon model of bargaining with complete information. The objective is to

characterize the extent to which this theory, built on the use of strategic commit-

ments alone, resolves the bargaining problem and how, and furthermore establish

conditions under which the model’s predictions are adequately summarized by

some bargaining solution.

The model builds on two key elements of Schelling’s theory. First, a bargainer

may find it costly to back down from a stated demand and this is the source of her

commitment ability. Second, the commitment ability is nevertheless endogenous,

in that it depends on the demands. A less aggressive demand weakens the

opponent’s commitment ability by allowing more room for her to back down.

By contrast, a demand that leaves an opponent’s back against the wall only

1See for example, Crawford (1982), Muthoo (1996), Ellingsen and Miettinen (2008) and
Dutta (2012) for the first and Fershtman and Seidmann (1993), Compte and Jehiel (2004),
Wolitzky (2012) and Basak and Deb (2020) for the second. Ellingsen and Miettinen (2014)
consider a dynamic model of a hybrid nature that I discuss in detail in section 5.4.
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ensures the latter’s commitment.

In the model, the bargainers simultaneously announce demands. If the de-

mands are compatible, bargaining ends on those terms. If incompatible, the

players decide whether to stick to their demand or concede to the opponent’s

offer. Concession incurs an additional cost which is increasing in the conceded

amount. If neither player concedes, then the current period of bargaining ends

and the next period begins with a fresh round of demands. The game proceeds

in this manner until either compatible demands or a concession following in-

compatible demands. The bargainers are impatient, as captured by constant

discount factors. I focus on subgame perfect equilibria with pure strategies in

the demand stage (henceforth SPE).

The model can be seen as a variant of the infinite horizon version of the

Nash Demand Game (henceforth IH-NDG). While in the latter, incompatible

demands end the current round of bargaining, in the present model bargainers

get a chance to concede. Indeed, if the concession costs are made arbitrarily

high, then concession is effectively ruled out and the IH-NDG obtains at the

limit.

The model predictions depend on two sets of parameters, namely the discount

factors and concession cost functions. In any SPE outcome, the bargainers even-

tually agree upon an efficient division of the surplus, following some delay, if any.

In contrast to common dynamic bargaining models, the range of efficient divi-

sions of the surplus that can arise in equilibrium is linked to the maximum delay

the equilibrium accommodates following any history. Delay, while permitted

under SPE, has an upper bound.

Renegotiation-proof SPE, used to model familiar bargainers, feature no delay

and an exact characterization obtains for the corresponding set of surplus divi-

sions. This leads to a key finding of the paper. As the marginal concession costs

are made arbitrarily high, the set of renegotiation-proof SPE outcomes converges

to selecting a unique efficient outcome in the limiting IH-NDG. This outcome is

identical to that of the Kalai bargaining solution (see Kalai (1977)) with its pro-

portion determined by the discount factors and a limit ratio of the concession cost

functions. Therefore, not only does the formalization of Schelling’s theory fully
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resolve the bargaining problem, it also provides a strategic foundation for the

Kalai bargaining solution. Furthermore the parameters of the non-cooperative

model select the appropriate bargaining solution from the family of solutions

characterized in Kalai (1977).

Markov perfect equilibria (which may violate renegotiation-proofness) can

exhibit delay. In a natural way, such equilibria with delay yield a form of grad-

ualism, the feature in which bargainers start with extreme demands that soften

over time. Finally (and surprisingly), the set of stationary Markov perfect equi-

librium outcomes coincides with the set of renegotiation-proof SPE outcomes,

despite the latter allowing arbitrarily history dependent strategies.

As Binmore, Osborne and Rubinstein (1992) states, The ultimate aim of what

is now called the “Nash program” (see Nash 1953) is to classify the various insti-

tutional frameworks within which negotiation takes place and to provide a suitable

“bargaining solution” for each class. This paper contributes to this literature by

making a case for the Kalai bargaining solution in environments in which com-

mitment ability due to concession costs is salient.2 Binmore, Rubinstein and

Wolinsky (1986) establish a robust connection between the alternating-offers

model and the Nash bargaining solution. Studies on commitment that rely on

the alternating-offers model, such as Muthoo (1996), find similar support for the

(asymmetric) Nash bargaining solution. Relying on the struggle to commit itself

to resolve the bargaining problem, as the current paper shows, leads instead to

the Kalai bargaining solution. This is an important distinction. The appropriate

choice of a bargaining solution is not merely a game-theoretic curiosity. Aruoba,

Rocheteau and Waller (2007), for instance, show that the choice of bargaining

solution matters both qualitatively and quantitatively for questions of first-order

importance in monetary economics.

To the best of my knowledge, Dutta (2012) and Hu and Rocheteau (2020)

are the only other papers that provide strategic bargaining foundations for the

Kalai bargaining solution. Hu and Rocheteau (2020) rely on the alternating-

offers model. They show that if the surplus is divided into N parts and in each

of N rounds players engage in Rubinstein bargaining over one of these parts,

2Examples of such environments are described in section 5.1.
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then the outcome corresponds to the Kalai bargaining solution as N tends to

infinity. While theoretically insightful, the procedure with large N is difficult to

descriptively align with typical bargaining narratives.

Dutta (2012) is the static (one-period) version of the current model and

captures a qualitatively similar role for the concession costs, in that higher costs

benefit the bargainer. It shares the unrealistic feature of the Nash demand game

in ruling out future negotiations following a single round of disagreement, and

as a result has no role for discount factors.

Given the limit uniqueness result of the static model in Dutta (2012), it is

natural to expect (with some work) a similar result in the dynamic model un-

der stationary strategies. A novel and surprising finding in the current paper

is that the Kalai solution arises as the unique limit even under the assumption

of renegotiation-proofness, which allows for arbitrarily history dependent strate-

gies.3 There is no reason to expect renegotiation-proof outcomes to coincide

with stationary ones in dynamic bargaining games. Indeed, as discussed in 3.2,

the acute multiplicity (of surplus division outcomes) in the multilateral version

of the Rubinstein bargaining game persists unabated under the assumption of

renegotiation-poofness, while stationarity delivers a unique result. The finding

that the two sets of outcomes coincide in the current model is the result of the

specific structure of its SPE, discussed in section 2.1.

The rest of the paper is as follows. In section 2, I introduce the general model

and show how all SPE have a simple structure. In section 3, I focus on a linear

specification. In this setting, characterization results under subgame perfection,

renegotiation-proofness and Markov perfection are obtained in subsections 3.1,

3.2 and 3.3, respectively. In section 4, I return to the general model, characterize

SPE outcomes categorized by maximum permissible delay, including the set of

renegotiation-proof SPE outcomes and establish the link with the Kalai solution.

A discussion of the intuition follows. In section 5, I discuss some key features of

the model and other related literature. Proofs of all results are collected in the

appendix, unless stated in the main text.

3The intuition behind this is discussed in section 4.2.
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2 The Model

Two players, 1 and 2, play an infinite horizon game to split a pie of size 1.

In period t ∈ N ≡ {1, 2, 3, . . .}, if the bargaining problem is still unresolved,

each player i ∈ {1, 2} announces a demand zi ∈ [0, 1]. The announcements are

simultaneous. For a given demand profile z = (z1, z2), let d(z) = z1 + z2 − 1. If

the demands are compatible (d(z) ≤ 0) then the game ends with both players

receiving their own demands. The resulting payoff profile is (u1(z1), u2(z2)),

where ui is the payoff function for player i.

Following incompatible demands (d(z) > 0), the bargainers enter a conces-

sion stage. Here the players simultaneously decide whether to stick to their

demands or back down and accept the other’s offer. Backing down comes at

a cost which is a function of the conceded amount, the difference between the

initial demand and the accepted amount, zi − (1− z−i) = d(z), and is captured

by the concession cost function ci. If both players stick to their demand then

the bargaining problem remains unresolved and moves to the next period. This

concession stage game is represented in the table below.

Table 1: Concession Stage following Incompatible Demand Profile z
Accept (A) Stick (S)

A u1(1− z2)− c1(d(z)), u2(1− z1)− c2(d(z)) u1(1− z2)− c1(d(z)), u2(z2)

S u1(z1), u2(1− z1)− c2(d(z)) u1(0), u2(0)

As long as some player chooses A the game ends this period with the associ-

ated payoffs in the table, otherwise it moves to period t + 1.4 The following

assumptions hold throughout the paper.

Assumption 1 For i ∈ {1, 2}, ui : [0, 1] → R+ is a strictly increasing, concave

and continuously differentiable function with ui(0) = 0.

Assumption 2 For i ∈ {1, 2}, ci : R+ → R+ is a strictly increasing, unbounded

above and continuously differentiable function with ci(0) = 0.

4Following AA in the concession stage, d(z) is left on the table. Alternative specifications
of this outcome that split d(z) between the bargainers in some way leave all results unchanged.

6



A history of play that leads to the beginning of period t + 1 with t ∈ N,
denoted as ht, is a sequence of t incompatible demand profiles with (S, S) in the

corresponding concession stages, (z1, SS, z2, SS, . . . , zt, SS). Let H t be the set

of all such t-period histories, with the null history H0 = {h0} and H = ∪∞
t=0H

t.

A history of play that leads to the concession stage in period t, denoted as ht
′
,

is an element of H t−1 followed by an incompatible demand profile zt. Let H t′

be the set of all such t-period histories and H ′ = ∪∞
t=1H

t′ . A pure strategy for

player i is a function σi : H ∪ H ′ → [0, 1] ∪ {A, S} such that σi(h) ∈ [0, 1] for

h ∈ H and σi(h) ∈ {A, S} for h ∈ H ′. The subgame following history h ∈ H∪H ′

is labeled g(h).

Given a history ht ∈ H, a strategy profile σ = (σ1, σ2) determines the period

n > t when bargaining ends in the subgame g(ht), with payoffs in that period

of y = (y1, y2), where y = (0, 0) if n = ∞.5 Call (y, n − t) the outcome of the

game g(ht) under σ. A strategy profile σ with outcome (y, n− t) in the subgame

g(ht) yields the discounted payoff of δn−t−1
i yi to player i at the beginning of the

subgame, where δi ∈ (0, 1) is player i’s discount factor.

2.1 Preliminaries

To analyze its content, I focus on pure strategy subgame perfect equilibria of the

model. Subsequently, for expositional ease, I refer to these simply as subgame

perfect equilibria or SPE. Infinite horizon games with simultaneous moves typ-

ically feature a vast multiplicity of SPE with a sense of anything goes. The

current model features multiplicity too. Nevertheless, the following straightfor-

ward yet useful lemma shows that all such equilibria have a simple structure.

Exactly compatible demands imply d(z) = 0.

Lemma 1 A subgame perfect equilibrium at any period must feature either

(a) exactly compatible demands, or

(b) incompatible demands followed by both players choosing Stick.

Proof. Consider a period in which incompatible demands (z) are followed by

some action profile other than (S, S) in the concession stage. Then, as the

5Notice that yi, which denotes i’s payoff in the period when bargaining ends, is distinct
from the payoff function ui. If i receives zi without making a concession then yi = ui(zi).
With a concession, yi = ui(zi)− ci(d(z)).
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payoff matrix in table 1 shows, there must be some player i who receives a

payoff strictly less than ui(1− z−i) and is strictly better off by deviating to the

compatible demand 1− z−i instead of the original zi.

Next, given a period with compatible demands that add up to less than 1,

the player with the lower demand, say i, is strictly better off demanding 1− z−i

instead.

In other words, any SPE involves some rounds of delay, if any, via incompatible

demands, followed by an agreement on an efficient division of the surplus. There-

fore the two components of any SPE outcome (y, n) correspond to an (eventual)

compatible profile z where y = u(z) and delay n− 1 ≥ 0.

Subgame Perfect Equilibrium with Maximum Delay m

Dynamic bargaining games with multiple SPE typically have the following fea-

ture.6 The range of efficient SPE outcomes constitutes the first-order multi-

plicity. These rely on history-dependent strategies but do not require strategy

profiles involving delay. This first-order multiplicity is used, through appro-

priate history-dependent strategies, to generate varying lengths of delay, the

second-order multiplicity. In the current model, delay is on a more equal footing

with the set of efficient SPE outcomes. Limiting the length of delay permissible

in an SPE limits the range of efficient outcomes that can arise in equilibrium.

The following classification of SPEs permits partial characterization results that

demonstrate this feature.

Definition 1 An SPE σ is called an SPE with maximum delay m if for any

subgame g(ht), ht ∈ H, it generates an outcome (y, n− t) where n− t− 1 ≤ m.

The classification is particularly useful because in the absence of an exact

characterization of SPE outcomes, it permits a simple yet sharper partial char-

acterization of equilibrium outcomes compared to SPE alone. Further, it is a

consistent behavioural restriction, since it imposes a bound on delay both on and

off the equilibrium path. Indeed, it is a natural generalization of the commonly

studied no-delay equilibrium, which requires SPE to feature no delay following

6See, for instance, Sutton (1986), Avery and Zemsky (1994) and Merlo and Wilson (1995).
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any history.7

The results that follow rely on the stationary structure of the model. To this

end, for any h ∈ H, let Om(h) denote the set of outcomes of SPE with maximum

delay m in the subgame g(h). By Lemma 1 any SPE outcome (y, n) corresponds

to an (eventual) compatible profile z where y = u(z) and delay n− 1 ≥ 0. Now

define

Bm ≡
{
z|(u(z), t) ∈ Om(h0)

}
to be the set of all efficient surplus divisions (exactly compatible profiles) that

can arise as the outcome of some SPE with maximum delay m in the bargaining

game. Due to the stationary structure of the game and definition 1, it follows

that Bm = {z|(u(z), t) ∈ Om(h)}, for all h ∈ H.

3 The Linear Model

In this section, I analyze the following specification of the bargaining model.

∀i ∈ {1, 2}, ui(zi) = zi and ci(d(z)) = kid(z) for some ki > 0.

This linear specification retains the strategic tradeoffs of the general model while

allowing closed-form characterizations of equilibrium outcomes.

3.1 Subgame Perfection

The reason why subgame perfection rules some compatible demands out and

others in, lies in the concession stage behaviour permitted in equilibrium. Con-

sider period 1 of the game, assuming that any impasse leads to a continuation

(present-discounted) payoff profile, w. Then, the augmented concession game

following an incompatible profile z is described in table 2.

Table 2: Augmented Concession Game following Incompatible Profile z
A S

A 1− z2 − k1(z1 + z2 − 1), 1− z1 − k2(z1 + z2 − 1) 1− z2 − k1(z1 + z2 − 1), z2
S z1, 1− z1 − k2(z1 + z2 − 1) w1, w2

Each incompatible profile z leads to one of four distinct equilibrium scenarios

7See Ray and Vohra (2015), Collard-Wexler, Gowrisankaran and Lee (2019) and Bruge-
mann, Gautier and Menzio (2019).
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in the augmented concession game. Three of these involve a unique dominance

solvable outcome (i) (S,A), (ii) (S,S) and (iii) (A,S). In the fourth, both (S,A)

and (A,S) are Nash equilibria. These regions are depicted in figure 1.

Figure 1 depicts both the space of demands and present-discounted payoffs

of the two players. Exactly compatible demand profiles lie on AB. The rest of

ABC contains all feasible incompatible demand profiles. Due to discounting, all

present-discounted payoffs lie on or in the triangle AOB.

Figure 1

The coloured regions are pinned down by the two red linesDE and FG, which

map the equations 1−z1−k2(z1+z2−1) = w2 and 1−z2−k1(z1+z2−1) = w1,

respectively, labelled indifference lines. Following an incompatible profile on

DE, in the concession game, player 2 is indifferent between the outcomes (S,A)

and (S, S).8 So conditional on player 1’s choice of S, player 2 would stick to

her demand following incompatible demand profiles “above” DE and back down

following those “below” DE. FG is the analogous line for player 1.

Consequently, for instance, following an incompatible demand profile in the

green region, and with a continuation payoff profile w, the concession stage

8In the concession stage, either player always strictly prefers S over A conditional on the
other player choosing A.
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features a unique equilibrium (dominance solvable) outcome; player 1 sticks to

her demand while player 2 backs down, (S,A).

Next notice that compatible demand profiles from the interval AK cannot

arise in period 1 in equilibrium, since player 1 can profitably deviate into the

green region, as depicted for the profile z′ (by the arrow). Compatible profiles

in LB are similarly ruled out, since player 2 can now profitably deviate to the

blue region, as depicted for profile z′′′. By contrast, the multiplicity of equilibria

in the yellow region can be used to rule out such deviations for profiles in KL.9

Consider a strategy profile in which any deviation from a compatible demand

profile into the yellow region, is followed by the Nash equilibrium in the (aug-

mented) concession stage wherein the deviator chooses A while the other player

chooses S. With such a strategy profile, no player has an incentive to deviate

from a compatible demand in KL. Take z′′ in the figure, for instance. The

arrows show some deviation options for player 1, none of which are profitable.

Deviating to the yellow region requires player 1 to then back down. The same

holds for deviation to the blue region, where (A, S) is the dominance solvable

outcome. Deviating to the orange region leads to the dominance solvable out-

come of (S, S) with a payoff of w1. Likewise, player 2 can only deviate to the

yellow and green regions, neither of which is profitable. All compatible profiles

in KL can similarly arise in equilibrium, given the continuation profile w.

Whenever Player 2(1) can deviate to the blue (green) region from some com-

patible profile, she strictly prefers to do so. However, the blue (green) region is

a function of the continuation payoff, and may vary with the demand profile in

an SPE. But if player 2(1) has a deviation from compatible profile z that lies

in a blue (green) region for every possible equilibrium continuation payoff, then

z cannot arise in equilibrium.10 The following lemma states this restriction on

equilibrium compatible demand profiles for SPE with maximum delay n∗. The

proof in the appendix establishes the argument above formally.

9The compatible profiles at K and L are the ones in which players 2 and 1, respectively,
receive their share from the (incompatible) profile at I.

10In other words, equilibrium compatible demands must be such that neither bargainer can
raise her own demand and extract a concession from her opponent. The latter requires the
(unique) dominance solvable outcome of the concession game to have the deviator stick to her
demand while her opponent concedes, irrespective of the equilibrium continuation play.
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Lemma 2 Suppose σ is a pure strategy profile with σ(ht−1) = z and
∑2

i=1 zi = 1

for some ht−1 ∈ H. If for some i ∈ {1, 2}, there exists z−i < ẑ−i ≤ 1 such that

1− zi − k−i(zi + ẑ−i − 1) < δn−iz̃−i (1)

and

1− ẑ−i − ki(zi + ẑ−i − 1) > δni z̃i (2)

for all z̃ ∈ Bn∗
and 1 ≤ n ≤ n∗ + 1, then σ is not an SPE with maximum delay

n∗.

Notice that lemma 2 directly rules out extreme compatible demand profiles such

as (1, 0). Fix any set of discount factors and marginal concession costs. A ẑ2 > 0

close enough to 0, satisfies inequalities 1 and 2 with i = 1. In words, by choosing

such a ẑ2, player 2 ensures that conditional on 2 choosing S, 1 prefers to concede

and get a payoff arbitrarily close to 1 rather than settle for δ1 or less (inequality

2). By contrast, player 2 has no room to back down since any concession brings

a negative payoff (inequality 1). So irrespective of the continuation play, the

deviation to ẑ2 leads to (A, S) in the concession game, with a positive payoff for

player 2. This rules out (1, 0) as an equilibrium compatible demand profile.

Elimination of such compatible demand profiles in turn rules out certain

continuation plays in equilibrium. Focusing on surplus divisions in SPE with

maximum delay n∗, namely Bn∗
, ensures that in any continuation game the

eventually agreed upon division also belongs to Bn∗
. This recursive structure

together with lemma 2 delivers convenient bounds on the corresponding set of

equilibrium surplus divisions (the set Bn∗
).11

Proposition 1 If (z, t) is the outcome of a subgame perfect equilibrium with

maximum delay n∗, then

1− δ1

1− δn
∗+1

2

k2
1 + k1

≤ z2
z1

≤ 1− δn
∗+1

1

1− δ2

1 + k2
k1

. (3)

11This step is similar in spirit to the approach taken in Shaked and Sutton (1984) to solve
the alternating-offers model.
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Proof.

Let z∗i = supz∈Bn∗ zi. Now suppose for some exactly compatible demand

profile z, there exists ẑ2 such that

1− z1 − k2(z1 + ẑ2 − 1) < δn
∗+1

2 (1− z∗1), and

1− ẑ2 − k1(z1 + ẑ2 − 1) > δ1z
∗
1 .

Then such a ẑ2 also satisfies inequalities 1 and 2 for all z̃ ∈ Bn∗
and 1 ≤

n ≤ n∗ + 1, since for any such z̃ and n it follows that δn
∗+1

2 (1− z∗1) ≤ δn2 z̃2 and

δ1z
∗
1 ≥ δn1 z̃1. Therefore, by lemma 2, z cannot arise in any SPE (i.e., z ̸∈ Bn∗

).

Since z∗i = supz∈Bn∗ zi, there cannot be such a ẑ2 for the compatible profile

z = (z∗1 , 1− z∗1). So there cannot be a ẑ2 > 1− z∗1 which satisfies both

1− z∗1 − k2(z
∗
1 + ẑ2 − 1) < δn

∗+1
2 (1− z∗1), and

1− ẑ2 − k1(z
∗
1 + ẑ2 − 1) > δ1z

∗
1 .

These inequalities simplify to

ẑ2 >
(1− z∗1)(1 + k2 − δn

∗+1
2 )

k2
and ẑ2 < 1− (k1 + δ1)z

∗
1

1 + k1
.

Therefore such a ẑ2 cannot exist only if

(1− z∗1)(1 + k2 − δn
∗+1

2 )

k2
≥ 1− (k1 + δ1)z

∗
1

1 + k1

⇒(1− z∗1)(1− δn
∗+1

2 )

k2
≥ z∗1(1− δ1)

1 + k1

⇒ 1− δ1

1− δn
∗+1

2

k2
1 + k1

≤ 1− z∗1
z∗1

A symmetric argument establishes

1− δ2

1− δn
∗+1

1

k1
1 + k2

≤ 1− z∗2
z∗2

⇒ z∗2
1− z∗2

≤ 1− δn
∗+1

1

1− δ2

1 + k2
k1

.
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To conclude the proof note that

z ∈ Bn∗ ⇒ 1− z∗1
z∗1

≤ z2
z1

≤ z∗2
1− z∗2

.

Proposition 1 describes how limiting the maximum delay permissible in an

SPE restricts the range of efficient equilibrium outcomes. I next show that the

amount of delay permitted in an SPE is bounded.

Delay requires incompatible demands on the equilibrium path. A bargainer

may aim to do better in two ways. Deviate to a compatible demand, or make

a milder but still incompatible demand which extracts a concession from the

opponent. Requiring such deviations to be unprofitable bounds the amount

of delay in SPE. Consider, for instance, the outcome (z, n + 1), with delay

and present-discounted payoff profile w = (δn1 z1, δ
n
2 z2), as depicted in figures 2a

and 2b. To be an SPE outcome, the strategy profile must feature n rounds of

incompatible demands followed by the exactly compatible demand profile z.

(a) (b)

Figure 2

Figure 2a shows why the period 1 demand profile must lie within the rectangle

with w′ and C at opposite corners. For all other incompatible demand profiles

some player is strictly better off by deviating to a compatible demand. The

arrows from demand profiles z′ and z′′ describe such profitable deviations.
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In figure 2b, LM represents the indifference line for player 2 if she faces her

best equilibrium continuation payoff.12 AQ represents the indifference line for

player 1 if she faces her worst possible continuation payoff. So any given equilib-

rium continuation payoff generates indifference lines for players 2 and 1 “above”

LM and “below” AQ, respectively, such as RS and NP (from continuation pay-

off w). Therefore incompatible demands in the dark green region lead to (S,A)

irrespective of equilibrium continuation play.13 Recall the strategy profile with

delay and payoff profile w = (δn1 z1, δ
n
2 z2). Player 1 can deviate from any point

in the w′C rectangle to somewhere in the dark green region to the right of the

w1 perpendicular and extract a concession from 2 and obtain a higher payoff, as

depicted for the profile z′′′. Such a profitable deviation from z′′′ is not feasible

with continuation profile w̃, which involves less delay. This is the feature that

bounds the amount of delay in an SPE, as formalized in the following lemma.

Let OSPE be the set of all SPE outcomes and

B∗ ≡ {z|(z, t) ∈ OSPE}

the set of all efficient surplus divisions in such outcomes.

Lemma 3 Suppose kj(k−j − 1) > 1 for j ∈ {1, 2}. If (x, t) is an SPE outcome

with t > 1, then for i ∈ {1, 2},

δt−1
i xi ≥

1− δ−iz
∗
−i

1 + k−i

(4)

where z∗−i = supz∈B∗ z−i.

Proposition 1 describes how the length of delay permissible in an SPE bounds

the set of efficient outcomes that can arise in equilibrium. Lemma 3 captures how

the set of efficient equilibrium outcomes limits the maximum delay in an SPE.14

12Recall from the discussion before figure 1 that the indifference line for player i is given
by 1− z−i − ki(z1 + z2 − 1) = vi where vi is the present discounted continuation payoff.

13For further intuition, recall that the green region in figure 1 changed with changes in the
continuation payoff. The dark green region in figure 2b lies inside all such green regions that
are feasible given equilibrium continuation payoffs.

14The condition kj(k−j − 1) > 1 for j ∈ {1, 2} fails for sufficiently small values of the
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The next result combines these two results to obtain a necessary condition for

SPE outcomes.

Proposition 2 Suppose ki(k−i − 1) > 1 for i ∈ {1, 2}. If (z, t) is a subgame

perfect equilibrium outcome, then

min

{
1− δ1
1− δ2

k2
1 + k1

,
1 + k2
k1

(1− δ1)

}
≤ z2
z1

≤ max

{
1− δ1
1− δ2

1 + k2
k1

,
k2

1 + k1

1

1− δ2

}
.

Key Implications

Infinite horizon games with simultaneous moves typically yield a folk theorem,

in that for discount factors above a threshold anything goes under subgame

perfection.15 Proposition 2 shows this to be false for the current model. Further,

unlike in the closely related IH-NDG, the maximum delay in SPE is bounded.

More importantly, a unilateral increase in the concession cost function for a

bargainer generates better equilibrium outcomes for her. This confirms Schelling’s

insight about weakness being a strength. Greater patience is similarly benefi-

cial. This preserves a key implication of the canonical bargaining models. Both

these features are easiest to observe in Proposition 1. From the latter, it also

follows that a bilateral increase in marginal concession costs, holding its ratio

fixed, narrows down the set of equilibrium predictions.16

Proposition 1 also delivers a simple way to classify possible equilibrium sur-

plus divisions on the basis of the maximum anticipated delay following any

history. These are directly testable in laboratory and field experiments that col-

lect information about bargainers’ beliefs about delay in addition to standard

outcome data. Finally, it also follows that additional conditions that restrict the

maximum delay allowed in an SPE, as a result, also shrink the set of compatible

demand profiles that can obtain in equilibrium. I study three such conditions in

the following subsections.

marginal concession costs. Qualitatively, concession costs are less salient in the model at such
parameter values, and therefore impose less constraints on the length of delay that can arise
in SPE.

15More precisely, any payoff profile that is feasible and individually rational can be achieved
in SPE.

16I return to this feature in more detail in sections 3.2 and 4.
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3.2 Renegotiation-Proofness

Negotiators who are familiar with each other should, in the presence of mul-

tiple equilibria, be able to avoid the strictly Pareto dominated ones. This is

especially so, if the Pareto dominating equilibrium is one they anticipate to

play following some history. Since the game is identical following any history

h ∈ H, the negotiators would see the incongruence of taking an efficient path

following one such history and an inefficient one following another. Given their

familiarity they need not take their cues from some possibly inefficient norm,

but rather count on renegotiating away from such inefficient equilibria. The

notions of weak renegotiation proofness in Farrell and Maskin (1989) and inter-

nal consistency in Bernheim and Ray (1989) capture this idea in the context of

repeated games. While not a repeated game, the present model shares its key

feature that following any number of rounds (of failed bargaining), the continua-

tion game looks the same. Relying on this stationarity, I import an appropriate

notion of renegotiation-proofness for the current setting.

Let ψ(σ;ht) be the continuation payoff (profile) implied by σ given history

ht ∈ H and let

Ψ(σ) = ∪ht∈Hψ(σ;h
t)

be the set of all continuation payoffs under σ.

Definition 2 An SPE σ is renegotiation-proof if for no x, y ∈ Ψ(σ) is x≫ y.

Renegotiation-proofness is routinely studied in equilibrium analyses for a va-

riety of economic questions, and with important implications. See, for instance,

Barrett (1994) on international environmental agreements, Matsuyama (1990)

on trade liberalization, Kletzer and Wright (2000) on sovereign debt. Nonethe-

less, it is not the only “reasonable” description of behaviour. It does however

facilitate a natural separation of all pairs of bargainers into those who always

coordinate on efficient outcomes on the equilibrium path and anticipate the same

off it, and others. Renegotiation-proofness delivers a sharper characterization of

the behaviour of the former group.

Note that renegotiation-proofness does not rule out history dependent strate-

gies. Consider, for instance, the construction due to Avner Shaked reported in
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Sutton (1986). It supports any efficient division of the surplus as an SPE out-

come of a 3-person Rubinstein bargaining game for high enough discount factors.

The construction relies heavily on the history-dependence of the strategy profile.

Imposing an appropriate version of renegotiation-proofness has no effect on the

result since all continuation outcomes are efficient. The severe multiplicity per-

sists. In the current model, however, renegotiation-proofness sharply restricts

the set of equilibrium outcomes.

Proposition 3 (z, t) is the outcome of a renegotiation-proof subgame perfect

equilibrium if and only if t = 1 and

1− δ1
1− δ2

k2
1 + k1

≤ z2
z1

≤ 1− δ1
1− δ2

1 + k2
k1

. (5)

I now sketch the argument behind this result. The detailed proof is in the

appendix. Given the structure of SPE identified in lemma 1, renegotiation-

proofness simply rules out any delay. The necessity of inequality 5 then follows

immediately from proposition 1. To establish sufficiency, I construct the follow-

ing stationary strategy profile, which I show to be subgame perfect for any z

satisfying inequality 5 in lemma 5 in the appendix.

Construction 1 Consider the following stationary strategy profile, σ. Fix z

such that d(z) = 0. For all ht ∈ H, set σi(h
t) = zi. If player i, for some

i ∈ {1, 2}, in period t deviates to a higher demand, ẑi > zi, then in the concession

stage game (S, S) is played if it is a Nash equilibrium and otherwise (Ai, S−i)

is played. For all other h ∈ H ′ some pure strategy Nash equilibrium of the

concession stage game is played.

The strategy profile σ above satisfies renegotiation-proofness, since following any

history h ∈ H the continuation outcome is efficient and consists of agreeing on

the compatible demand profile z.

Proposition 3 offers a preview of the limit uniqueness result in section 4.2.

Consider a sequence of these linear bargaining games parametrized by marginal

concession costs {kn1 , kn2 }∞n=1 such that kn1 = γkn2 for all n and kn2 → ∞ as

n → ∞. Observe first that at the limit, it is too costly for any bargainer to
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concede following any incompatible demand. The model therefore reduces to the

IH-NDG. However, in contrast to the acute multiplicity of SPE in the IH-NDG,

the set of renegotiation-proof SPE as characterized in proposition 3 converges

to a singleton at the limit. At this unique limit outcome, the bargainers agree

on the compatible profile z with

z2
z1

=
1− δ1
1− δ2

1

γ
.

Collard-Wexler et al. (2019) use a criteria called no-delay to refine the set

of SPE in their bargaining model. The criteria is identical to the notion of SPE

with maximum delay 0, in that it requires no delay following any history. All

results requiring renegotiation proofness in this paper would remain unchanged

if the no-delay criteria was used instead. This however is a result that follows

from proposition 3. In the very closely related IH-NDG, by contrast, perpetual

disagreement satisfies renegotiation proofness while obviously violating no-delay.

3.3 Markov Perfect Equilibria

Negotiations often take place between strangers or relatively inexperienced bar-

gainers. The assumption of renegotiation-proofness may be inappropriate in

such cases. A different assumption, routinely made in applied work, requires

players to use Markov strategies. Maskin and Tirole (2001) discusses some of

the theoretical considerations that support its use. Vespa (2020) finds experi-

mental evidence of it as the modal behaviour in the dynamic common pool game.

In this section I focus on SPE in Markov strategies. Similar to the previous sec-

tion, the agenda is not to propose the Markov restriction as the only “sensible”

one. Instead, it is to obtain a sharper characterization of the behaviour of an

empirically large and relevant group of people in this setting.17

Definition 3 σi is a Markov strategy for player i if for all h, h̃ ∈ H t

(i) σi(h) = σi(h̃) and

(ii) σi(h, z
t+1) = σi(h̃, z

t+1).

17Note that unlike in the repeated prisoner’s dilemma, Markov strategies do not preclude
efficiency in the current bargaining game.
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In words, under the Markov requirement, player i’s demand in period t must

be invariant to the specific t − 1 demand profiles rejected in the past. Fur-

ther, the concession stage decision in period t should depend upon the period

t demand profile alone. Note, however, that it allows demands and concession

stage behaviour to depend on calendar time. For instance, a strategy in which

the demands get less and less extreme over the first m periods of bargaining is

permitted. Indeed, such strategies can generate delay in equilibrium.

Define nMB as the largest n ∈ N that satisfies,

k1
δn1

+
k2
δn2

≤ k1 + k2 + k1k2.

Let OAMP be the set of outcomes, such that (z, t+ 1) ∈ OAMP implies

t ≤ nMB and
1− δt1

δt2(1 + k1)− 1
≤ z2
z1

≤ δt1(1 + k2)− 1

1− δt2
.

Proposition 4 (a) If (z, t+1) is an MPE outcome then (z, t+1) ∈ OAMP and

k2
1 + k1

min

{
1− δ1
1− δ2

,
1− δn

MB+1
1

1− δn
MB+1

2

}
≤ z2
z1

≤ 1 + k2
k1

max

{
1− δ1
1− δ2

,
1− δn

MB+1
1

1− δn
MB+1

2

}
.

(6)

(b) If (z, t+ 1) ∈ OAMP satisfies

k2
1 + k1

1− δn1
1− δn2

≤ z2
z1

≤ 1 + k2
k1

1− δn1
1− δn2

(7)

for some 1 ≤ n ≤ t+ 1, then (z, t+ 1) is an MPE outcome.

The detailed proof is in the appendix. I sketch the argument here. As

with SPE, to sustain delay in MPE the bargainers must make incompatible de-

mands that neither wish to deviate from. To ensure that a unilateral deviation

to a compatible profile is not profitable, the demands simply need to be suffi-

ciently aggressive, exactly as in the case of SPE. It is less demanding to rule

out profitable deviations where a bargainer makes a lower but still incompatible

demand and extracts a concession from her opponent. Long anticipated delay
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makes such deviations feasible since it lowers the payoff from disagreement and

makes concession more palatable. Due to the Markov restriction, the continua-

tion play cannot change following such a deviation. This feature further limits

the amount of delay that can arise in an MPE as well as the range of eventual

surplus divisions. These constraints characterize the set of outcomes OAMP .

The recursive structure of the game and MPE is used next to characterize

the best compatible demand profile that can arise for each player. Equilibrium

continuation plays are allowed to involve any length of delay within the bound

identified above. This delivers the necessary condition. The sufficiency condition

uses a stronger recursive structure. Any compatible demand profile announced

by the bargainers is followed by a continuation play that features the same length

of delay n.

The final result in this section characterizes the set of stationary MPE out-

comes.18 Stationarity does not allow strategies to depend on calendar time. It

requires

σi(h) = σi(h̃) ∀h, h̃ ∈ H.

Proposition 5 (z, t) is a stationary Markov perfect equilibrium outcome if and

only if t = 1 and
1− δ1
1− δ2

k2
1 + k1

≤ z2
z1

≤ 1− δ1
1− δ2

1 + k2
k1

.

Key Implications

The set of stationary MPE outcomes coincides exactly with the set of renegotiation-

proof SPE outcomes. Typically, in dynamic games where both concepts ap-

ply, stationary Markov perfection is strictly more restrictive than renegotiation

proofness.19 Effectively, renegotiation-proofness rules out non-stationary strate-

gic behaviour of a specific kind, one that leads to multiple outcomes that can

18The proof is in the appendix but follows immediately from the observation that a sta-
tionary MPE features either immediate agreement or perpetual delay and the latter can be
ruled out. The result then follows from lemma 5 and proposition 1.

19Take an infinitely repeated prisoner’s dilemma game with high enough discount factors,
for instance. The unique MPE outcome involves both parties defecting forever. On the other
hand, cooperation can be sustained as a weak renegotiation-proof SPE, as shown in Farrell
and Maskin (1989) and van Damme (1989).
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be Pareto ranked. Stationary MPE typically does more by ruling out all non-

stationary strategic behaviour. In the current model, every outcome that sur-

vives renegotiation-proofness can be supported by stationary strategies, which

robs stationary Markov perfection of any additional bite.

Markov perfection without the added constraint of stationarity, however,

does not imply renegotiation-proofness. Since continuation play can vary by

calendar time, two subgames which “look the same” may feature equilibrium

outcomes that can be Pareto ranked. This is precisely what happens in the cur-

rent model, wherein bargainers make a series of incompatible demands followed

by an agreement.20 Proposition 4 has two key implications in this setting.

First, if the bargainers are equally impatient then the set of equilibrium

compatible profiles in an MPE coincides with that in renegotiation-proof SPE,

even though the latter does not feature delay while MPE may. The set consists

of all exactly compatible demand profiles z such that

k2
1 + k1

≤ z2
z1

≤ 1 + k2
k1

.

Second, with unequal impatience the set of equilibrium compatible profiles

is larger under MPE than under renegotiation-proofness. Remarkably, the best

compatible profile for the more patient player remains the same under both spec-

ifications, while the less patient player may do better. For instance, inequality

6 translates to
k2

1 + k1

1− δ1
1− δ2

≤ z2
z1

≤ 1 + k2
k1

1− δn
MB+1

1

1− δn
MB+1

2

,

when δ1 ≥ δ2.
21

For the intuition behind these findings return to figure 1. It shows how the

best equilibrium compatible profile for player 1 (label it z∗) given the present-

discounted continuation profile w , marked by the point L, is pinned down by

the intersection of the two indifference lines. The continuation outcome has

20In an equilibrium with delay, the overall game and the subgame starting in the period
where agreement is reached “look the same” and yet feature different outcomes that can be
Pareto ranked.

21Since δ1 ≥ δ2 ⇔ 1−δt1
1−δt2

≤ 1−δt+1
1

1−δt+1
2

, as shown in Lemma 6 in the appendix.
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two components, the (eventual) compatible profile, say z̃, and the delay to that

agreement, say t. Two key properties obtain. First, z∗1 is increasing in z̃1 and

second,
∂z∗1
∂z̃1

< 1.

Under Markov perfection, the continuation outcome (z̃, t + 1) that yields

the best equilibrium profile for player 1 may feature delay but no greater than

nMB, and z̃ itself must arise in some MPE. Restricting attention to MPEs where

any compatible demand is followed by continuation play with the same length

of delay t, permits a simple characterization of the best equilibrium profile for

player 1 (in this restricted set of MPEs), say zt∗, as the solution to a fixed point

problem. For each delay t between 0 and nMB the corresponding best profile

for player 1 satisfies the equation
1−zt∗1
zt∗1

= k2
1+k1

1−δt+1
1

1−δt+1
2

. The two key properties

highlighted earlier then ensures that the best (unrestricted) MPE compatible

profile for player 1, z∗, must satisfy the inequality

min
0≤t≤nMB

k2
1 + k1

1− δt+1
1

1− δt+1
2

≤ 1− z∗1
z∗1

.

The bounds identified above, one for each permissible length of delay, all

coincide in the case of equal impatience, which leads to the first key implication

of Proposition 4. In the case of unequal impatience, if player 1 is the more patient

one, then she can never do better in an MPE with delay than one without. Indeed

with δ1 > δ2, the bound above is attained at t = 0.

4 General Model

The qualitative results obtained in propositions 1 and 3 do not rely on the

assumption of linearity. Let U and C be the set of all (pairs of) functions that

satisfy assumptions 1 and 2, respectively. Fix some u ∈ U and c ∈ C and

n∗ ∈ N. For i ∈ {1, 2}, define the function z̃n
∗

−i(zi) implicitly as the solution to

the equation

u−i(1− zi)− c−i(zi + z̃n
∗

−i(zi)− 1) = δn
∗+1

−i u−i(1− zi). (8)
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Similarly define the function ˜̃zn
∗

−i(zi) implicitly as the solution to the equation

ui(1− ˜̃zn
∗

−i(zi))− ci(zi + ˜̃zn
∗

−i(zi)− 1) = δiui(zi). (9)

It turns out that there is a unique zi, which I denote as zMn∗
i , that solves

˜̃zn
∗

−i(zi) = z̃n
∗

−i(zi). (10)

Proposition 6 In the general model, if (y, t) is the outcome of an SPE with

maximum delay n∗, with y = u(z), then d(z) = 0 and

1− zMn∗
1

zMn∗
1

≤ z2
z1

≤ zMn∗
2

1− zMn∗
2

. (11)

Relabel zMn∗
i simply as zMi when n∗ = 0, and the following generalization of

Proposition 3 obtains.

Proposition 7 In the general model, (y, t) is the outcome of a renegotiation-

proof SPE with y = u(z), if and only if t = 1, d(z) = 0 and

1− zM1
zM1

≤ z2
z1

≤ zM2
1− zM2

. (12)

Figure 3 clarifies the content of these results. For a given n∗, equations 8

and 9 generate four functions. The function z̃n∗2 (z1) returns the smallest player

2 demand such that following any pair of incompatible demands z1 and z2 >

z̃n∗2 (z1) and a continuation payoff of δn
∗+1

2 (1 − z1), player 2 strictly prefers S.

The function ˜̃zn∗2 returns the largest player 2 demand such that following any

pair of incompatible demands z1 and z2 < ˜̃zn∗2 (z1) and a continuation payoff

δ1u1(z1), player 1 strictly prefers concession, if 2 chooses S.

Notice that z1 > zMn∗
1 implies ˜̃zn∗2 (z1) > z̃n∗2 (z1). Such a z1 cannot be the

best equilibrium efficient split for player 1, because player 2 could then deviate

to a demand z2 ∈ (z̃n∗2 (z1), ˜̃z
n∗
2 (z1)). This would force a concession from player 1

in the resulting concession game, for any equilibrium continuation payoff. This is

the argument behind the bound zMn∗
1 . A symmetric argument applies to player

2’s bound of zMn∗
2 .
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Figure 3

Increasing player 1’s cost function, holding all else fixed, leaves functions ˜̃zn∗1

and z̃n∗2 unchanged while moving ˜̃zn∗2 and z̃n∗1 closer to the efficient frontier. Fig-

ure 3 shows that this would increase zMn∗
1 and lower zMn∗

2 , confirming Schelling’s

insight about weakness being a strength in this more general setting. Increasing

player 1’s patience, δ1, has a qualitatively similar effect to increasing her cost

function. Finally observe that lowering n∗, leaves ˜̃zn∗i unchanged for i ∈ {1, 2}
while moving both z̃n∗1 and z̃n∗2 closer towards the diagonal. This means that

zMn∗
i is increasing in n∗, as expected.

4.1 Kalai Bargaining Solution

Kalai (1977) introduces a family of bargaining solutions parametrized by a sin-

gle variable, a proportion. Any bargaining solution that is monotonic, in that

increasing the set of feasible bargaining outcomes never hurts either bargainer

(formally defined below), is a Kalai (or proportional) bargaining solution (KBS)

and vice versa. The family of solutions is exactly characterized by the axioms of

independence of irrelevant alternatives, individual monotonicity and continuity.

In addition to being compelling theoretically, the solutions are used extensively

and in a variety of fields. Recently, for instance, it is used increasingly in the
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field of monetary economics.22

I now introduce some notation in order to define KBS. Let Π(u) = {y|yi =
ui(zi), zi ≥ 0, ∀i ∈ {1, 2} and z1 + z2 ≤ 1} denote the set of feasible payoffs that

can arise from some allocation of the surplus. Set ud = (u1(0), u2(0)) = (0, 0) to

be the disagreement point. Combined, (Π(u), ud) represents a bargaining prob-

lem. Finally let B = {(Π(u), ud)|u ∈ U} be the set of all bargaining problems

that can arise from payoff functions that satisfy assumption 1. A bargaining

solution is a function ϕ : B → R2 such that ϕ(B) ∈ B for all B ∈ B. It is

monotonic if for any A,B ∈ B, A ⊂ B implies ϕ(B) ≥ ϕ(A).

The Kalai Bargaining Solution with proportions (θ, 1), denoted by Kθ, is

defined as

Kθ(Π, u
d) = λ(Π, ud) · (θ, 1),∀Π ∈ B

where λ(Π, ud) = max{q ∈ R|q · (θ, 1) ∈ Π}.23 In words, the proportion pa-

rameter, θ, fixes a unique ray in the utility space passing through (0, 0). For

any bargaining problem, the KBS with proportion θ then simply picks the point

where the ray meets the efficient frontier of the bargaining problem.

4.2 Strategic Foundation

Return now to the general non-cooperative bargaining model. Making the con-

cession cost functions steeper makes it progressively harder for the bargainers

to back down from their demands. At the limit, with arbitrarily high marginal

concession costs, the infinite horizon version of the Nash demand game obtains.

Neither player can back down from incompatible demands. Binmore (1987)

points out that any efficient payoff profile can be supported as an SPE outcome

of the IH-NDG. Infinite delay can also be supported in SPE by each bargainer al-

ways demanding the entire surplus. Chatterjee and Samuelson (1990) show that

this acute multiplicity further survives trembling hand perfection (see Selten

(1975)). The limit set of renegotiation-proof SPE outcomes, in sharp contrast,

is a singleton.

22See, for instance, Lagos, Rocheteau and Wright (2017). Duffy, Lebeau and Puzzello
(2021) find that KBS better fits the behaviour of bargainers in the laboratory facing liquidity
constraints.

23Note that (θ, 1) is a vector and since q is a scalar, q · (θ, 1) = (qθ, q).
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For any u ∈ U and c ∈ C, let gc(u) denote the game described in section 2,

where ui and ci are player i’s payoff and concession cost functions, respectively,

for i ∈ {1, 2}. Denote the corresponding set of renegotiation-proof SPE payoff

profiles by ξ(gc(u)). gc therefore maps any pair of payoff functions in U to its

corresponding infinite horizon bargaining game. Consider a sequence of such

mappings {gcn}∞n=1 with cn ∈ C for all n, such that as n → ∞, cn
′

i (0+) → ∞
(the right derivative of the concession cost functions at 0 becomes arbitrarily

large). Next, assume that there exists some integer N such that ∀m,n > N ,

0 < lim
d↘0

cm1 (d)/c
m
2 (d) = lim

d↘0
cn1 (d)/c

n
2 (d) <∞. (13)

In words, the assumption requires that sufficiently far along the sequence, the

ratio of the concession costs for vanishingly small concessions is the same, pos-

itive and bounded. The assumption is satisfied by the linear specification in

section 3, but it does not require linearity of either the individual cost functions

or even their ratio.24

Finally let

ξ∗γ(u) = lim
n→∞

ξ(gc
n

(u)), where γ = lim
n→∞

cn1 (0+)/cn2 (0+).

The limit set of renegotiation-proof SPE is therefore captured by ξ∗γ(u). It is

parameterized by γ, which is the ratio of the concession cost functions evalu-

ated at the limit as the concessions become vanishingly small. The assumption

described in 13 ensures that γ is well defined.

Proposition 8 For all u ∈ U , ξ∗γ(u) = Kθ(Π(u), u
d) where θ = γ(1−δ2)/(1−δ1).

Intuition

Nash equilibria of non-cooperative games are invariant to affine transformations

of agents’ utility functions while the Kalai solution is not. This creates an

important obstacle that any strategic foundation for the Kalai solution must

overcome.25 It is achieved in Proposition 8 by obtaining the Kalai solution as

24Consider, for example, cn1 (d) = n(d+ 2d2) and cn2 (d) = n(4d+ d2).
25I thank an anonymous referee for emphasizing this feature.
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the limit equilibrium outcome of a particular sequence of games. The utility

function of agent i in any game along this sequence, say n, is itself a function of

both the payoff function ui and the cost function cni (in an additively separable

way). Therefore the set of RP-SPE outcomes for the game gc
n
(u), denoted by

ξ(gc
n
(u)) is not invariant to affine transformations of u alone (holding cn fixed),

and likewise neither is its limit, ξ∗γ(u).

Recall that a Kalai solution (i.e. with a particular proportion) maps any

pair of utility functions, one for each bargainer, to an outcome on the Pareto

frontier with the property that the ratio of the utilities corresponds to the fixed

proportion. The strategic foundation in this paper similarly takes any pair of

utility functions, one for each bargainer, and models it as the payoff functions

in a strategic game which has the additional ingredients of discount factors and

concession cost functions. It then finds the limit equilibrium payoff profile of

the game as the concession cost functions are made arbitrarily steep. The limit

equilibrium payoff profile admits a characterization where the ratio of the utility

to the two bargainers is equal to a constant which is independent of the utility

functions themselves. This is precisely why it coincides with a Kalai solution

whose proportion aligns with the constant.

The constant identified in the strategic foundation is a function of the bar-

gainers’ discount factors and a limiting ratio of the concession cost functions.

The latter is in a sense a measure of relative concession costs evaluated at a limit

where the concession cost functions are arbitrarily steep.

The intuition for the characterization result can be split into three key ar-

guments. First, for any set of cost and payoff functions, the two distinct best

renegotiation proof SPE outcomes (henceforth labeled extreme RP-SPE out-

comes), one for each player, admit a stationary strategy profile each. This

equilibrium feature of the current model does not hold for general dynamic bar-

gaining games.26 It then follows that an agent’s best renegotiation proof SPE

outcome is identical to her best stationary SPE outcome.

Second, the two extreme RP-SPE outcomes approach each other as the

marginal concession cost increases. This can be seen in figure 3, setting n∗ = 0.

26For instance, the extreme RP-SPE outcomes in the 3-person Rubinstein bargaining game
reported in Sutton (1986) do not admit a stationary strategy profile.
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The extreme RP-SPE outcomes are (zM1 , 1 − zM1 ) and (1 − zM2 , z
M
2 ). As the

marginal concession cost increases, all the functions z̃0i and ˜̃z0i for i ∈ {1, 2},
swing towards the efficient demand frontier. In turn, the two extreme RP-SPE

outcomes and, as a result all RP-SPE outcomes, converge. Very importantly,

such convergence does not occur for the two best SPE outcomes in general.

Higher marginal concession costs permit longer equilibrium delay, which can be

used to construct equilibria that keep the two outcomes apart.

Finally, at the limit the ratio of payoffs to the two bargainers equals a con-

stant. The properties of this constant are central to the strategic foundation

result. First, the constant is independent of the payoff functions, and as stated

above, this is exactly why the limit outcome aligns with a Kalai solution. Sec-

ond, the value of the constant pins down the relevant proportion of the Kalai

solution. Lastly, the constant is a function solely of the discount factors and a

limit ratio of the concession cost functions and therefore these parameters en-

dogenously determine the proportion of the Kalai solution. These properties

of the limit characterization rely on the additive separability of the concession

costs and their dependence on the distance between “physical” demands instead

of payoff levels.

The strategic foundation for KBS in Dutta (2012), which studies the single

period version of the current model, is similarly obtained at the high concession

cost limit. The convergence argument in that paper is substituted by the sec-

ond and third arguments above, to fit the infinite horizon environment and the

requirements of subgame perfection.

High concession cost limit

The high concession cost setting is best interpreted as a perturbation of the per-

fect commitment implicit in the IH-NDG. In the latter, agents are fully commit-

ted to their demands in that incompatible demands directly lead to an impasse

in that period. The current analysis shows that allowing agents even the smallest

room for concession opens up strategic considerations that substantially shrink

the set of equilibrium outcomes. That perturbing the commitment structure

selects the KBS, stands in sharp contrast to other equilibrium selection argu-

ments for the NDG that deliver the Nash bargaining solution (see Nash (1953),
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Binmore (1987a), Carlsson (1991)) . These latter arguments perturb the infor-

mation structure in a way that effectively smooths the NDG payoff function, in

that the payoff following incompatible demands smoothly tapers off to zero as

a function of the demands. The IH-NDG with a similar information structure

perturbation is obtained as a special case of a more general bargaining model

studied in Harstad (2023). Here too, the argument selects the asymmetric Nash

bargaining solution. The commitment structure perturbation in the current pa-

per does not smooth the (effective) payoff functions. They remain discontinuous

at the efficient demand frontier.

The Nash program

A narrow reading of the Nash program simply calls for strategic games whose

equilibria align with a given cooperative solution concept. A broader interpre-

tation requires further that the strategic models capture key features of some

class of institutional frameworks.27 This facilitates the use of the corresponding

bargaining solution for negotiations that take place in such institutional settings.

The preceding analysis makes such a case for the Kalai solution in environments

where commitment ability by way of concession costs is prevalent. Section 5.1

lists some such institutional and social environments.

It is clear in Kalai (1977) that while the family of bargaining solutions is a

compelling one, finding the relevant proportion needs information beyond what

is modelled in a standard bargaining problem (an element of B). In proposition

8 the degree of impatience of the bargainers and their relative concession costs

constitute this information. So not only does this formalization of Schelling’s

theory provide a strategic foundation for the Kalai bargaining solution, it also

selects the appropriate proportion.

Implications

The characterization in proposition 8 is easy to interpret. The physical split of

surplus must be efficient (z1 + z2 = 1) and the resulting ratio of utilities must

satisfy
u1(z1)

u2(z2)
= γ

1− δ2
1− δ1

.

27See quoted passage from Binmore, Osborne and Rubinstein (1992) in the introduction.

30



Greater patience leads to higher payoff, as in canonical models of bargaining. In

essence, despite its definition as a limit, γ captures the relative concession costs

faced by the players. Higher concession costs translate into better bargaining

outcomes. The limit solution, like the KBS it is equivalent to, satisfies mono-

tonicity and fails scale invariance. An important implication is that scaling up

a specific agent’s payoff function brings that agent a higher payoff (as required

by monotonicity) but also a lower physical split of the surplus. Consider the

following example, borrowed from Kalai (1977) that involves two scenarios of

splitting one hundred chips. In both, the bargainers have the same linear utility

for money, the same discount factors and γ = 1. In the first scenario either

player can cash in each chip for 1 dollar. In the second, player 2 can continue

to cash in each chip for one dollar while player 1 can cash in each chip for three

dollars. In the limit solution the players get 50 dollars each from a 50-50 split

in the first scenario and 75 dollars each from a 25-75 split in the second sce-

nario. The Nash bargaining solution, by contrast, calls for a 50-50 split in both

scenarios. Note that the difference arises even in a wholly linear specification.

5 Discussion

5.1 Concession Costs

The commitment ability at the heart of the bargaining model is generated by

the cost an agent must pay from backing down from her current incompatible

demand.28 It is therefore important to discuss the relevant features of these

concession cost functions. Following the Nash program mandate, I begin by

listing a few ways in which such costs arise and the forms they take.

Examples

(i) Audience Costs : Elected representatives negotiating on behalf of their con-

stituents are punished with a dimmer re-election prospect (the cost) for backing

down from a publicly announced demand. In international negotiations this cost

is generated by the domestic political audience, and has been studied in some

detail following the work of Fearon (1994) and Martin (1993). Tomz (2007) pro-

28By contrast, bargainers are not held to historical demands that led to an impasse.
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vides direct evidence of these audience costs through experiments embedded in

public opinion surveys.

In domestic negotiations between rival political parties the level of public sup-

port generated by each competing demand determines its audience cost. The

greater the support for an announced demand the higher the cost of backing

away from it. Leventoglu and Tarar (2005) and Basak and Deb (2020) study

such concession costs in a Rubinstein bargaining model, where each player gets

only one attempt at commitment.

(ii) Delegated Bargaining : Negotiations between two entities are often carried

out by representatives (delegates) armed with appropriate incentives. A penalty

for backing down from an announced demand is one such incentive. Indeed,

the example in Schelling (1956) of a union official bargaining on behalf of the

members has this feature; concession raises the odds of the official getting fired.

Under this interpretation of concession costs, the form of delegation is exoge-

nous in this paper. For other forms of (endogenous) delegation in bargaining

see Crawford and Varian (1979), Jones (1989), Segendorff (1998) and Harstad

(2008).

(iii) Face: Perhaps the most pervasive form of concession costs, but the least

studied in economics, consists of losing face. Carefully detailed in Ho (1976), the

concept of face, Chinese in origin, corresponds to a notion of social standing that

is distinct from status, prestige, dignity, and the like. Unlike a binary variable, it

can vary quantitatively in a gradual manner. Furthermore, the relevant quantity

of face for an individual depends on the social situation of the interaction. As

Ho points out, It is the extent to which a particular person’s social functioning

is adversely affected that constitutes the true measure of what losing face means

to him. In the current setting, concession leads to losing face. This form of

concession costs allows for a variety of social, political and historical features to

translate into bargaining power in the model. For example, concession may lead

to greater (or lesser) loss of face for a man compared to a woman, depending on

gender norms.
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Concession

In the model, backing down from a stated demand in a given round of bargaining

and accepting the lower competing offer incurs a concession cost. On the other

hand, following an incompatible demand that led to an impasse, a lower demand

in a subsequent round of bargaining carries no such penalty. The assumption

here is that the explicit concession within an active round of bargaining in the

first scenario is evaluated differently (by the political audience, society or self,

depending on the source of the concession cost) from the implicit concession in

the second. This may happen for a number of reasons. For instance, the reaction

of a domestic political audience to the evolution of an international negotiation

may be driven by the latest news cycle, which would typically have greater

coverage of any explicit concession in an active round of bargaining. Further,

demands in negotiations tend to be more involved descriptively than mere points

on the unit interval, as we typically assume in our theoretical models. As a result,

it may be easier to recognize an instance of explicit concession as compared to

an implicit one.29

The modelling assumption has two implications. First, the resulting commit-

ment ability is short lived and second, bargainers can make multiple attempts

at commitment. Leventoglu and Tarar (2005) and Basak and Deb (2020) make

the opposite assumption, wherein bargainers attempt to commit only once with

an initial round of announced demands. They then engage in Rubinstein bar-

gaining with the feature that any eventually agreed upon share, if less than the

initial demand, carries a concession cost. An interesting implication of these two

approaches to modelling commitment is the limit model as the concession costs

are made arbitrarily high. At the limit, these models with a single opportunity

to commit lead to the static NDG while the current model leads to the IH-NDG.

29Kirky (1995) gives an account of the negotiations from 1985 to 1988 between the United
States and Canada regarding claims over the waters of the Canadian Arctic archipelago. At
an early round, the publicly stated Canadian claim to sovereignty concerning the waters of
the archipelago, which led the Canadian public to perceive the issue as a challenge to its
sovereignty, allowed the Canadian side little room for compromise. However, they did not face
a similar constraint when they sidestepped the sovereignty issue in a later round, which in
effect was a climb down from their earlier demand.
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Structure of the cost function

The qualitative results of the bargaining model, as in section 4, require only

that the concession cost functions satisfy assumption 2. This is consistent with

the examples above that suggest little structure for the functions other than it

be increasing in the conceded amount. In particular, the cost functions need

not be linear (as in section 3) or even convex. In many models of economic

decision making, the cost from taking some productive action is assumed to be

convex to ensure the overall objective function remains concave and admits an

interior optimal solution. In the current setting, concession costs are incurred

only off the equilibrium path. Therefore, despite their key role in the model, the

curvature of these functions plays no role.

In line with the examples above, an agent’s concession cost in the model is, in

a sense, independent of how much she cares about the surplus. For instance, the

audience cost faced by an elected representative is determined by how much the

domestic audience cares to punish the agent for different degrees of concession.

The cost is not directly related to how much the agent herself values different

surplus splits. This feature is captured in two ways by the model. First, the

size of the concession depends on the agents’ “physical” demands and not payoff

levels. Second, the concession cost is additively separable. These in turn make

the (large marginal cost) limit ratio of the commitment costs independent of

the payoff functions, which is a key component of proposition 8. Like the Kalai

solution, the equilibrium prediction at this limit varies with the payoff function.

Relation to renegotiation proofness

The choice to concede is an individual one (made in equilibrium) and arises after

incompatible demands. It depends on how far apart the incompatible demands

are, the cost function and anticipated future play. Renegotiation-proofness rules

out incompatible demands before they are made, by requiring agents to coordi-

nate away from Pareto dominated equilibria. Once incompatible demands are

made, however, concession (in that period) is costly. Higher concession cost

functions reflect sharper incentives from sources like in the examples above, and

are unrelated to the agents’ coordination ability.
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5.2 Gradualism

An interesting feature of the model is the nature of incompatible demands in

equilibria featuring delay. Gradualism is a commonly observed feature of bar-

gaining in which players gradually lower their demands, starting with very ag-

gressive ones and ending with a compatible profile.30 SPEs with delay accomo-

date gradualism in a natural way. This can be seen most easily in MPEs. The

following corollary characterizes this feature.

Corollary 1 If (y,m) is the outcome of a Markov perfect equilibrium with a

delay of m− 1 > 0 periods then the incompatible demand profiles zt for 1 ≤ t ≤
m− 1 must satisfy

zti ≥
(1− δm−t

−i y−i)(1 + ki)− δm−t
i yi

ki
.

In words, the smallest (incompatible) demand that can arise in an MPE is

higher the further away (in periods) it is made from the eventual agreement.

Two separate features contribute to this. The obvious one is that for neither

player to want to deviate to simply accepting the others implicit offer (by making

a compatible demand) it must be that the offers are worse than accepting the

delayed agreement. The longer the delay the worse the offers need to be, and

therefore higher demands. The less obvious feature is that a bargainer may find

it profitable to deviate to a lower but still incompatible demand profile that

extracts a concession from the other player. To rule out such a deviation, the

incompatible demands need to be even higher than the level required to rule

out deviations to compatible profiles. Further, this threshold is higher the more

periods that remain to agreement.

5.3 Simultaneous versus sequential demands

The importance of simultaneous versus sequential demands is, in a sense, a

superficial one in the current setting. Instead, the two key feature are the fol-

lowing. First, the demand made by one agent is not just met by a decision to

30See, for instance, Backus, Blake, Larsen and Tadelis (2020).
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accept or reject, but by a competing demand from the other agent. Second,

once two incompatible demands arrive at the table, the decision to accept or

reject (stick) is made simultaneously. The latter concession stage is where the

agents’s concerns about concession costs and patience combine to determine her

bargaining strength, and simultaneity here is important. By contrast, requiring

the demands to be made in some arbitrarily fixed order, has a lot less impact.

For instance, all RP (or no-delay) SPE outcomes identified in propositions 5

and 3 continue to be supported by SPE, with sequential demands that follow

some fixed order. The specification matches descriptive accounts of bilateral

negotiations that associate a round of bargaining with two competing positions.

See for instance, the evolution EU-UK positions on citizen’s rights during Brexit

negotiations in 2017 listed in Department for Exiting the European Union and

Home Office (2017).

Negotiations that feature collective bargaining in North America also match

the specification here, in that it involves multiple rounds with each round fea-

turing a pair of competing offers and subsequent discussion. In a given round,

the order of proposal is neither specified nor is given any importance. In par-

ticular, it is not the case that within a round a competing proposal is made

only after the first is rejected. Further, the first round explicitly requires the

simultaneous exchange of offers. These negotiations occur in a variety of set-

tings, such as between a university administration and the relevant chapter of

the American Association of University Professors, the governments of Canada

and the United States over an updated Columbia River Treaty, and the Nuclear

Regulatory Group and the Canadian Nuclear Safety Commission 2022.31

5.4 Other Related Literature

Ellingsen and Miettinen (2014) (henceforth EM) extend the static model of

Ellingsen and Miettinen (2008) to a fairly involved dynamic model. Formaliza-

tions of Schelling’s ideas are usually closely related to the Nash demand game.

The EM model has elements of both the Nash demand game (simultaneous de-

mands) and the generalized Rubinstein bargaining framework. As examples of

31See Rider University (2022), Government of British Columbia (2023) and The Professional
Institute of the Public Service of Canada (2019).
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the latter, (a) following demands that are more than compatible, a single respon-

der is selected randomly to accept or reject the other’s offer and (b) following a

choice of flexibility by both bargainers, a single player is randomly selected to

make an offer for that period. The key difference with the current formalization,

however, is that in EM (as well as Ellingsen and Miettinen (2008)) commitment

ability is exogenous and independent of the actual demands made by the play-

ers. It does not matter whether a bargainer is offered a lot of room to back

down or none at all, her commitment ability is pinned down by an exogenous

randomization device. This distinction is critical, since in the current study the

strategic feature that resolves the bargaining problem, is precisely the ability

of bargainers to affect each other’s commitment ability by choosing appropriate

demands.

The delay obtained in Markov perfect equilibrium in section 3.3 is neither

the result of money burning as in Avery and Zemsky (1994) nor due to strategic

uncertainty as in Friedenberg (2019). In a sense, as Sakovics (1993) puts it,

the delay is wholly ritualistic and can be expected in settings where bargainers

take their cues from norms or traditions that are perhaps optimal in some larger

context but offer an inefficient prescription in the specific bargaining instance.

Similar equilibria also arise in Perry and Reny (1993) and Sakovics (1993), who

study a generalization of the Rubinstein model with less restriction on when

offers can be made and responded to. A key finding in both is that allowing

for simultaneous demands generates an acute multiplicity of equilibria including

those with delay. While not their focus, the SPE with delay in these models

feature a milder form of the gradualism that appears in the current study. The

further away the anticipated agreement, the further apart the incompatible de-

mands need to be to deter deviation to a compatible profile. As stated earlier,

in the current study the incompatible demands need to be even further apart to

rule out deviations to incompatible profiles. Compte and Jehiel (2004) provides

a wholly different rationale for gradualism. Players always have access to outside

options whose values depend on past offers. If more favourable offers increase

the value of the opponent’s outside option, then bargainers find it optimal to

lower their demand gradually in equilibrium.
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A Appendix

Lemma 4 σ cannot be an SPE in the general model, if for some h ∈ H, σ(h) =

z such that zi = 1 and z−i = 0 for some i ∈ {1, 2}.

Proof. Suppose under σ, in the subgame g(h), the two players make the

compatible demands zi = 1 and z−i = 0, and player −i obtains a payoff of

u−i(0) = 0. The highest payoff player i could get if bargaining broke down

this period is δiui(1). Notice that ui(1 − ẑ−i) − ci(zi + ẑ−i − 1) is a con-

tinuous (decreasing) function of ẑ−i. It takes a value of ui(1) at ẑ−i = 0,

which is strictly greater than δiui(1). Therefore there exists ẑ−i > 0 such that

ui(1 − ẑ−i) − ci(zi + ẑ−i − 1) > δiui(1). Now, if player −i were to deviate to

this ẑ−i instead of demanding 0, then in the subsequent concession game the

dominance solvable outcome would involve player i playing A and −i playing S.
Since this is a profitable deviation, the strategy profile σ cannot be an SPE.

Proof for Lemma 2.

Without loss of generality, set i = 1. Now note that bargaining failure in period

t leads to g(ht) beginning in the next period. Since σ is an SPE with maximum

delay n∗, and by lemma 1, the outcome (x,m) of this subgame must satisfy

x ∈ Bn∗
and m ≤ n∗ + 1. Suppose one such continuation outcome is given by

(z̃, n). Now consider a deviation ẑ2 from the compatible profile z which satisfies

both inequalities 1 and 2 for this continuation profile.

Table 3: Augmented Concession Game following deviation ẑ2 from Profile z
A S

A 1− ẑ2 − k1(z1 + ẑ2 − 1), 1− z1 − k2(z1 + ẑ2 − 1) 1− ẑ2 − k1(z1 + ẑ2 − 1), ẑ2
S z1, 1− z1 − k2(z1 + ẑ2 − 1) δn1 z̃1, δ

n
2 z̃2

The deviation leads to the augmented game above in the concession stage,

with (S, S) yielding a discounted payoff consistent with the continuation outcome

(z̃, n). Due to inequality 1, in this concession stage S strictly dominates A for

player 2. Inequality 2 in turn ensures that given player 2’s choice of S, player

1 strictly prefers to play A. In other words, the unique dominance solvable
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outcome in the augmented concession game is (A, S). Furthermore this outcome

gives player 2 a strictly higher payoff than z2. So, if there exists a ẑ2 such that

no matter what the continuation profile (consistent with σ being an SPE with

maximum delay n∗) the two inequalities above are always satisfied, then ẑ2 is a

profitable deviation from z and therefore σ is not an SPE.

Proof for Lemma 3.

The necessity of x ∈ B∗ follows by definition. By way of contradiction, suppose

that (x, t) is an SPE outcome with t > 1 , x ∈ B∗ and

δt−1
1 x1 <

1− δ2z
∗
2

1 + k2

where z∗2 = supz∈B∗ z2. It then suffices to show that player 1 is better off devi-

ating from her first period incompatible demand.

Consider the first period incompatible demand profile, z1 in such an SPE. It

must be that z1i ≥ 1− δt−1x−i for i ∈ {1, 2}. Otherwise player i could profitably

deviate to making the compatible demand 1− z1−i in period 1.

Fix some continuation payoff profile w. Then the set of incompatible demand

profiles y for which player 2 is indifferent between A and S, conditional on player

1 choosing S, is given by the the equation 1− y1−k2(y1+ y2−1) = w2. Rewrite

this as y1 = 1− k2
1+k2

y2 − w2

1+k2
. The best continuation payoff for player 2 is δ2z

∗
2 .

Let

y∗1(y2) = 1− k2
1 + k2

y2 −
δ2z

∗
2

1 + k2
.

Notice that for any incompatible demand profile y, with y1 < y∗1(y2), player 2

strictly prefers A to S, conditional on 1 choosing S, if her continuation payoff

is δ2z
∗
2 . Further, since any SPE continuation payoff w2 is no greater than δ2z

∗
2 ,

following incompatible profile y with y1 < y∗1(y2), player 2 strictly prefers A to

S, conditional on 1 choosing S, for any SPE continuation profile.

Given continuation payoff profile w, the set of incompatible demand profiles

y for which player 1 is indifferent between A and S, conditional on player 2

choosing S, satisfies the equation 1− y2 − k1(y1 + y2 − 1) = w1. Rewrite this as
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y1 = (1− y2)
1+k1
k1

− w1
1+k1
k1

. Let

y∗∗1 (y2) = (1− y2)
1 + k1
k1

.

Then for any incompatible demand profile y with y1 > y∗∗1 (y2), player 1 strictly

prefers to S to A, for any SPE continuation profile.

Return to the premise of player 1’s SPE payoff δt−1
1 x1 and first period incom-

patible profile z1. By the inequalities derived above, if for all z12 ≥ 1 − δt−1x1,

the inequalities y∗1(z
1
2) > δt−1

1 x1 and y∗1(z
1
2) > y∗∗1 (z12) hold, then a contradic-

tion obtains. Player 1 could then profitably deviate in period 1 to making an

incompatible demand y∗1(z
1
2) > ẑ11 > max{y∗∗1 (z12), δ

t−1
1 x1} and force player 2 to

concede, no matter the SPE continuation profile.

Next observe that y∗1(1) =
1−δ2z∗2
1+k2

. Since δt−1
1 x1 <

1−δ2z∗2
1+k2

(by assumption) and

y∗1 is a decreasing function, it follows that y∗1(z
1
2) > δt−1

1 x1 for all z
1
2 ≥ 1−δt−1x1.

Since y∗∗1 is also a decreasing linear function and y∗∗1 (1) = 0, to obtain the

contradiction, it suffices to show that y∗1(1 − δt−1
1 x1) > y∗∗1 (1 − δt−1

1 x1). Some

computation shows that y∗1(1− v) ≤ y∗∗1 (1− v) requires

v ≥ k1(1− δ2z
∗
2)

1 + k1 + k2
.

Since δt−1
1 x1 <

1−δ2z∗2
1+k2

, the contradiction would obtain if

1− δ2z
∗
2

1 + k2
<
k1(1− δ2z

∗
2)

1 + k1 + k2
.

The inequality indeed follows from the assumption of k2(k1 − 1) > 1. This

concludes the proof for i = 1. A symmetric argument works for i = 2.

Proof for Proposition 2.

Let OSPEd = {(z, t) ∈ OSPE|t > 1} collect all SPE outcomes that feature delay

and D = {(w1, w2)|wi = δtzi for i ∈ {1, 2} and (z, t) ∈ OSPEd} be the set of

continuation payoffs such SPE with delay generate. Let wm
i = infw∈D wi. Recall

that B∗ = {z|(z, t) ∈ OSPE}. Let z∗i = supz∈B∗ zi.
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I first show that there cannot be a deviation ẑ2 > 1− z∗1 such that

1− z∗1 − k2(z
∗
1 + ẑ2 − 1) < min{wm

2 , δ2(1− z∗1)} (14)

and

1− ẑ2 − k1(z
∗
1 + ẑ2 − 1) > δ1z

∗
1 . (15)

The right hand side (RHS) of inequality 14 gives the worst SPE continuation

payoff for player 2, while the RHS of inequality 15 gives the best SPE con-

tinuation payoff for player 1. The existence of such a ẑ2 means that player 2

has a profitable deviation from the efficient profile (z∗1 , 1− z∗1). This is because

following such a deviation, in the resulting concession game player 2’s choice

of S strictly dominates A, irrespective of the SPE continuation payoff, due to

inequality 14. Further, due to inequality 15, player 1 strictly prefers A over S,

in the face of 2 choosing S. In other words, following the deviation to ẑ2, the

dominance solvable outcome of the concession game is (A, S) and brings 2 the

higher payoff of ẑ2, no matter the continuation SPE profile. Such a ẑ2 rules out

(z∗1 , 1− z∗1) ∈ B∗ and by continuity rules out z∗1 = supz∈B∗ z1.

Inequality 14 simplifies to

ẑ2 >
(1− z∗1)(1 + k2)−min{wm

2 , δ2(1− z∗1)}
k2

while 15 simplifies to

ẑ2 < 1− (k1 + δ1)z
∗
1

1 + k1
.

Therefore z∗1 = supz∈B∗ z1 requires

(1− z∗1)(1 + k2)−min{wm
2 , δ2(1− z∗1)}

k2
≥ 1− (k1 + δ1)z

∗
1

1 + k1
.

By proposition 3, wm
2 ≥ 1−δ1z∗1

1+k1
. Then the relevant inequality is

(1− z∗1)(1 + k2)−min{1−δ1z∗1
1+k1

, δ2(1− z∗1)}
k2

≥ 1− (k1 + δ1)z
∗
1

1 + k1
.
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There are two cases to consider. If
1−δ1z∗1
1+k1

≥ δ2(1 − z∗1) then the inequality

reduces to
z∗1

1− z∗1
≤ 1− δ2

1− δ1

1 + k1
k2

. (16)

Alternatively, if
1−δ1z∗1
1+k1

< δ2(1− z∗1) then the inequality reduces to

z∗1
1− z∗1

<
k1

(1 + k2)(1− δ1)
.

Now,
1−δ1z∗1
1+k1

≥ δ2(1− z∗1) itself simplifies to

z∗1
1− z∗1

≥ δ2(1 + k1)− 1

1− δ1
.

Since in this case, inequality 16 emerges, it must be that

1− δ2
1− δ1

1 + k1
k2

≥ δ2(1 + k1)− 1

1− δ1
.

It turns out that this inequality is equivalent to

1− δ2
1− δ1

1 + k1
k2

≥ k1
(1 + k2)(1− δ1)

.

This generates the required expression

z∗1
1− z∗1

≤ max

{
1− δ2
1− δ1

1 + k1
k2

,
k1

(1 + k2)(1− δ1)

}
.

Lemma 5 The strategy profile σ described in Construction 1 is an SPE if

1− δ1
1− δ2

k2
1 + k1

≤ z2
z1

≤ 1− δ1
1− δ2

1 + k2
k1

.

Proof. The payoff to player i from σ at any subgame g(h) with h ∈ H is simply

zi. A lower demand would only lower the payoff. A higher demand would lead

to either (S, S) and a continuation payoff of δizi or (Ai, S−i) leading to a payoff
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strictly lower than zi due to the resulting concession cost. Therefore no player

has an incentive to deviate in the demand stage of any period.

To verify subgame perfection, therefore, it is sufficient to show that in the

concession stage game following an incompatible demand profile (ẑi, z−i), if (S, S)

is not a Nash equilibrium then (Ai, S−i) is. To establish this result, in turn, it

is sufficient to show the following,

1− ẑi − k−i(ẑi + z−i − 1) > δ−iz−i ⇒ 1− z−i − ki(ẑi + z−i − 1) > δizi

which is equivalent to

1− δ−iz−i + k−iz−i

1 + k−i

> ẑi ⇒
(1− z−i)(1 + ki − δi)

ki
> ẑi.

A sufficient condition for this is simply

(1− z−i)(1 + ki − δi)

ki
> 1− δ−iz−i + k−iz−i

1 + k−i

⇔ (1− z−i)(1− δi)

ki
>
z−i(1− δ−i)

1 + k−i

⇔ 1− δi
1− δ−i

1 + k−i

ki
>

z−i

1− z−i

.

Requiring the above inequalities to hold for i ∈ {1, 2} make them equivalent to

1− δ1
1− δ2

k2
1 + k1

≤ z2
z1

≤ 1− δ1
1− δ2

1 + k2
k1

.

Proof for Proposition 3. Lemma 4 above establishes that, even in the

general model, compatible demand profiles in which one player demands the

entire surplus cannot arise in an SPE. This combined with lemma 1 implies that

if (z, t) is the outcome of an SPE then d(z) = 0 and zi ∈ (0, 1) for i ∈ {1, 2}.
This in turn means that if σ is a renegotiation-proof SPE with outcome (z, t)

then t = 1. To see why, suppose instead that t > 1. Then

ψ(σ;h0) = (δt−1
1 z1, δ

t−1
2 z2) ≪ (z1, z2) = ψ(σ, h̃t),
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where h̃t is the history that occurs on the equilibrium path with the t − 1 pe-

riods of incompatible demands with neither player conceding in the subsequent

concession games. Therefore by proposition 1, inequality 5 is a necessary con-

dition for renegotiation-proof SPE outcomes. Lemma 5 establishes sufficiency

by constructing stationary SPE strategies with outcome (z, t) for any z satis-

fying inequality 5 and t = 1. Fix one such z and its corresponding stationary

SPE strategy profile, σ. Notice that σ satisfies renegotiation-proofness since by

construction ψ(σ;h) = (z1, z2) for all h ∈ H.

Lemma 6 If δj ≥ δ−j then

1− δnj
1− δn−j

≤
1− δn+1

j

1− δn+1
−j

.

Proof.

1− δnj
1− δn−j

≤
1− δn+1

j

1− δn+1
−j

⇔
1− δn+1

−j

1− δn−j

≤
1− δn+1

j

1− δnj

⇔
1 + δ−j + δ2−j + . . .+ δn−j

1 + δ−j + δ2−j + . . .+ δn−1
−j

≤
1 + δj + δ2j + . . .+ δnj

1 + δj + δ2j + . . .+ δn−1
j

⇔
δn−j

1 + δ−j + δ2−j + . . .+ δn−1
−j

≤
δnj

1 + δj + δ2j + . . .+ δn−1
j

⇔ 1

δnj
+

1

δn−1
j

+ . . .+
1

δj
≤ 1

δn−j

+
1

δn−1
−j

+ . . .+
1

δ−j

⇔ δj ≥ δ−j.

Markov Perfect Equilibria

Proof for Proposition 4. Consider a Markov strategy profile with outcome

(y, t + 1) where t ≥ 1 (features delay). For this to arise in equilibrium, among

other requirements, neither player must have a profitable deviation from the

first period incompatible demand profile, say z. The condition δtiyi > 1 − z−i

for i ∈ {1, 2} rules out profitable deviations to compatible demand profiles. Let

the remaining set of incompatible demand profiles be D(y, t + 1). Notice that
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(1, 1) ∈ D(y, t + 1). For z ∈ D(y, t + 1) to be the first period incompatible

profile in an equilibrium with outcome (y, t+1), it must further be that neither

player has a profitable deviation to yet another incompatible profile. The next

argument shows that if such a deviation exists from the profile (1, 1) then it also

does for any z ∈ D(y, t+ 1).

Suppose z = (1, 1). Then a profitable deviation by player i to an incompat-

ible profile (z̃i, 1) requires z̃i > δtiyi and (Si, A−i) to be the dominance solvable

outcome in the subsequent concession game. For the latter to be true it must

be that 1 − z̃i − k−i(z̃i + 1 − 1) > δt−iy−i and 1 − 1 − ki(z̃i + 1 − 1) < δtiyi. So

long as
1− δt−iy−i

1 + k−i

> δtiyi

such a z̃i can be found. Suppose this is true. Then consider any z ∈ D(y, t+1).

To prove that a similar deviation exists from z it suffices to show that for z∗i (z−i)

and z∗∗i (z−i) that solve 1− z∗i − k−i(z
∗
i + z−i − 1) = δt−iy−i and 1− z−i − ki(z

∗∗
i +

z−i − 1) = δtiyi, respectively, z
∗
i > z∗∗i . Since then any z̃i ∈ (z∗∗i , z

∗
i ) would be a

profitable deviation. Note that both z∗i and z∗∗i are linear and strictly decreasing

in z−i. It has already been shown that z∗i (1) > z∗∗i (1). Therefore it suffices to

show that if z∗i (z
′
−i) = z∗∗i (z′−i) then z

′
−i < 1− δt−1

i yi. Indeed, z
∗
i (z

′
−i) = z∗∗i (z′−i)

implies that

z′−i =
1 + k−i

1 + k1 + k2
(1− δtiyi) +

ki
1 + k1 + k2

δt−iy−i < 1− δtiyi.

Therefore for all z ∈ D(y, t + 1), z∗i (z−i) > z∗∗i (z−i), which in turn implies that

for any such z player i has a profitable deviation z̃i ∈ (z∗∗i (z−i), z
∗
i (z−i)).

Necessity

Consider a Markov strategy profile with outcome (y, t + 1) where t ≥ 1. It has

been shown above that for this to be an equilibrium neither player should have

a profitable deviation from a first period incompatible demand of (1, 1). The

largest demand player i can make that would lead to the dominance solvable

outcome of (Si, A−i) in the concession game is given by
1−δt−iy−i

1+k−i
. To rule out the

profitable deviation from (1, 1), this must be lower than δtiyi. This yields two
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inequalities
1− δt2y2
1 + k2

≤ δt1y1 and
1− δt1y1
1 + k1

≤ δt2y2.

Since y1 + y2 = 1 by lemma 1, the inequalities can be rewritten in terms of y1

alone,
1− δt2

δt1(1 + k2)− δt2
≤ y1 and y1 ≤

δt2(1 + k1)− 1

δt2(1 + k1)− δt1
. (17)

For such a y1 to exist it must be that

1− δt2
δt1(1 + k2)− δt2

≤ δt2(1 + k1)− 1

δt2(1 + k1)− δt1

which simplifies to the condition

k1
δt1

+
k2
δt2

≤ k1 + k2 + k1k2. (18)

Further, the inequalities in 17 imply

1− δt1
δt2(1 + k1)− 1

≤ y2
y1

≤ δt1(1 + k2)− 1

1− δt2
. (19)

Inequalities 18 and 19 followed simply from requiring no player to have a

profitable deviation from making incompatible demands in the t initial periods

of impasse for the outcome (y, t+1). The final necessary condition follows from

requiring (y, 1) to be a no-delay MPE outcome.

Suppose in an MPE, conditional on an impasse in period 1, the outcome is

(z̃, t + 1) (with t ≥ 0) in the subgame starting in period 2. What is the best

efficient equilibrium outcome that can arise in period 1 for player 1 given this

continuation play? The answer lies in solving for z1 in the following pair of

equations

1− z1 − k2(z1 + z2 − 1) = δt+1
2 (1− z̃1),

1− z2 − k1(z1 + z2 − 1) = δt+1
1 z̃1.
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Solving for z1 gives

z1 =
(1 + k1)(1− δt+1

2 (1− z̃1)) + k2δ
t+1
1 z̃1

1 + k1 + k2
.

A compatible demand profile with a higher share to player 1 than above would

allow player 2 to profitably deviate and extract a concession from 1. Notice that

z1 as computed above is increasing in z̃1 and
∂z1
∂z̃1

< 1. Next let CM be the set of

compatible demand profiles that can arise in some Markov perfect equilibrium

and z∗1 = supz∈CM z1. Then z
∗
1 must be the best efficient equilibrium outcome in

period 1 for player 1 for some equilibrium continuation play outcome (z̃, t+ 1).

Clearly z̃1 ≤ z∗1 . Further since
∂z1
∂z̃1

< 1, it must be that z∗1 ≤ z∗t+1
1 where

z∗t+1
1 =

(1 + k1)(1− δt+1
2 (1− z∗t+1

1 )) + k2δ
t+1
1 z∗t+1

1

1 + k1 + k2

for some t.

Solving for z∗t+1
1 gives

z∗t+1
1 =

(1 + k1)(1− δt+1
2 )

(1 + k1)(1− δt+1
2 ) + k2(1− δt+1

1 )
.

An analogous computation for z∗2 gives

z∗t+1
2 =

(1 + k2)(1− δt+1
1 )

(1 + k2)(1− δt+1
1 ) + k1(1− δt+1

2 )
.

It then follows that

z∗i
1− z∗i

≤ z∗t+1
i

1− z∗t+1
i

=
(1 + ki)(1− δt+1

−i )

k−i(1− δt+1
i )

(20)

for some t.

Lemma 6 shows

δj ≥ δ−j ⇔
1− δnj
1− δn−j

≤
1− δn+1

j

1− δn+1
−j

.

This implies that for a given i ∈ {1, 2}, the relevant t in equation 20 is either 1
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or the maximum delay permitted in an MPE. Therefore if (z, t+ 1) is an MPE

outcome it must be that

k2
1 + k1

min

{
1− δ1
1− δ2

,
1− δn

MB+1
1

1− δn
MB+1

2

}
≤ z2
z1

≤ 1 + k2
k1

max

{
1− δ1
1− δ2

,
1− δn

MB+1
1

1− δn
MB+1

2

}

where nMB is the largest n that satisfies inequality 18.

Sufficiency Select some (z, t+ 1) ∈ OAMP such that

k2
1 + k1

1− δl1
1− δl2

≤ z2
z1

≤ 1 + k2
k1

1− δl1
1− δl2

(21)

for some 1 ≤ l ≤ t+ 1.

Consider the following strategy profile. For the first t periods both bargainers

make a demand of 1. Further, for n ∈ {0, 1, 2, . . .}, both bargainers make a

demand of 1 in all periods t+1+nl+m where m ∈ {1, 2, . . . , l− 1}. In periods

t + 1 + nl, player i demands zi for i ∈ {1, 2}. In any concession stage game, if

it is dominance solvable, the bargainers play the resulting unique equilibrium.

In any concession stage game that follows a period t+ 1+ nl +m incompatible

demand profile wherein player i makes a demand greater than zi while −i’s
demand remains at z−i, and is not dominance solvable, the profile (Ai, S−i) is

played.

To see that this Markov strategy profile satisfies subgame perfection, consider

period 1, which features the incompatible demand profile (1, 1) and player i

expects a present discounted continuation payoff of δtizi. Clearly neither player

is better off unilaterally deviating to a compatible demand profile. A unilateral

deviation by player i to a still incompatible profile yields one of two outcomes.

Either the dominance solvable outcome in the resulting concession game is (S, S)

which is not profitable, or it is (Si, A−i). For the latter to occur it must be that

z̃i, the demand i deviates to, is no greater than
1−δt−iz−i

1+k−i
. For this to be profitable

requires further that z̃i > δtizi. But this is not possible since (z, t+ 1) ∈ OAMP ,

which implies that
1−δt−iz−i

1+k−i
≤ δtizi. Note further that

1−δt−iz−i

1+k−i
≤ δtizi implies

1−δt
′

−iz−i

1+k−i
≤ δt

′
i zi for all 1 ≤ t′ ≤ t and therefore for all 1 ≤ t′ ≤ l − 1 too. As
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a result, by an analogous argument, neither player has an incentive to deviate

in any of the first t periods as well as all periods t + 1 + nl + m with m ∈
{1, 2, . . . , l − 1}, that feature the incompatible demand profile (1, 1).

It remains to show that neither player has a profitable deviation from the

compatible demand profile z in the periods t+1+nl. Bargainer i faces a present

discounted continuation payoff of δlzi. The only way player i can profitably de-

viate is by ensuring that in the concession game the dominance solvable outcome

is (Si, A−i). This requires,

1− z̃i − k−i(z̃i + z−i − 1) > δl−iz−i and 1− z−i − ki(z̃i + z−i − 1) < δlizi

which simplify to

ẑi < 1−
(k−i + δl−i)z−i

1 + k−i

, and ẑi >
(1− z−i)(1 + ki − δli)

ki
.

Such a z̃i can exist only if

(1− z−i)(1 + ki − δli)

ki
< 1−

(k−i + δl−i)z−i

1 + k−i

⇒(1− z−i)(1− δli)

ki
<
z−i(1− δl−i)

1 + k−i

⇒1− z−i

z−i

<
1− δl−i

1− δli

ki
1 + k−i

.

This is not possible since by inequality 21

Proof for Proposition 5. A stationary MPE must feature either immediate

agreement or perpetual delay. Perpetual delay is ruled out since either player

would deviate in the first period to making an arbitrarily small demand. This

would either lead to a compatible demand profile, or if incompatible force the

opponent to concede. Therefore stationary MPEs feature no delay. The result

then follows from lemma 5 and proposition 1.

Lemma 7 For i ∈ {1, 2} and n∗ ∈ N, following equations 8, 9 and 10,

(a) z̃n
∗

−i is a well defined function with −1 <
∂z̃n

∗
−i

∂zi
< 0,
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(b) ˜̃zn
∗

−i is a well defined function with
∂ ˜̃zn

∗
−i

∂zi
< −1,

(c) zMn∗
i is well defined.

Proof. (a) Since c−i is unbounded above, z̃n
∗

−i is indeed well defined for all

zi ∈ [0, 1]. Further by the implicit function theorem it is a decreasing function

with slope
∂z̃n

∗
−i

∂zi
= −

(1− δn
∗+1

−i )u′−i(1− zi)

c′−i(zi + z̃n
∗

−i − 1)
− 1 < −1.

(b) Again by the implicit function theorem, ˜̃zn
∗

−i is well defined, decreasing and

with slope
∂ ˜̃zn

∗
−i(zi)

∂zi
= −

δiu
′
i(zi) + c′i(zi + ˜̃zn

∗
−i − 1)

u′i(1− ˜̃zn
∗

−i) + c′i(zi + ˜̃zn
∗

−i − 1)
> −1

by the concavity of ui.

(c) Note that z̃n
∗

−i(1) = 0 while ˜̃zn
∗

−i(1) > 0. Also, z̃n
∗

−i(0) > 1 while ˜̃zn
∗

−i(0) = 1.

Therefore the function z̃n
∗

−i(zi)− ˜̃zn
∗

−i(zi) is positive at zi = 0, negative at zi = 1,

continuous and (from the slope inequalities above) strictly decreasing over the

interval [0, 1]. By the intermediate value theorem it follows that zMn∗
i is well

defined and unique.

Proof for Proposition 6. Let zn
∗

i = supz∈Bn∗ zi. Then there cannot exist a

deviation ẑ2 > 1− zn
∗

1 such that

u2(1− zn
∗

1 )− c2(z
n∗

1 + ẑ2 − 1) < δn
∗+1

2 u2(1− zn
∗

1 ) (22)

and

u1(1− ẑ2)− c1(z
n∗

1 + ẑ2 − 1) > δ1u1(z
n∗

1 ). (23)

To see why, suppose that σ(h0) = (zn
∗

1 , 1− zn
∗

1 ) and there exists ẑ2 that satisfies

the inequalities above. Then it must be that

u2(1− zn
∗

1 )− c2(z
n∗

1 + ẑ2 − 1) < δt+1
2 u2(z2)

and

u1(1− ẑ2)− c1(z
n∗

1 + ẑ2 − 1) > δt+1
1 u1(z1)

for any outcome (u(z), t) of an SPE with maximum delay n∗, since for all such
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(u(z), t), it follows that z1 ≤ zn
∗

1 and z2 = 1 − z1 > 1 − zn
∗

1 and 1 ≤ t + 1 ≤
n∗+1. In other words, irrespective of the continuation strategy profile, following

such a deviation, in the resulting concession stage game, the dominance solvable

outcome would be (A, S), giving player 2 the payoff u2(ẑ2) which is strictly

greater than u2(1 − zn
∗

1 ). Therefore, if such a deviation were to exist then

(zn
∗

1 , 1− zn
∗

1 ) ̸∈ Bn∗
. The same argument ensures that z ̸∈ Bn∗

for z arbitrarily

close to (zn
∗

1 , 1− zn
∗

1 ), which in turn contradicts zn
∗

1 = supz∈Bn∗ z1.

Lemma 7 shows that z̃n
∗

2 and ˜̃zn
∗

2 are well defined functions with z̃n
∗

2 (z1) −
˜̃zn

∗
2 (z1) strictly decreasing over the interval [0, 1] and equal to zero at zMn∗

1 .

Now, it cannot be that ˜̃zn
∗

2 (zn
∗

1 ) > z̃n
∗

2 (zn
∗

1 ) since then a deviation that satisfies

inequalities 22 and 23 would exist; any ẑ2 ∈ (z̃n
∗

2 (zn
∗

1 ), ˜̃zn
∗

2 (zn
∗

1 )) would suffice.

Since ˜̃zn
∗

2 (z1) > z̃n
∗

2 (z1) for any z1 > zMn∗
1 , it must be that zn

∗
1 ≤ zMn∗

1 . A

symmetric argument establishes that zn
∗

2 ≤ zMn∗
2 .

Proof for Proposition 7.

Necessity

By lemma 1, any SPE at any history h ∈ H will involve exactly compati-

ble demands or incompatible ones followed by (S, S). SPE that further satisfy

renegotiation-proofness cannot permit delay. To see this, consider a strategy pro-

file, σ with outcome (y, t) where t > 1. By lemma 1, yi = ui(zi) with d(z) = 0.

By lemma 4, yi > 0. Now, c(σ;h0) = (δt1y1, δ
t
2y2) while c(σ;h

t) = (y1, y2). Since

c(σ;ht) ≫ c(σ;h0), σ is not renegotiation-proof. This concludes the argument

for why t = 1 if (y, t) is the outcome of a renegotiation-proof SPE in the general

model. The rest follows from Proposition 6.

Sufficiency

Fix some z such that d(z) = 0 and zi ≤ zMi for i ∈ {1, 2}. Consider the

following stationary strategy profile, σ. For all ht ∈ H, σi(h
t) = zi. If player i

in period t deviates to making a higher demand, ẑi > zi, then in the concession

stage game (S, S) is played if it is a Nash equilibrium and otherwise (Ai, S−i)

is played. For all other h ∈ H ′ some pure strategy Nash equilibrium of the

concession stage game is played.

Given the strategy profile σ, it is clear that making a lower demand at any

period is never profitable. Making a higher demand for player i also yields
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her a lower payoff, since it either leads to (S, S) in the concession game and

a continuation payoff of δiui(zi) or (Ai, S−i) with a payoff strictly less than

ui(zi) due to the concession cost. Hence no profitable deviation exists in any

demand stage. To verify subgame perfection, therefore, it is sufficient to verify

that following an incompatible demand profile (zi, ẑ−i), if (S, S) is not a Nash

equilibrium then (Si, A−i) is. For this it is sufficient to show that z̃0−i(zi) ≥
˜̃z0−i(zi).

Recall that z̃0−i(zi) as defined in equation 8, with n∗ = 0, corresponds to

the smallest demand by −i that leads to incompatibility and ensures that −i
prefers S over A in the subsequent concession stage game, assuming that in

the next period the compatible profile z is announced. ˜̃z0−i(zi), as defined in

equation 9, with n∗ = 0, in turn is the largest demand by −i that leads to

incompatibility and ensures that in the subsequent concession game, i prefers

(Ai, S−i) to (S, S), assuming that in the next period z is announced. So if

z̃0−i(zi) ≥ ˜̃z0−i(zi) then following any incompatible demand ẑ−i, if (Ai, S−i) is a

Nash equilibrium, then it must be that ẑ−i ≤ ˜̃z0−i(zi) ≤ z̃0−i(zi) and therefore

(Si, A−i) is a Nash equilibrium too. Since (A,A) is never a Nash equilibrium,

this shows that with z̃0−i(zi) ≥ ˜̃z0−i(zi) if (S, S) is not a Nash equilibrium then

(Si, A−i) must be.

Finally observe that z̃0−i(zi) ≥ ˜̃z0−i(zi) since zi ≤ zMi .

Proof for Proposition 8. It follows from proposition 7 that

ξ(gc
n

) =

{
y = u(z)

∣∣∣∣1− zMn
1

zMn
1

≤ z2
z1

≤ zMn
2

1− zMn
2

and d(z) = 0

}
,

where the incompatible demand profile (zMn
i , ẑMn

−i ) for i ∈ {1, 2} is characterized

by the equations,

u−i(1− zMn
i )− cn−i(z

Mn
i + ẑn−i(z

Mn
i )− 1) = δ−iu−i(1− zMn

i ) (24)

ui(1− ẑn−i(z
Mn
i ))− cni (z

Mn
i + ẑn−i(z

Mn
i )− 1) = δiui(z

Mn
i ). (25)

Set zM∗
i = limn→∞ zMn

i . Notice that since u−i is bounded above and cn
′

−i(0+) →
∞ as n→ ∞, it follows from equation 24 that limn→∞ ẑ−i(z

Mn
i ) = 1−limn→∞ zMn

i =
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1− zM∗
i .

Now equations 24 and 25 together imply

(1− δ−i)u−i(1− zMn
i )

ui(1− ẑn−i(z
Mn
i ))− δiui(zMn

i )
=
cn−i(z

Mn
i + ẑ−i(z

Mn
i )− 1)

cni (z
Mn
i + ẑn−i(z

Mn
i )− 1)

.

Taking limits on both sides of this equation as n→ ∞ gives

(1− δ−i)u−i(1− zM∗
i )

(1− δi)ui(zM∗
i )

= lim
n→∞

cn−i(z
Mn
i + ẑ−i(z

Mn
i )− 1)

cni (z
Mn
i + ẑn−i(z

Mn
i )− 1)

.

The right hand side is equal to γ for i = 2 and 1/γ for i = 1. Therefore,

(1− δ2)u2(1− zM∗
1 )

(1− δ1)u1(zM∗
1 )

=
1

γ
and

(1− δ1)u1(1− zM∗
2 )

(1− δ2)u2(zM∗
2 )

= γ.

Now y ∈ ξ∗γ(u) implies that y = u(z) such that d(z) = 0 and

u2(1− zM∗
1 )

u1(zM∗
1 )

≤ u2(z2)

u1(z1)
≤ u2(z

M∗
2 )

u1(1− zM∗
2 )

⇔ 1− δ1
1− δ2

1

γ
≤ u2(z2)

u1(z1)
≤ 1− δ1

1− δ2

1

γ
.

Proof for Corollary 1. Let σ be the Markov perfect equilibrium with the

outcome (y,m). Let zt = σ(ht−1) for ht−1 ∈ H and 1 ≤ t ≤ m − 1. By

assumption zt is an incompatible demand profile. In the subgame g(ht−1), player

i’s payoff from following σ is δm−t
i yi. Then it must be that zti ≥ 1 − δm−t

−i y−i.

Otherwise player −i would do better by making the compatible demand 1− zti .

Set D = {z|zi ≥ 1− δm−t
−i y−i}. So zt ∈ D.

Next, there cannot exist an incompatible demand ẑ−i > δm−t
−i y−i such that

1− zti − k−i(z
t
i + ẑ−i − 1) < δm−t

−i y−i

and

1− ẑ−i − ki(z
t
i + ẑ−i − 1) > δm−t

i yi.
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Otherwise, player −i in period t would deviate to the incompatible demand ẑ−i

and the dominance solvable outcome of the resulting concession game would

be (Ai, S−i) with the higher payoff of ẑ−i. Next, observe that for any z ∈ D

and ẑ−i which is incompatible with zi and greater than δm−t
−i y−i it follows that

1− zi − k−i(zi + ẑ−i − 1) < δm−t
−i y−i.

Finally, requiring 1−ẑ−i−ki(zti+ẑ−i−1) ≤ δm−t
i yi to hold for all ẑ−i > δm−t

−i y−i

implies that

zti ≥
(1− δm−t

−i y−i)(1 + ki)− δm−t
i yi

ki
.
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