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Abstract

We examine path dependency in physician decisions in an emergency department setting,

and find that physicians’ treatment decisions for the current and previous patients are

positively correlated. We show that the positive autocorrelation is higher when the current

patient is of greater medical uncertainty or more similar to the previous patient in terms

of observed characteristics and when the physician is less experienced or more fatigued.

We then show that these patterns are highly consistent with the memory and attention

model (Bordalo, Gennaioli, and Shleifer, 2020), whereby the physician’s current decision

is anchored to her previous decision. The results from both reduced-form analyses and

structural estimations provide further support for the importance of memory and attention

in physician decision-making.
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“Of course, a doctor must know physiology and pathology and pharmacology. But

he should also be schooled in heuristics—in the power and necessity of shortcuts,

and in their pitfalls and dangers.”

—Jerome Groopman, How Doctors Think

1 Introduction

The literature of behavioral economics has long suggested that individuals, including

experts, use heuristic rules as shortcuts to make fast decisions, and yet these rules often

lead to various cognitive biases (Kahneman, 2011). In the healthcare setting, due to

medical emergencies and excess workloads, physicians often have to make fast decisions

in a stressful environment with insufficient information. In this regard, as Groopman—a

renowned physician at Harvard Medical School—states, it is important for physicians to

understand the heuristic rules and the associated biases and errors. In the meantime,

as Chandra, Handel, and Schwartzstein (2019) observe, “There has been relatively little

research studying behavioral economics in the context of physician treatment decisions.”

Here we add to a small but growing literature on physician decisions from a behavioral

perspective (Chan, 2016, 2018; Gong, 2017; Li, Dow, and Kariv, 2017; Chen, 2021; Silver,

2021).

We examine path dependency in physician decisions—that is, the effect of physicians’

decisions with earlier patients on their decision for the current patient. Consider a physi-

cian who has just seen a patient with a common influenza. She may be more likely to

diagnose influenza for the next patient with a cough, even if the patient actually has a rare

lung disease. This example, provided by Chandra, Cutler, and Song (2011), illustrates

that even though physicians should ideally make decisions based on the medical conditions

of the current patient, they can be influenced by their previous treatment decisions.

The theoretical literature provides some guidelines for examining path dependency. In

norm theory, Kahneman and Miller (1986) propose that similar past experiences triggered

by the current event are consolidated into a norm that affects evaluation of the current
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event.1 Based on a psychological mechanism of memory whereby more recent or more

similar past experiences are more likely to be recalled (Kahana, 2012), Bordalo, Gennaioli,

and Shleifer (2020) present a model of memory, attention, and choice. In their model,

personal experiences or memories, especially ones that are more recent or more similar,

serve as an anchor for decision makers to evaluate the current choice situation. This

mechanism helps explain the previous example: The combination of recency and similarity

in terms of coughing triggers the physician to be anchored to the previous patient who

has a common influenza when treating the current patient, who actually has a rare lung

disease. This can lead to positive autocorrelation in physician decisions.

Our primary empirical setting for examining path dependency in physician decisions is

the emergency department (ED). This provides an ideal setting, because physicians make

sequential and quick clinical judgments about patients with a wide variety of complaints

and symptoms. They meet patients only once in most cases, and make their decisions

based on limited information. We obtain administrative data for 253,466 patient visits

to a large ED in a Southeast Asian country with treatments by 129 physicians over

a period of 2 years (SAAH, 2013). The data contain comprehensive records on all

ED visits, including patient characteristics, physician characteristics, physician decisions,

and, importantly, timestamps for the patient’s path through the ED. This dataset fits our

research objective well, because the sequential order of patients assigned to the physician

is conditionally random in this ED, which is critical for our identification.

Our primary finding is that ED physician decisions are on average positively auto-

correlated. We focus on the physician’s decision about whether to admit the patient for

inpatient care. After controlling for patient characteristics, physician fixed effects, and

time fixed effects, we find that the probability of admitting the current patient increases

by 18.1% when the physician admitted the previous patient, compared with a situation

in which she discharged the previous patient. Positive autocorrelation is also observed in

1When the event and the norm are similar, its evaluation is anchored to the norm; when the event
and the norm are sufficiently different, its evaluation generates a surprise. Relatedly, in a prediction-error
minimization framework (Hohwy, 2013), the neural system constructs models to predict the stimulus
to receive, and the models are maintained as long as the discrepancy between the predicted and actual
stimuli is not too large.
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task-ordering decisions, ranging from ordering lab tests and imaging tests to prescribing

opioids and antibiotics. Moreover, the estimated autocorrelation is higher when the cur-

rent patient is of larger clinical uncertainty and when the physician is less experienced or

more fatigued.

Our identification of path dependency hinges on two assumptions. The first assump-

tion is that the order of patients assigned to the physician is random conditional on

observable characteristics. This assumption is likely to be satisfied, since the sequential

order of patients is determined by patients’ arrival time and triage severity. We conduct

nonparametric runs tests and find that patients are randomly ordered in observable char-

acteristics. Moreover, the positive autocorrelation persists when we exclude consecutive

patients who are of the same diagnostic category and who are from the same household

or community. The second assumption is that the correlation in sequential decisions is

not driven by common environmental factors shared by consecutive patients. We exten-

sively investigate the second assumption. We demonstrate that (i) the results are robust

after controlling for common environmental factors, including the presence of the same

nurse or radiologist, colleagues’ decisions, and hospital resource availability; (ii) the re-

sults are robust to the inclusion of the physician’s and the ED’s average admission rates

in the current shift, which capture some unobserved environmental factors at physician

and ED level; and (iii) the positive autocorrelation disappears when we randomly reassign

patients among physicians within a given timeframe. These analyses provide consistent

evidence that the positive autocorrelation in physician decisions cannot be attributed to

nonrandom patient ordering or common environmental factors in the ED.

We test the generalizability of the observed path dependency in physician decisions in

another important healthcare setting—cesarean section (C-section) decisions. Over the

past two decades, the rate of C-sections has skyrocketed around the world (Card, Fenizia,

and Silver, 2023). With almost 4 million babies born each year, childbirth is the most

common cause for hospital admissions, and C-sections are the most common inpatient

surgery in the US. We obtain administrative data for all 2,458,773 childbirths delivered
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by 3,105 physicians in the State of New York between 2005 and 2015.2 In this setting,

we also observe that C-section decisions are positively autocorrelated. Taken together,

we portray a coherent and comprehensive picture of positive autocorrelation in physician

decisions.

To explain our findings, we apply the theory of memory and attention (Bordalo, Gen-

naioli, and Shleifer, 2020) to our setting of path dependency in physician decisions. Specif-

ically, when the physician sees the current patient, she retrieves similar past experiences,

especially from the previous patient, to form a norm of clinical risk as an anchor. She then

adjusts her perceived risk for the patient, depending on the difference between the norm

and the current patient’s risk. When the difference is small, the treatment decision for the

current patient is anchored to that for the previous patient, leading to positive autocorre-

lation. Conversely, when the difference is unexpectedly large, the treatment decision for

the current patient is adjusted excessively away from that for the previous patient, result-

ing in negative autocorrelation. The literature often refers to the first case of anchoring as

assimilation and the second case of adjustment as the contrast effect.3 Apart from path

dependency, the anchoring and adjustment mechanism generates two additional predic-

tions: The degree of autocorrelation between the current and earlier patients decreases

with time distance and increases with similarity in characteristics.

Our reduced-form estimates are consistent with these predictions. Specifically, physi-

cian decisions are generally positively autocorrelated and the degree of autocorrelation is

larger when the current and previous patients are closer in time or more similar in their

characteristics. Notably, we also observe some evidence on negative autocorrelation when

consecutive patients are similar in age and disease but sufficiently different in severity; in

this case, the physician expects the two patients to have similar levels of risk, but is sur-

prised by the difference in severity and thus overadjusts the perceived risk. Furthermore,

2This publication was produced from raw data purchased from or provided by the New York State
Department of Health (NYSDOH, 2015). However, the conclusions derived, calculations, and views
expressed herein are those of the authors and do not reflect the conclusions or views of NYSDOH.
NYSDOH, its employees, officers, and agents make no representation, warranty or guarantee as to the
accuracy, completeness, currency, or suitability of the information provided here.

3In our context of sequential decisions, we refer to the former as positive autocorrelation and the
latter as negative autocorrelation.
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we structurally estimate the model and find that the estimated model accommodates

both positive and negative autocorrelation and is in line with the reduced-form evidence.

Overall, both the reduced-form and structural findings provide empirical support for the

memory and attention-based anchoring and adjustment mechanism (Bordalo, Gennaioli,

and Shleifer, 2020).

Our study adds to the widely documented path dependency, which can be inter-

preted as supporting either assimilation or contrast effects in sequential decisions. Evi-

dence of assimilation is documented in perceptual decisions (Akaishi et al., 2014); belief-

updating tasks (Charness and Levin, 2005); judging the performance of Olympic gym-

nasts (Damisch, Mussweiler, and Plessner, 2006); lottery choice tasks (Erev and Haruvy,

2013); essay ratings (Zhao et al., 2017); and jury verdicts in criminal trials (Bindler

and Hjalmarsson, 2019). The contrast effect is also supported in the literature, includ-

ing movers from one city to another (Simonsohn and Loewenstein, 2006; Simonsohn,

2006); speed-dating participants (Bhargava and Fisman, 2014); interviewers (Radbruch

and Schiprowski, 2022); and asylum judges, loan officers, and baseball umpires (Chen,

Moskowitz, and Shue, 2016).

Overall, both positive and negative autocorrelation in sequential decisions can be ac-

commodated by the framework of Bordalo, Gennaioli, and Shleifer (2020), whereby the

sign of path dependency depends on decision contexts and the discrepancy between adja-

cent decision situations. We apply their framework and structurally estimate the model

in the setting of physician decisions. Our empirical results demonstrate the pervasiveness

of positive autocorrelation as well as the existence of negative autocorrelation in physi-

cian decisions, which suggests that the discrepancy between adjacent patients is generally

within the range of the expectation of physicians, but it can occasionally be surprisingly

large and lead to negative autocorrelation.

Our study also contributes to the burgeoning body of literature in health economics

that focuses on physician decision-making. Physicians’ performance is determined not

only by their skills and productivity (Chandra and Staiger, 2007; Currie and MacLeod,

2017; Gong, 2017), but also by their preferences and surrounding environments (Chan,
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2016; Li, Dow, and Kariv, 2017; Cutler et al., 2019). For instance, physicians are motivated

by liability and financial incentives to perform unnecessary procedures (Currie, Gruber,

and Fischer, 1995; Currie and MacLeod, 2008) and to report more higher-intensity service

codes than actually delivered to receive higher Medicare reimbursements (Fang and Gong,

2017). In recent work, Chen (2021) finds that physicians’ past collaboration raises team

productivity. In an ED setting, Silver (2021) studies peer effects and finds that faster

peers induce physicians to speed up and cut back on care. In another ED setting, Chan

(2018) documents that physicians exhibit behavioral distortions near end of shift. Mul-

lainathan and Obermeyer (2022) use machine learning to study physicians’ decisions and

find the coexistence of over- and undertesting, which indicates systematic errors in clini-

cal judgment. Singh (2021) also finds sequential effects in the childbirth setting, whereby

physicians are generally more likely to continue with the same delivery mode for the sub-

sequent patient but switch to the other when the previous patient had complications with

that delivery mode. Our study contributes to the literature by providing robust empirical

evidence on path dependency in physician decisions and showing that our results can be

explained by the behavioral mechanism of memory and attention (Bordalo, Gennaioli,

and Shleifer, 2020).

2 Emergency Department and Administrative Data

2.1 Institutional Setting

Our primary empirical setting concerns physician decisions in the ED, which provides an

interesting context to study sequential effects in physician decisions. First, ED physicians

are general practitioners who treat patients with a wide variety of complaints and symp-

toms. Second, physicians make frequent clinical judgments and decisions, since patients

are presented in quick succession. Third, ED physicians meet patients for the first time in

most cases and their clinical decisions are based on limited information, such as the pa-

tient’s chief complaints, symptoms, and demographic characteristics (Groopman, 2007).

High patient loads and urgent patient needs require physicians to make sequential and
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quick clinical judgments based on limited information.

Our empirical analysis focuses on a large ED in a Southeast Asian country. This

setting provides an ideal context for the study of sequential physician decisions, since the

sequential order of patients assigned to the physician is conditionally random. Specifically,

upon arrival at the ED, patients are assessed by a triage nurse and categorized into one

of three severity levels: 1 refers to the most severe cases, 2 to major emergencies, and 3 to

minor emergencies. Patients who have serious illness and injuries (severity levels 1 and 2;

henceforth severe patients) are usually seen in the acute care area, and patients with mild

conditions (severity level 3; henceforth non-severe patients) in the urgent care section.

The sequential order of treatment is determined by patients’ triage severity level and

arrival time only. A computer-based patient-scheduling system automatically assigns

patients to available physicians. In the acute care area, severity level 1 patients have a

higher priority than level 2 patients. Within each of the three severity levels, patients are

sorted by time of arrival. Physicians generally attend to a new patient from the top of the

patient queue, which ensures that for a given severity level, the earliest arrival is treated

first. We validate this assignment policy using timestamps for patients’ paths through the

ED; in our data, almost all patients are sequentially treated based on their arrival time

conditional on triage severity.4 This institutional feature ensures that patient ordering

is conditionally random, which is a substantial advantage because it validates our first

identifying assumption which will be discussed in Section 3.2.

The studied ED further provides a clean context for our study. First, physicians’

shifts are scheduled at least weeks in advance and are not publicly available; therefore,

patients have no information regarding which physician will be on shift before they arrive

at the ED. Second, physicians cannot control the volume of ED arrivals or the types of

patients assigned to them during a shift. Third, physicians’ decisions in the ED are not

influenced by financial incentives. Physicians are paid a basic monthly salary with a fixed

shift allowance, and are not directly rewarded for the quality or quantity of work during

the scheduled shift. Finally, government subsidies are provided for every ED patient. All

4Results are robust when we exclude patient visits that are not sequentially treated based on their
arrival time and triage severity.
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patients incur a fixed attendance fee of around $86 US Dollars per visit, which covers the

cost of consultation, medicine, procedures, and tests.

In summary, the ED provides an ideal setting in which the sequential order of patients

assigned to each physician is conditionally random; the sequential order of treatment is de-

termined entirely by patients’ triage severity and arrival time. Because of the unexpected

nature of ED visits, the order in which patients arrive at the ED is largely random. The

internal shift schedule of physicians is predetermined. Neither patients nor physicians

can select each other. Patients are thus assigned to the physician in a random order

conditional on their triage severity level.

2.2 Administrative Data

We obtain administrative data for all patient visits to the ED from January 1, 2011, to

December 31, 2012. The hospital information system documents comprehensive records

for each visit, including patient characteristics, physician identifier, clinical decisions, and,

importantly, timestamps for the patient’s path through the ED. These records allow us

to track real-time patient flow and the universe of physicians’ activities in the ED (see

Appendix A.1 for details).

Over the 2 years, we observe 264,115 patient visits to the ED. We limit our attention

to physicians who have treated a minimum of 100 patients during the 2-year period. We

also exclude visits in which the patient died upon arrival or in the ED, left before being

seen, or self-discharged against medical advice. Finally, for the purpose of analysis, we

restrict our sample to patient visits in which the immediately prior patient treated by the

same physician occurred within 48 hours. These exclusions restrict the sample to 253,466

patient visits treated by 129 physicians.

Physician Decisions. Physicians in the ED provide immediate evaluation, care, and

stabilization to patients; at the same time, they act as gatekeepers to inpatient specialist

units. The disposition decision to admit or discharge a patient is the primary product

of ED care and a matter of discretion for physicians (Chan, 2018). We use disposition

decisions as our primary measure of physician decisions in the ED. We also investigate
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physician decisions on lab tests (testing for a sample of blood, urine, tissue, or other bodily

substances); imaging tests (X-ray, ultrasound, computed tomography scan, and magnetic

resonance imaging); opioid prescriptions; and antibiotic prescriptions. Panel A of Table 1

summarizes physician decisions in the ED. The average admission rate for inpatient care

is 22%. Overall, 52% of patients undergo one or more lab tests, 51% receive imaging tests,

8% receive opioids, and 5% receive antibiotics.

Patient Characteristics. Our dataset records information available to the physician

at the time of accepting the patient, including the patient’s gender, age, race, and triage

severity level. Panel B of Table 1 reports summary statistics for patient characteristics.

In our data, 65% of patients who visited the ED during the sample period were men.

Patients’ average age was around 39 years.5 Patient race is grouped into four broad

categories, comprising 55% as Race 1, 20% as Race 2, 16% as Race 3, and the remaining

9% as other races. Around 71% of patients were severity level 3, 25% were level 2, and

4% were level 1. Because the data do not include a patient’s chief complaint or reason for

the ED visit, we capture patients’ medical conditions using their diagnostic information.

We codify the diagnostic information into 18 broad categories based on the International

Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM).6 Instead of

using more granular categories, we believe the broad classification of 18 categories is less

subject to physician discretion. Our results are robust when diagnostic categories are not

controlled for and when more detailed categories are controlled for.

Patient arrivals at the ED exhibit considerable fluctuations across time. In particular,

Sundays and Mondays were the busiest days within a week, and 10 am to 3 pm and 8

pm to 11 pm were the two peak hours within a day. The total number of patient visits

increased over the 2 years, and ED patient volumes varied across months. We include a

5In our regression analyses in the ED setting, patients are divided into nine groups by age: 0–14,
15–19, 20–24, 25–34, 35–44, 45–54, 55–64, 65–74, and 75 and over.

6Diseases are classified into 18 broad categories: infectious and parasitic diseases; neoplasms; en-
docrine, nutritional, and metabolic diseases and immunity disorders; diseases of the blood and blood-
forming organs; mental illness; diseases of the nervous system and sense organs; diseases of the circulatory
system; diseases of the respiratory system; diseases of the digestive system; diseases of the genitourinary
system; complications of pregnancy, childbirth, and the puerperium; diseases of the skin and subcuta-
neous tissue; diseases of the musculoskeletal system and connective tissue; congenital anomalies; certain
conditions originating in the perinatal period; injury and poisoning; symptoms, signs, and ill-defined
conditions and factors influencing health status; and residual codes, unclassified, and all e codes.
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set of time fixed effects—hour of day, day of week, and month by year—in our regression

analysis to account for time variations in patient visits.

3 Econometric Model and Identifying Assumptions

3.1 Econometric Model

We use the following baseline specification to estimate the causal effect of the physician’s

lagged decision on her decision for the current patient, conditional on characteristics of

the current patient visit and physician fixed effects:

Yit = α0 + α1Yi,t−1 +Xitβ + δi + µit, (1)

where subscript i denotes a physician and t denotes the sequence of patient visits assigned

to the physician. The dependent variable Yit represents binary decisions (e.g., admit or

not) by physician i for current patient t. The independent variable of interest Yi,t−1 is the

lagged dependent variable—that is, the physician’s decision for the previous patient.

We control for characteristics of current patient visitXit, including patient risk adjusters—

patient demographics and medical conditions—and time fixed effects. Patient risk ad-

justers allow for the sorting of patient types across physicians. The inclusion of time fixed

effects captures variations in patient flows, medical resource capacity, and unobserved

time-specific patient characteristics. We also include physician fixed effects δi to control

for physician heterogeneities. That is, the estimation in Equation (1) exploits within-

physician variations instead of cross-physician variations in medical decisions. Finally, µit

is the error term. Standard errors are clustered at physician level throughout the analyses.

Our coefficient of interest α1 measures the change in the probability that the physician

makes an affirmative decision for the current patient if her decision for the previous patient

was affirmative rather than negative. Given the two identifying assumptions discussed

below, the coefficient α1 measures the causal effect of the lagged decision on the current

decision. In particular, α1 > 0 (α1 < 0) indicates positive (negative) autocorrelation in

10



physician decisions.

The literature has not reached a consensus on whether physician fixed effects should

be included in estimating decision autocorrelation.7 On the one hand, using panel data

with heterogeneities across physicians, the estimate of α1 is biased upward if we do not

include physician fixed effects. For example, in the ED, the unobserved tendency to

admit a patient is a physician-specific characteristic, which affects the chance of inpatient

admission for all patients treated by the physician. If physician fixed effects are left in

the error term, the estimate of α1 would be upward biased because both the current and

previous decisions are positively correlated with the physician’s unobserved tendency for

inpatient admission. In this case, if α1 is positive, the pooled OLS estimate without

controlling for physician fixed effects provides an upper bound for α1. On the other hand,

controlling for physician fixed effects in Equation (1) leads to a downward bias for the

estimate of α1, if α1 is positive and the number of patients treated by each physician is

small (Nickell, 1981).8 This downward bias is termed the “Nickell bias” in the literature.

With the Nickell bias, the fixed-effect estimate provides a lower bound for α1.

We include physician fixed effects in estimating Equation (1) for three reasons. First,

our estimates of α1 are generally positive, as reported below. Even if the Nickell bias exists,

our fixed-effect estimate based on Equation (1) provides a lower bound for the positive

α1. Second, the Nickell bias is minimized in our study, since we restrict our estimation

sample to physicians who have treated at least 100 patients.9 Finally, our results remain

robust when we follow the literature and use alternative estimators to address the Nickell

7For example, Bhargava and Fisman (2014) and Bindler and Hjalmarsson (2019) include decision-
maker fixed effects in their main specifications, whereas Chen, Moskowitz, and Shue (2016) use alternative
controls for decision-maker heterogeneities instead of fixed effects.

8Consider the regression equation yit = α0 + α1yi,t−1 +Xitγ + δi + µit (i = 1, . . . , N ; t = 1, . . . , T ).

The fixed-effect estimator is equivalent to the pooled OLS estimator for ÿit = α1 ÿi,t−1 + Ẍitγ + µ̈it,

where z̈it(= zit − z̄i) is the deviation of zit (∈ {yit, Xit, µit}) from z̄i(= T−1
∑T

r=1 zir), and ÿi,t−1 =

yi,t−1 − T−1
∑T−1

r=0 yir. Nickell (1981) shows that when T is small, the pooled OLS estimator based on
the demeaned equation is biased even if N , the number of individuals, goes to infinity. The bias arises
because the correlation between ÿi,t−1 and µ̈it is nonzero. If α1 > 0, the bias is negative; the degree of
positive autocorrelation is underestimated.

9Nickell (1981) demonstrates that the bias with the pooled OLS estimate of α1 based on the demeaned
equation is sizable when T is small, but the bias approaches zero when T is sufficiently large.
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bias.10

3.2 Two Identifying Assumptions

The causal interpretation of α1 in Equation (1) hinges on the assumption of no systematic

sorting on unobserved factors that predict physician decisions. That is, the error term

µit is not autocorrelated, and thus the variable of interest Yi,t−1 is not correlated with

µit. The error term captures both unobserved patient characteristics and environmental

factors that may affect physician decisions. Hence, the causal interpretation of α1 depends

on two specific assumptions.

The first is the conditionally random ordering of patients. That is, the order of patients

assigned to the physician is not systematically sorted on any unobserved characteristics

that correlate with the probability of an affirmative decision. Imagine that some com-

ponents of medical complications are unobserved and not perfectly correlated with our

measures of patient characteristics. When patients’ ordering is positively (negatively)

correlated with such unobserved components, we would estimate a spurious positive (neg-

ative) correlation between the physician’s current and previous decisions. If this were

the case, the estimate of α1 in Equation (1) would be confounded by the correlation in

unobserved patient characteristics between the current and previous patients.

The second assumption is that the correlation in sequential medical decisions is not

driven by common environmental factors shared by consecutive patient visits. Medical

decisions are not solely determined by the physician in charge but also affected by sur-

rounding environments, such as medical equipment availability and other medical staff—

nurses, physician assistants, radiologists, etc.—working at the same time. The availability

of the same medical resource capacity and the presence of the same staff are more likely

between closer points in time than more distant points in time. Common environmental

10The literature has proposed two alternative estimators to address the Nickell bias when T is small.
One solution is to take first differences ∆yit = α1∆yi,t−1+∆Xitγ+∆µit. The first difference removes the
individual fixed effects, but ∆µit correlates with ∆yi,t−1. The Anderson–Hsiao estimator uses yi,t−2 as an
instrument for ∆yi,t−1 (Anderson and Hsiao, 1982). Another solution is to estimate yit = α0+α1yi,t−1+
Xitγ + ci + µit with an alternative control for individual heterogeneity ci instead of fixed effects. For
example, Chen, Moskowitz, and Shue (2016) control for individual heterogeneity using a recent moving
average of the previous n decisions made by each decision maker. In Panels A and B of Appendix Table
A.2, we show that our results remain robust using these two estimators.
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factors may induce spurious correlation in physician decisions for patients treated close in

time and confound the effect of the physician’s previous decision on her current decision.

The literature on sequential decisions has largely investigated the first assumption

of conditionally random ordering (e.g., Bhargava and Fisman (2014); Chen, Moskowitz,

and Shue (2016); Bindler and Hjalmarsson (2019)). However, the second assumption

regarding common environmental factors is less studied. In our empirical analysis, we will

extensively examine both assumptions.

3.3 Empirical Specification Details and the Conditionally Ran-

dom Ordering of Patient Visits

We test path dependency in physician decisions in the ED by estimating Equation (1). In

our main regression analyses, we focus on physicians’ disposition decisions. We define Yit

(Yi,t−1) as an indicator for whether the physician admits the current (previous) patient for

inpatient care. Control variables include, unless otherwise stated, patient demographics

(gender, age, and race), triage severity, diagnoses, physician fixed effects, and time fixed

effects. We estimate Equation (1) using a linear regression model, allowing for clustered

standard errors. Our results remain robust when we use probit and logit models (Panels

C and D, Appendix Table A.2).

We control for time fixed effects of hour of day, day of week, and month by year in our

main regression. Controlling for time fixed effects is important. First, as discussed above,

the volume of ED arrivals fluctuates over time. Second, hospital resource availability is

highly time dependent. For example, one of the most critical resources—inpatient beds—

has a higher occupancy rate in the morning than in the afternoon (Shi et al., 2015). Third,

patient conditions may also vary across time. Some diseases have regular daily or seasonal

variations in their risk level or severity of symptoms. For example, the risk of heart attacks

is highest in the morning and asthma is worse at night than during the day (Litinski,

Scheer, and Shea, 2009). Patients with certain types of diseases may consecutively visit

the ED at specific times of the day. Also, ED visits at night or on the weekend could differ

from those in the daytime or on weekdays, because regular outpatient care is unavailable
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at those times. The inclusion of time fixed effects captures variations in patient arrivals,

medical resource capacity, and unobserved time-specific patient characteristics.

We conduct the nonparametric runs test on the randomness of observed patient char-

acteristics. In a series of consecutive observations, a run is defined as a sequence in

which a certain type of observation is repeated one or more times. A new run occurs

each time the alternate type is observed. Consider a hypothetical physician who sees

10 patients: five males (M) and five females (F). If all male patients are presented first

(MMMMMFFFFF), we say that there are two runs in the data—the minimum number

of runs possible. If male and female patients are placed alternately (MFMFMFMFMF),

there are 10 runs—the maximum number of runs possible. Obviously, both hypothetical

sequences are not likely to be random on patient gender; there are either too few or too

many runs in a sequence. The runs test detects whether a sequence of data occurs in a

random process based on the number of runs. A small number of runs suggests positive

serial correlation and a large number negative serial correlation.

For each physician-shift,11 we separately test whether patient sequence follows a ran-

dom order with respect to patient gender, race, age, and admission probability predicted

by patient demographics, triage severity, and diagnostic categories. For each characteristic

considered, the test produces a p-value for each physician-shift. The smaller the p-value,

the stronger the evidence that we can reject the null hypothesis of randomness. Figure

1 presents the distribution of p-values from the runs test for each physician-shift. Across

all panels, the fraction of shifts with low p-values (less than 0.05) is around 5%.12 For

11Following the procedure of Brachet, David, and Drechsler (2012), we construct physicians’ shifts
based on their periods of inactivity, which is identified by their absence from the administrative data.
Sorting data first by physician ID, then by the date and time during which physicians were involved in
each patient visit, we define the beginning of a new shift when 6 or more hours have elapsed between
consecutive observations of the same physician. The results we present below remain robust if we use
4-hour and 5-hour cutoffs to define new shifts.

12We note that the proportion of low p-values is slightly larger than 5% when testing randomness with
respect to admission probability. This is because the order of patients is presumably nonrandom with
respect to triage severity in shifts in which physicians cross-cover the two treatment areas. For example,
a physician who is scheduled to work in the urgent care area may switch to the acute care area halfway
through her shift, when there is an imbalance of patient visits. This yields a patient sequence in which
all non-severe (low admission risk) patients are treated before severe (high admission risk) patients. In
Appendix Figure A.3, we exclude shifts in which physicians cross-cover the two treatment areas and
reexamine the randomness with respect to admission probability; only 4% of those shifts are associated
with low p-values.
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the vast majority of shifts, we do not find any evidence of nonrandom ordering based on

patient gender, race, age, or admission probability. The results we present below are not

sensitive when we exclude shifts with low p-values from the runs tests.

Our first identifying assumption of conditionally random ordering is very likely to be

satisfied in the ED setting. The nonparametric runs tests provide consistent evidence

that patients are randomly ordered in observed characteristics. In the robustness analysis

below, we present evidence that our estimated autocorrelation in physician decisions is not

attributable to autocorrelation in unobserved patient conditions or common environmental

factors.

4 Results

We observe positive autocorrelation in a range of ED physician decisions by tabulating the

raw data (Appendix Figure A.2). More specifically, the physician is more likely to admit

the current patient if she admitted the previous patient compared with if discharged the

previous patient. Moreover, the physician is more likely to order lab tests (imaging tests)

if she ordered lab tests (imaging tests) for the previous patient. Finally, the physician is

also more likely to prescribe opioids (antibiotics) if she did so for the previous patient.

In what follows, we examine path dependency using regression analyses, conduct exten-

sive robustness checks, analyze heterogeneity across different subgroups, and explore the

consequences of path dependency.

4.1 Main Results on Autocorrelation

We present the fixed-effect estimates from Equation (1) in Panel A of Table 2. Column

(1) reports results for the full sample of patient dispositions, in which consecutive deci-

sions are made by the same physician within 48 hours. The estimate of α1 is positive and

statistically significant. The probability of admitting the current patient is 3.2 percent-

age points higher if the physician admitted the previous patient, compared with if she

discharged the previous patient. The estimate represents a 14.7% increase relative to the
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mean inpatient admission rate of 0.217. This indicates a strong positive autocorrelation

in admission decisions conditional on patient demographics, triage severity, diagnoses,

physician fixed effects, and time fixed effects.

We then divide the full sample into two subsamples. The first subsample are those who

follow another patient within the same shift by excluding the first patient in each shift. In

column (2), we show that the estimate is 0.038, which is statistically significant at the 1%

level. The estimate represents a 18.1% increase in admission decisions for patients who

follow another patient in the same shift. The second subsample are those who are the first

patient in each shift. In contrast to the estimate in column (2), the estimate in column (3)

is small in magnitude and statistically insignificant.13 The physician’s disposition decision

for the last patient in the previous shift has no significant effect on her decision for the

first patient in the current shift. The estimated positive autocorrelation in column (1) is

driven by consecutive decisions that occur within the same shift.

Panel B of Table 2 reports pooled OLS estimates without controlling for physician fixed

effects. Consistent with the literature (Nickell, 1981; Bindler and Hjalmarsson, 2019), the

pooled OLS estimates are larger than the fixed-effect estimates. Using the full sample,

column (1) in Panel B shows that a lagged admission decision increases the probability of

a subsequent admission decision by 3.8 percentage points (17.6%). Column (2) shows that

the effect increases to 4.4 percentage points (21.2%) if the current and previous patient

are treated within the same shift. Again, decision autocorrelation disappears if the two

consecutive patients were treated in different shifts (column (3)). Taking the fixed-effect

estimate as the lower bound and the pooled OLS estimate as the upper bound, a lagged

admission decision increases the probability of a subsequent admission in the same shift

by 18.1% to 21.2%. For simplicity, in the remaining analyses in the ED setting, we focus

on fixed-effect estimates based on observations in which the current and previous patient

are treated within the same shift.

13We note that the mean admission rate in column (3) is higher than that in column (2). This is
because severe patients have longer consultations than non-severe patients; a physician can treat more
patients when her shift is in the urgent care section with non-severe patients, compared with when her
shift is in the acute care area with severe patients. Thus, the share of severe patients of the first patients
in a shift is larger than the share of severe patients of total patients.
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Other Physician Decisions. We examine path dependency in other physician decisions

by estimating Equation (1) with different measures of physician decisions. Column (1)

of Table 3 shows that the probability that the physician orders any lab tests for the

current patient is 2.3 percentage points higher when she ordered lab tests for the previous

patient, compared with when she did not. Column (2) indicates that the probability

that the physician orders any imaging tests is 3.0 percentage points higher if she ordered

imaging tests on the previous patient. Column (3) shows that the probability that the

physician prescribes opioids increases by 1.8 percentage points if she prescribed opioids for

the previous patient. Finally, column (4) shows that the physician is 2.0 percentage points

more likely to prescribe antibiotics for the current patient if she prescribed antibiotics for

the previous patient. All four estimates are statistically significant at the 1% level, and

support positive autocorrelation in physician decisions.

4.2 Robustness Analyses

Autocorrelation in Patient Conditions. As discussed in Section 2.1, the ED pro-

vides an ideal setting in which the sequential order of patients assigned to each physician

is conditionally random. Patients are sequentially treated based on their arrival time,

conditional on triage severity. Nonparametric runs tests provide evidence that patients

are randomly ordered in observed characteristics. Here, we further rule out possibilities

of nonrandom patient ordering. We take column (2) in Panel A of Table 2 as the baseline

specification and, to ease comparison, report this again in column (1) of Appendix Table

A.3. We show that our results are robust when we exclude consecutive patients who are

likely to have autocorrelated conditions and after we control for proxies for unobserved

medical conditions.

First, we consider circumstances in which patient arrivals at the ED may not be

random. For instance, major accidents or public health events may bring in a large

volume of patients with similar conditions at the same time, resulting in autocorrelated

conditions in consecutive patients. This could generate spurious positive autocorrelation

in sequential decisions.
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We address the problem of autocorrelated patient conditions by estimating Equation

(1) with restricted samples of patients. First, patients brought in from the same accident

or public health event are likely to have the same (broad) diagnosis. We thus exclude

patients who shared the same diagnostic category with the previous one. Second, patients

from the same household or the same community may share some similar conditions.

For example, infectious diseases are more likely to spread within family or community

members. We exclude consecutive patients who are from the same household or from

the same community. Columns (2)–(4) in Appendix Table A.3 show that estimates from

the restricted samples remain positive and statistically significant. The results suggest

that the positive autocorrelation in physician decisions is not driven by autocorrelation

in patient conditions.

Second, to explore the potential role of unobserved variation in patient characteristics,

we test the sensitivity of our results to controlling for richer measures of patient character-

istics. We classify patient diagnoses in 285 categories according to Clinical Classifications

Software, and control for the detailed 285 diagnostic categories instead of the 18 broad

categories in the main regression. Although the detailed diagnosis is an imperfect (yet the

best available) proxy measure of unobserved factors and is subject to physician decisions,

it reflects more detailed information on patient conditions. The last two columns in Ap-

pendix Table A.3 show that our results remain largely unchanged regardless of whether

we control for diagnostic categories and whether we control for 18 broad categories or 285

detailed categories. The results suggest that patients are not likely to sort sequentially

on unobserved patient conditions.

Common Environmental Factors. We assess the second identifying assumption in

this subsection. We find that the estimated positive autocorrelation in physician decisions

remains robust after we address issues relating to various common environmental factors.

We first consider the environmental factors observed in the data and demonstrate that (i)

positive autocorrelation in physician decisions cannot be attributed to the presence of the

same nurse or radiologist; (ii) positive autocorrelation also cannot be attributed to the

decisions of other physicians who are currently treating other patients in the ED; and (iii)
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positive autocorrelation is robust to controlling for hospital resource availability. We also

assess environmental factors that are unobserved in the data. We show that the results

are robust to inclusion of the average admission rate for the physician in the current shift

(excluding the current patient) and the average ED admission rate among all physicians

in the current shift (excluding the physician who treats the current patient); these two

variables are used to measure unobserved environmental factors shared with the current

patient at physician level and ED level. We also show that the positive autocorrelation

in physician decisions disappears when we randomly reassign patients among physicians

within a given timeframe.

First, medical decisions are not only determined by physicians, but affected by other

medical staff, such as nurses and radiologists, who also play an important role in patient

care. The presence of the same medical staff is more likely between closer points in time

than more distant points in time; this may contribute to similar medical decisions for

patients treated close in time. To address this concern, we additionally control for fixed

effects for both the main nurse and the main radiologist working with the physician in

each shift.14 In a second specification, we control for physician-main nurse group fixed

effects or physician-main radiologist group fixed effects. Appendix Table A.4 requires that

both the main nurse and the main radiologist are involved in at least 50 patients each,

and column (1) repeats the baseline analysis without controlling for nurse or radiologist

fixed effects using the restricted sample. Columns (2)–(4) show that the result remains

robust in both specifications. The positive autocorrelation in physician decisions cannot

be attributed to the presence of the same nurse or radiologist.

Second, physician decisions may be affected by the decisions of other physicians who

are currently treating other patients in the ED. We further include the latest disposition

decision made by other physicians in the ED as an independent variable, in addition to

the main nurse and main radiologist fixed effects. Column (5) of Appendix Table A.4

14We infer nurse and radiologist information from task records. The hospital information system
records the one who finishes each task (either the physician or the nurse for non-radiology tasks and the
radiologist for radiology tasks). Nurse information is not available if the patient receives few or no tasks,
and radiologist information is not available for patients without radiology tasks. We identify the main
nurse (radiologist) who is most involved in each physician-shift. Our results are robust if we define the
main nurse (radiologist) working with the physician in 2-hour or 3-hour intervals.
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shows that the estimated positive autocorrelation remains unchanged after controlling for

the latest disposition decision by colleagues. In addition, the coefficient on colleagues’

disposition decision is small in magnitude and statistically insignificant. This suggests

that physicians’ current decisions are affected by their own decisions for previous patients,

but not by the recent decisions of their colleagues. This is consistent with the findings

of Silver (2021), who demonstrates that peer-induced pressure plays a limited role in

admission decisions at ED level.

Third, physician decisions are constrained by medical resource capacity. For example,

the decision to admit a patient is subject to the availability of inpatient beds. Physicians

may reduce inpatient admissions under a high level of inpatient bed occupancy and admit

more patients if more beds are available. If this were the case, we might observe similar

disposition decisions in consecutive patients. As discussed in Section 3.3, the concern

regarding bed availability can be absorbed partly by time fixed effects in our regression.

To further address this concern, we estimate Equation (1) by including inpatient bed

availability as an additional independent variable, in addition to the main nurse and main

radiologist fixed effects and colleagues’ latest decision. We use two variables to measure

the level of bed occupancy: (i) total number of inpatient admissions issued in the ED in the

last 12 hours15 and (ii) average waiting time from the admission decision to an inpatient

ward for patients whose consultation ended in the previous hour. Columns (6) and (7)

of Appendix Table A.4 report regression results with each of the two measures. In both

analyses, the estimated coefficients on bed occupancy are negative and small in magnitude

and the estimated coefficient on the lagged admission remains largely unchanged. These

results suggest that bed occupancy plays a limited role in physicians’ admission decisions

in the studied ED.

Another factor of interest is ED crowdedness, because physicians may adjust their

behavior accordingly. For example, they may ration access to inpatient care and discharge

more patients when demand surges. If this were the case, patients treated in the same

15The ED is the major source of inpatient admissions and accounts for around 70% of patients in
the hospital’s inpatient units. Results remain unchanged if we measure bed occupancy using the total
number of inpatient admissions issued in the ED in the last 24 hours or 48 hours.
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time period might receive similar dispositions. To address this concern, we additionally

include controls for ED crowdedness as a robustness analysis. We measure the degree

of crowdedness using a physician-adjusted value of system load.16 This is defined as the

ED system load divided by the number of physicians on staff during the current patient’s

consultation. The ED system load measures the total number of patients in the ED,

including those waiting to be seen and those being treated. Column (8) of Appendix

Table A.4 presents the estimation result after controlling for the adjusted system load.

The coefficient on the lagged admission remains largely unchanged. This implies that ED

crowdedness cannot explain the positive autocorrelation in physician decisions.

Next, we consider unobserved environmental factors shared by consecutive patient

visits. We further control for the average admission rate for the physician in the current

shift, calculated excluding the current patient. This variable captures potential trends

in admissions, patient conditions, and other common environmental factors at physician-

shift level. We also control for the average ED admission rate among all physicians during

the current shift, calculated by excluding the physician who treats the current patient.

This variable accounts for all observed and unobserved factors at ED level. Column (9)

of Appendix Table A.4 reports the estimation results. The coefficients remain largely

unchanged after controlling for the two variables.

Finally, we conduct placebo tests. We randomly reassign patients among physicians

in each 4-hour interval17 and estimate our main regression with the simulated data. We

repeat this procedure 100 times. Appendix Figure A.4 shows that the positive autocor-

relation in physician decisions disappears in the placebo analysis. Within each 4-hour

timeframe, environmental factors are likely to be fixed at ED level; however, the autocor-

relation in physician decisions disappears as we reassign patients among physicians. This

suggests that our results are not driven by common environmental factors at the ED.

In summary, the analyses above suggest that our results remain robust after addressing

16The result remains essentially unchanged when we use alternative measures of ED crowdedness: (i)
patient waiting time from triage to seeing a physician and (ii) physician-adjusted measure of waiting
patients for the wait between triage and seeing a physician.

17We divide each day into six periods (0–4, 4–8, 8–12, 12–16, 16–20, and 20–24), and reassign patients
starting consultation in each period among on-duty physicians. Placebo test results are robust if we use
2–hour or 6–hour intervals to group patients.
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the potential issues relating to common environmental factors. The positive autocorrela-

tion in physician decisions cannot be attributed to common environmental factors.

Additional Results. We conduct more robustness checks in Appendix A.2. We show

that the estimated positive autocorrelation in physician decisions is robust to the inclusion

of physician multitasking and end-of-shift effects.

4.3 Heterogeneity Analyses

This section examines the heterogeneity of the sequential effect in physician decisions.

We find that the estimated positive autocorrelation is higher when the condition of the

current patient is associated with greater clinical uncertainty and among less experienced

or more fatigued physicians.

Clinical Uncertainty. It has been suggested that sequential effects are more salient

when the decision maker faces “ambiguous” situations (Herr, Sherman, and Fazio, 1983;

Akaishi et al., 2014). In the context of medicine, conditions with little variation in clinical

practices are less clinically ambiguous compared with high-variation conditions (Sabbatini,

Nallamothu, and Kocher, 2014). Thus we can use variation in clinical practices to measure

clinical uncertainty. Below, we adopt three strategies to examine the relationship between

autocorrelation in physician decisions and the clinical uncertainty associated with the

current patient.

We first use condition-specific variations in ED admission practices measured in the

medical literature. Sabbatini, Nallamothu, and Kocher (2014) study the 15 most common

conditions for inpatient admission in the US.18 For each condition, they compute the

variation in admission rates across EDs. We classify the 15 conditions into two groups

by the variation in admission rates. Low-variation conditions are the seven conditions

with variations less than the median level for the 15 conditions. From our ED data,

18Sabbatini, Nallamothu, and Kocher (2014) identify the 15 most frequently admitted conditions based
on the 2010 Nationwide Emergency Department Sample in the US: chest pain, soft tissue infections,
asthma, COPD, urinary tract infections, fluid and electrolyte disorders, biliary tract disease, cardiac dys-
rhythmias, diabetes with complications, pneumonia, congestive heart failure, stroke, acute renal failure,
acute myocardial infarction, and sepsis. Conditions are presented in descending order from most to least
variable in admission practices across EDs.
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we extract patients with the 15 most common conditions. Based on this sample, we

estimate Equation (1) by adding an indicator for the low-variation condition and its

interaction with the lagged admission. Column (1) in Table 4 presents the estimation

result. The coefficient on the lagged admission is positive and statistically significant.

The coefficient on the interaction term is negative and statistically significant. The degree

of positive autocorrelation is significantly smaller for conditions with low variation in

admission practices.

Our second measure of practice variations is admission probabilities. We predict ad-

mission probability for each patient using a logistic model, with admission decision as the

dependent variable and patient characteristics, physician fixed effects, and time fixed ef-

fects as explanatory variables. Admission probability closer to 0.5 would indicate a higher

degree of variation in admission decisions, while probability closer to either 0 or 1 would

indicate lower variation. We divide all patients into three groups by admission probability.

The first group includes patients with admission probability less than 0.25, the second

0.25 to 0.75, and the third above 0.75. The proportions of patients who belong to the

three groups are 72%, 21%, and 7%. We include group indicators and their respective in-

teractions with the lagged admission in Equation (1), where patients in the second group

serve as the reference category. Column (2) in Table 4 presents the estimation results.

The coefficient on the lagged admission is positive and statistically significant, and the

coefficients on both interaction terms are negative and statistically significant. That is,

the positive autocorrelation is larger for patients with moderate admission probabilities

than for patients with lower or higher admission probabilities.

Finally, clinical uncertainty can partially be resolved by careful history-taking and

physical examination and the use of advanced medical technologies. We examine whether

the degree of autocorrelation varies with the length of consultation and with the use

of advanced diagnostic imaging—ultrasound, computed tomography scan, and magnetic

resonance imaging—for the current patient. Columns (3) and (4) in Table 4 report the

estimation results. In column (3), we add consultation length and its interaction with

the lagged admission to Equation (1). Column (4) includes the indicator for the use
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of advanced diagnostic imaging and its interaction with the lagged admission. In both

columns, coefficients on the interaction terms are negative and statistically significant at

the 1% level. These results suggest that a longer consultation and the use of advanced

diagnostic imaging reduce positive autocorrelation in physicians’ disposition decisions.

To summarize, the three sets of analyses provide consistent evidence that clinical

uncertainty amplifies the degree of positive autocorrelation. Physicians’ current decisions

are more likely to be influenced by their previous decisions when the condition of the

current patient is associated with larger variation in practice. A longer consultation and

the use of advanced diagnostic technology reduce clinical uncertainty, and thereby lower

the degree of positive autocorrelation in physician decisions.

Physician Experience and Fatigue. We examine whether physician experience and

fatigue moderate the degree of positive autocorrelation in admission decisions by including

measures of physician experience or fatigue and its interaction with the lagged admission

in Equation (1). We define a physician as experienced if her medical experience is at

least 7 years—the average value in the sample.19 Column (1) of Table 5 shows that the

degree of positive autocorrelation is significantly higher among less experienced physicians,

indicating that medical experience mitigates the degree of positive autocorrelation in

physician decisions.

In column (2), we examine physician fatigue, which is measured by the number of hours

the physician has worked before seeing the current patient in the shift. Both estimates—on

the lagged admission and the interaction term—are positive and statistically significant.

The result implies that physicians’ disposition decisions are positively autocorrelated at

the beginning of the shift, and the degree of autocorrelation increases as time goes by.

On average, we find that the degree of autocorrelation increases by approximately 30% in

the last hour than in the first hour of an 8-hour shift.

We use an alternative measure for physician fatigue: The length of the rest period

before starting the current shift. After a longer rest from the previous shift, physicians

are better replenished and less fatigued when starting the current shift. In column (3), the

19Physician experience is defined as the number of years since a physician obtained her first degree to
practice medicine.
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estimate on the interaction is significantly negative. The results in both column (2) and

(3) consistently show that the degree of positive autocorrelation increases with physician

fatigue.

4.4 Consequences of Autocorrelation

We observe robust positive autocorrelation in physician decisions whereby physicians ex-

hibit a strong tendency to repeat the decision they made for the previous patient. How

does this affect the quality of physician decisions? The medical literature suggests that

physicians rely on cognitive shortcuts to make fast decisions under uncertainty and time

constraints (Groopman, 2007). While these shortcuts can be useful by saving time and re-

sources, they may occasionally lead to increased medical expenditure and adverse patient

outcomes (Croskerry, 2002).

We first examine the effect of path dependency on the length of consultation. We de-

fine repeat as a dummy variable that equals 1 if the physician made the same disposition

decision for the current and previous patient and 0 otherwise. We regress the current

patient’s length of consultation on repeat, conditional on patient demographics, triage

severity, diagnosis, physician fixed effects, and time fixed effects.20 Table 6 reports the

estimation results with different sets of controls across columns. The estimates on repeat

are consistently negative and statistically significant. Specifically, column (3) indicates

that consultation length is shortened by 15% when the physician repeats her decision.

The results are consistent with the notion that physicians’ tendency to repeat their deci-

sions helps save time in the ED. This echoes findings in the literature whereby cognitive

shortcuts may help save time for physicians (Croskerry, 2002).

Next, we examine the effect of path dependency on patients’ medical spending and

patient outcomes. Because disposition decisions are positively autocorrelated, the prob-

ability of admitting (discharging) the current patient is higher if the physician admitted

(discharged) the previous one. This may induce two types of inappropriate dispositions.

One is inappropriate discharge: After discharging the previous patient, the physician may

20We also control for the disposition mode for the current patient in one specification as a robustness
analysis.
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be more likely to inappropriately discharge the current patient, who requires inpatient

care. The other is inappropriate admission: After admitting the previous patient, the

physician may be more likely to inappropriately admit the current patient who does not

need inpatient care. While inappropriate admissions increase unnecessary medical spend-

ing, inappropriate discharges would escalate medical risk.

We follow Singh (2021) to construct “unexpected” dispositions to proxy for inappro-

priate dispositions in three steps. First, we predict admission probability for each patient

based on patient demographics, triage severity, diagnosis, time fixed effects, and physician

fixed effects using a logistic model. We then classify patients who are in the top 22% of

the admission probability as “expected” to be admitted and the remaining as “expected”

to be discharged.21 Finally, we define unexpected admission (unexpected discharge) as

a dummy variable that equals 1 if the physician admits (discharges) the patient who is

expected to be discharged (admitted), and 0 otherwise.

Following Singh (2021), we assume that inappropriate dispositions correlate with our

constructed unexpected dispositions. We now examine this assumption. The results re-

ported in the first 4 columns of Table 7 show that our constructed measures of unexpected

dispositions capture inappropriate dispositions to some extent. On the one hand, columns

(1) and (2) show that unexpected admission is not correlated with subsequent admission

within 15 days and ambulance use within 15 days after the current visit.22 This is consis-

tent with what we expect to observe—an inappropriate admission increases medical costs

but it should have limited impact on patient health outcomes. On the other hand, columns

(3) and (4) show that unexpected discharge has downstream health consequences for the

patient: The probability of subsequent admission increases by 1.5 percentage points and

the probability of subsequent ambulance use increases by 0.5 percentage point. Both

estimates are statistically significant at the 1% level.

Columns (5) and (6) show that a lagged admission decision increases the probability of

unexpected admission for the current patient by 1.3 percentage points and decreases the

21In the full sample, 22% of patients are admitted.
22It is hard to fully measure the appropriateness of disposition decisions. We only observe inpatient

admission through and ambulance to this specific ED in our data. We do not have other measures for
patient health outcomes given our ED data.
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probability of unexpected discharge by 1.5 percentage points. An equivalent interpretation

of this result is that a lagged discharge decision decreases unexpected admission by 1.3

percentage points and increases unexpected discharge by 1.5 percentage points. In our

sample, 78% of patients are discharged, which implies that most patients are treated after a

lagged discharge decision. Hence, overall, the positive autocorrelation leads to an increase

in unexpected discharge for high-risk patients and a decrease in unexpected admission for

low-risk patients.23 Furthermore, Appendix Table A5 indicates that for a high-risk patient,

a lagged discharge decision leads to a 4.2-percentage-point increase in the probability of

unexpected discharge, while for a low-risk patient, a lagged admission decision results in

a 2.7-percentage-point increase in the probability of unexpected admission.

5 Sequential Decisions in Obstetrics

5.1 Institutional Setting and Administrative Data

Institutional Setting. Our second empirical setting concerns physicians’ decisions for

childbirth. With almost 4 million babies born each year, childbirth is the most common

cause for hospital admissions; also, C-sections are the most common inpatient surgery in

the US. Childbirth can be performed vaginally or by C-section. A C-section is a major

abdominal surgery intended for high-risk childbirths in which a vaginal delivery would

put the baby or the mother at risk. Both the World Health Organization (WHO) and

the American College of Obstetricians and Gynecologists recommend that C-sections be

performed only when medically necessary (Caughey et al., 2014; Betrán et al., 2016).

C-sections are associated with an overall increase in poor outcomes for pregnancies that

are not high risk (Caughey et al., 2014). They are also more expensive, require longer

hospital stays, and have slower recoveries.

In the US, the decision to perform a C-section is typically made by the physician.

23By our definitions above, the value of the dummy variable unexpected discharge equals 1 only for
discharged patients whose predicted risk is among the top 22% in the sample. Similarly, the value of
the dummy variable unexpected admission equals 1 only for admitted patients whose predicted risk is
among the bottom 78% in the sample. Therefore, by construction, unexpected discharge (admission) is
only relevant for high-risk (low-risk) patients.
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Several patient conditions increase the probability of a C-section. For example, about 90%

of mothers who received a C-section in the past receive a C-section again, even though

recent literature suggests that many may benefit from attempting vaginal birth after a

C-section (Caughey et al., 2014). Another strong predictor of a C-section is breech birth,

in which the baby is positioned head-up in the uterus. Other conditions that increase the

likelihood of receiving a C-section include disproportion, multiple births, and problems

with the placenta or umbilical cord.

For high-risk mothers, physicians will often schedule a C-section ahead of time. The

scheduling typically occurs after the 39th week of gestation to minimize the risk of com-

plications. Otherwise, the decision to perform a C-section occurs during labor. As labor

progresses, the physician must trade off the risk of allowing labor to continue against the

risk of performing a C-section.24

Administrative Data. We use administrative hospital discharge data on all births that

occurred in New York State from January 1, 2005, through December 31, 2015. The data

are provided by the Statewide Planning and Research Cooperative System of New York

and include comprehensive records for each admission, including patient characteristics,

physician identifier, clinical decisions, and procedural timestamps.

Over the 11-year period, there were over 2.5 million births in the State of New York.

We limit our attention to physicians who performed at least 100 deliveries during the

time period. The resulting analytic sample size is 2,458,773 deliveries performed by 3,105

physicians. Appendix Table B.2 reports summary statistics for the analytic sample. The

average C-section rate is 33.8%. The mothers’ average age is 29 years. The proportion

by race is 51% White, 18% African American, 6% Asian, 1% Native American or Alaskan

Native, and 25% other races. The remainder of the table shows summary statistics of the

11 patient conditions that are included as controls in our regression analyses.

24Long or difficult vaginal deliveries can increase the risk of fetal trauma (Baskett et al., 2007). Vaginal
deliveries also carry higher risk of perineal lacerations and pelvic floor damage, which can lead to sexual
dysfunction and fecal and urinary incontinence (Fenner et al., 2003).
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5.2 Comparison Between the ED and Childbirth Settings

Institutional Contexts. Several important institutional differences between the ED

and childbirth settings render childbirth an interesting secondary setting for the study

of sequential physician decisions. First, whereas ED physicians are generalists who treat

patients with a wide range of medical conditions, obstetricians are specialists in preg-

nancy and childbirth. Second, in contrast to the frequent decisions of ED physicians,

obstetricians make delivery decisions less frequently in succession.25 Finally, pregnancies

are carefully observed and monitored over the course of prenatal visits, and as a result

physicians tend to be better informed when making treatment decisions. We test whether,

despite these key differences, positive autocorrelation also exists in obstetricians’ delivery

decisions. Consistent findings between the ED and childbirth settings would suggest a

potentially large scope of sequential effects in physician decisions.

Data. The obstetric data provide a detailed account of childbirth on a large scale. The size

and representativeness of the sample distinguish these data from the ED data examined

above. Whereas the ED data include all patient visits in 2 years from a single hospital,

the obstetric data record all births across hospitals in New York State for an 11-year

horizon. The secondary obstetric data therefore allow us to test the external validity of

our primary findings from the ED. On the other hand, records from the ED data are more

granular and include information on medical resource utilization and other medical staff,

which cannot be obtained from the obstetric data.

Identifying Assumptions. Our first identifying assumption of the conditionally random

ordering of patients is plausible in the childbirth setting, since the timing of when labor

begins is unexpected for most deliveries.26 As in the ED setting, we perform nonparametric

25In our dataset, the obstetrician’s previous delivery was on the same day as the current delivery 34%
of the time; 1 day earlier 23% of the time; 2 days earlier 10% of the time; and 3 or more days earlier 34%
of the time.

26The two exceptions are scheduled C-sections and induced labor. C-sections are often scheduled ahead
of time for high-risk mothers. The physician may also schedule an induction of labor if the delivery is
overdue or complications exist, or at the request of the patient. Some mothers who start with induced
labor end up receiving a C-section. In a recent study, 27% of induced labor resulted in a C-section (Davey
and King, 2016). In robustness analysis, we conduct the analysis with a subsample of weekend deliveries
that are unlikely to be scheduled ahead of time. The results remain highly significant and robust.
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runs tests; the results suggest that patient sequence follows a random order with respect to

patient age and race (Appendix B.1). In our robustness analysis, we show that the positive

autocorrelation in C-sections persists when we rule out plausibly scheduled deliveries.

Testing the second identifying assumption, however, is constrained by the limited in-

formation available in the obstetric data. The data do not provide any information on

hospital resource capacity or other medical staff who assist the physician during child-

birth. Hence, it is infeasible to verify whether our results are confounded by common

environmental factors in the childbirth setting.

With these differences in mind, the obstetrics context provides an important secondary

setting to complement our analysis of path dependency in physician decisions in the ED.

However, given the data limitations, caution is warranted in interpreting the positive

autocorrelation in C-sections as a causal effect, since we are not able to address potential

issues relating to common environmental factors.

5.3 Empirical Analyses

Empirical Specification Details. We estimate Equation (1) to test autocorrelation

in physician’s delivery decisions. Yit is an indicator for whether the physician performs

a C-section on the current delivery and Yi,t−1 is an indicator for whether the physician

performed a C-section on the previous delivery. The ordering of patients to physician is

determined by the time of admission, t. We control for patient demographics (age and

race),27 medical conditions, time fixed effects, and physician fixed effects unless stated

otherwise. Medical conditions include an indicator for the mother’s having a history of

previous C-section, placenta previa, disproportion, breech, twin (or multiple) birth, pre-

eclampsia, hypertension, diabetes, early labor, late labor, and long labor.

Basic Results. Panel A of Table 8 reports fixed-effect estimates from Equation (1). Col-

umn (1) reports results for the full sample. The estimate of α1 is positive and statistically

significant at the 1% level. The probability of performing a C-section is 1.3 percent-

27Different from the ED setting, patients are divided into six groups by age in the childbirth setting:
<20, 20–24, 25–29, 30–34, 35–39, and 40 or above.
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age points higher when the physician’s previous delivery was a C-section, compared with

when the physician’s previous delivery was a vaginal birth. The estimate represents a

4.0% increase relative to the mean C-section rate of 0.338, which suggests strong positive

autocorrelation in delivery decisions.

Panel B of Table 8 shows pooled OLS estimates without controlling for physician

fixed effects. Across the board, the pooled OLS estimates are larger than the fixed-effect

estimates. For the full sample in column (1), taking the fixed-effect estimate as the lower

bound and the pooled OLS estimates as upper bounds, the physician is 4.0%–12.9% more

likely to perform a C-section after having recently performed a C-section. The effect size

is comparable to that in Bindler and Hjalmarsson (2019), who find that in jury decisions,

a lagged guilty verdict increases the chance of a subsequent guilty verdict by 6.7%–14.1%.

Consistent with our findings from the ED setting, we find significantly positive auto-

correlation in physician decisions for childbirth. The magnitude of the autocorrelation is

smaller in the childbirth setting than the ED setting. This difference could be explained

by the longer time gap—sometimes 1, 2, or 3 days—between consecutive deliveries for ob-

stetricians, which may weaken the impact of the previous decision on the current delivery

decision. It could also be because obstetricians usually possess more information about

their patients. In column (2), we restrict the sample to deliveries in which the physician’s

previous delivery was within 24 hours. The magnitude of the autocorrelation doubles to

0.028, which implies that the likelihood of a C-section increases by 2.8 percentage points

after a previous C-section on the same day. This is equivalent to an 8.8% increase in

the C-section rate from the mean, and suggests that the magnitude of autocorrelation

increases if the previous delivery decision is more recent.

Robustness Analyses: Conditional Random Ordering. A potential concern for our

identification is that some deliveries—namely, scheduled C-sections and induced labor—

are scheduled ahead of time, and the scheduling of these deliveries may be endogenous to

the decision. For example, if C-sections tend to be scheduled close together, this would

create a spurious positive autocorrelation in our results. Due to data limitations, we

are unable to identify which deliveries were scheduled ahead of time. We address this

31



potential concern in two ways. First, in column (3) we restrict the sample to weekend

deliveries, which are almost always emergency deliveries and thus patient ordering is likely

to be random. The estimated coefficient is positive and statistically significant at the 1%

level. Furthermore, the magnitude of the coefficient in column (3) is comparable to that

in column (1).

Second, in column (4) we remove breech births and mothers who have had a previous

C-section; these are the two most common conditions in which C-sections are scheduled

ahead of time.28 The estimated coefficient in column (4) is 0.014, which is almost identical

to the estimated coefficient in column (1). The magnitudes of the estimated coefficients re-

main almost unchanged across columns (1), (3), and (4), which suggests that the potential

endogenous scheduling of C-sections may not be a major concern.

Additional Analyses. We examine the heterogeneity of our findings in Appendix B.2.

Consistent with our findings from the ED setting, we find that the degree of autocorre-

lation in C-section decisions increases when the current patient is associated with larger

variation in C-section risk. However, we are not able to examine the role of physician

experience and fatigue in the childbirth setting, due to the lack of information in the

obstetric data.

6 Mechanism

This section discusses potential mechanisms underlying the observed positive autocorre-

lation in physician decisions. We fist examine memory and attention-based anchoring and

adjustment, as proposed by Bordalo, Gennaioli, and Shleifer (2020). We find that the

model can account for the empirical patterns we observed. We then present additional

evidence from both reduced-form and structural estimates, which provides further support

for the model. Finally, we discuss alternative mechanisms, including quotas and learning,

and show that while these mechanisms may contribute to some of the observations, they

28These are the top two predictors of receiving a C-section in our data: 90.2% of breech births receive
a C-section and 87.1% of births in which the mother has a history of receiving a C-section before receiving
another C-section. Physicians often schedule C-sections for these patients.
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can not fully explain our findings.

6.1 Memory and Attention Mechanism

Bordalo, Gennaioli, and Shleifer (2020) propose a theoretical framework to model the

memory and attention mechanism in decision-making, and show that the model provides

a unified account for a range of behavioral anomalies documented in the literature. In

their framework, a choice option cues the attention to and recall of the individual’s past

experiences from the memory database, which are weighted by their similarity to the cue

and are then consolidated into a norm. The model explains positively and negatively auto-

correlated decisions simultaneously: Positive autocorrelation arises when the discrepancy

between the current stimulus and the memory and attention-based norm is moderate, and

negative autocorrelation prevails when the discrepancy is unexpectedly large. Based on

this mechanism, the model can also account for the varying degrees of autocorrelation in

sequential decisions when the current choice environment is compared with past experi-

ences and a higher weight is assigned to more recent ones. Below we apply the model of

Bordalo, Gennaioli, and Shleifer (2020) to the context of physician decisions.

Consider a physician who treats a total of T patients within a shift and label each

patient by time period t ∈ {1, ..., T}. We refer to the physician as “she” and the patient as

“he.” Let C be the set of patients’ characteristics that can be observed by the physician,

including age, gender, disease category, triage severity, etc., and ct ∈ C be the charac-

teristics of patient t. Let r : C → R be the function that maps the patient’s observed

characteristics to his clinical risk and rt = r(ct) be the clinical risk of patient t.

We assume that the physician forms a norm (rnt ) to assess the risk of patient t (t ≥ 2)

by retrieving experiences from both her recent and long-term memories. The physician’s

recent memory is based on the treatment of all patients prior to the current one within

the same shift; we denote by rt−k the clinical risk of the patient lagged k periods before

the current patient. Her long-term memory is based on the treatment of all patients prior

to the current shift; we denote by rmt the average risk of patients recalled by the physician

(based on the cue from patient t) from her long-term memory. The physician’s norm rnt
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is a weighted average of {rt−k}t−1
k=1 and rmt :

rnt =

t−1∑
k=1

αe−β(k−1)S(ct−k, ct)rt−k + rmt

t−1∑
k=1

αe−β(k−1)S(ct−k, ct) + 1

, (2)

where the weight of rmt is normalized to one. The weight of rt−k is the product of three

terms: (i) α(> 0) captures the relative importance of the recent memory to the long-term

memory; (ii) e−β(k−1) captures the similarity between patient t − k and t in the time

domain, where β > 0; and (iii) S(ct−k, ct)(≥ 1) captures the similarity between patient

t − k and t in their observable characteristics. We assume that similar experiences are

more likely to be recalled and receive more attention from the physician; that is, S(ct−k, ct)

increases as ct−k and ct become more similar.

The norm rnt serves as the physician’s anchor when assessing the risk of patient t. She

adjusts her perceived risk (rpt ) from the anchor based on her perceived difference between

rt and the anchor rnt in the following manner:

rpt = rnt + σ(rt, r
n
t )(rt − rnt ), (3)

where σ(rt, r
n
t )(rt − rnt ) is the physician’s perceived difference, and the term σ(rt, r

n
t )

captures the salience of the difference between rt and rnt ; σ(rt, r
n
t ) = 0 when rt = rnt .

29

The function σ(rt, r
n
t ) is smaller than 1 when the difference between rt and rnt is small; it

is greater than 1 when the difference is large. In the former case, the physician’s perceived

risk for the patient, rpt , is anchored to the norm rnt ,
30 resulting in positive association

between rpt and rnt . This is referred to as anchoring. In the latter case, the physician is

surprised by the difference and overadjusts the risk against the norm; consequently, rpt

is adjusted away from the norm rnt ,
31 leading to negative association between rpt and rnt .

This is referred to as adjustment.

29See Bordalo, Gennaioli, and Shleifer (2012, 2013) for how salience affects choices and Bordalo,
Gennaioli, and Shleifer (2022) for a survey on salience.

30That is, rnt > rpt > rt when rnt > rt, and rnt < rpt < rt when rnt < rt.
31That is, rt > rpt when rnt > rt, and rt < rpt when rnt < rt.
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Specifically,

∂rpt
∂rnt

= 1− σ(rt, r
n
t ) +

∂σ(rt, r
n
t )

∂rnt
(rt − rnt ). (4)

When rt is close to rnt , both σ(rt, r
n
t ) and

∂σ(rt,rnt )

∂rnt
(rt − rnt ) are close to 0; hence,

∂rpt
∂rnt

> 0.

By contrast, when rt is far from rnt , the salience term σ(rt, r
n
t ) is larger than one, and

∂rpt
∂rnt

< 0.32

This model, with the assumption of recency effect, accommodates both positive and

negative autocorrelation in sequential medical decisions. Specifically, a physician with

recency effect pays more attention to the previous patient in her memory database, so

the previous patient’s risk rt−1 is disproportionately weighted higher in the risk norm rnt

(Equation (2)). The aforementioned association between rpt and rnt would then lead to

autocorrelation between rpt and rt−1. That is, when the difference between rt−1 and rt is

small, the previous patient’s risk rt−1 increases the perceived risk rpt for patient t—and

consequently positive autocorrelation occurs, since the probability of admission monoton-

ically increases with the perceived risk. Conversely, when the difference is unexpectedly

large, negative autocorrelation emerges.33

To sum, the model helps explain our observed positive autocorrelation and gives rise to

three additional predictions: (i) the recency effect, whereby the degree of autocorrelation

decreases with the time distance between the current and earlier patients within the same

shift; (ii) the similarity effect, whereby the degree of autocorrelation increases with the

similarity in characteristics between the current and previous patients; and (iii) poten-

tial negative autocorrelation—whereas positive autocorrelation is prevalent in physician

decisions, negative autocorrelation can occur when the physician is surprised by a large

difference between the current and previous patient and overadjusts the risk against the

norm. We next examine these three predictions.

32The assumption that guarantees the inequality is as follows: The function σ(rt, r
n
t ) increases with the

difference between rt and rnt when the sign of rt−rnt remains unchanged. It follows that
∂σ(rt,r

n
t )

∂rnt
(rt−rnt ) ≤

0, and thus
∂rpt
∂rnt

< 0.
33The anchoring and adjustment mechanism also accounts for the observation in Section 4.3—the pos-

itive autocorrelation is higher when the current patient is of larger clinical uncertainty. More specifically,
patients with lower clinical uncertainty are likely to have a condition that is either very mild or very se-
vere. As a result, they are less likely to be similar to the previous patient in terms of risk, and therefore,
we are less likely to observe positive autocorrelation.
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6.2 Reduced-form Estimates

Recency Effect. Equation (2) shows that the weight term e−β(k−1) decreases over time

as memory fades. To test this recency effect, we examine the extent to which physicians’

treatment decisions are influenced by more distant decisions in the past. In both the ED

and childbirth settings, we find significant diminishing effects over longer lagged decisions

(Appendix Tables A.6 and B.3). In the ED setting, the likelihood of admitting the current

patient increased by 2.5 percentage points after admitting the previous patient, compared

with 1.0, 0.9 and 0.8 percentage-point increases after admitting the patients 2, 3 and 4

time periods prior, respectively.34 Similarly, in the childbirth setting, having performed a

C-section on the previous patient was associated with a 1.3 percentage-point increase in

C-section risk, whereas having performed a C-section on patients 2, 3 and 4 time periods

ago was associated with 0.5, 0.5 and 0.6 percentage-point increases in C-section risk,

respectively.

Similarity Effect. Equation (2) shows that the weight assigned to the previous patient

depends not only on recency but also on the similarity in patient characteristics. In both

the ED and childbirth settings, we find evidence consistent with the insights arising from

the model: The degree of autocorrelation increases when consecutive patients are more

similar in their characteristics (Appendix Tables A.7 and B.1). In the ED, on average, the

degree of autocorrelation increases by more than 200% when the two patients are similar

in triage severity and by around 50% when the two patients are similar in disease or age.35

By contrast, the degree of autocorrelation does not significantly vary by similarities in race

or gender. Given that race and gender are less relevant predictors of and not significantly

correlated with clinical risk in the ED, the results suggest that physicians, while relying on

shortcuts, selectively retrieve memories based on similarities in the characteristics relevant

to clinical risk and not on similarities in other characteristics.

34We also find that in the ED setting, the estimated autocorrelation decreases when the physician
takes a break before attending to the current patient.

35Similarity in triage severity implies that the two patients are both severe or both non-severe. Simi-
larity in disease implies that the two patients belong to the same category out of the 18 broad diagnostic
categories. Similarity in age implies that the age gap between the two patients is within 6 years (the first
quartile of age gaps); results are robust if we use alternative age gaps—e.g., 3, 5, or 10 years.

36



Potential Existence of Negative Autocorrelation. To investigate the potential ex-

istence of negative autocorrelation in the ED, we divide consecutive patient pairs into 8

groups by the three dimensions relevant to clinical risk—severity, disease, and age. We

examine heterogeneous autocorrelation across the 8 groups by estimating the following

the equation:

Yit = ρ0 +
8∑

j=1

βjYi,t−1 × 1(Git = j) +Gitπ +Xitγ + δi + ηit, (5)

where Git is a vector of group indicators; other variables are the same as in Equation (1).

Since Yi,t−1 is omitted from the right-hand side of Equation (5), the 8 coefficients of βj

capture the degree of autocorrelation across the 8 groups.

Columns (1) and (2) of Table 9 present the pooled OLS and fixed-effect estimates for

Equation (5), respectively. Estimates are similar between the two columns. The results

show that positive autocorrelation prevails, since the estimates of βj are positive in 7 out of

the 8 groups in each column. Moreover, the magnitude of the estimates generally increases

when consecutive patients are similar in more dimensions of characteristics. For example,

the estimate of β1 is positive but small in magnitude, which suggests weakly positive

autocorrelation when the two patients are similar in none of the three dimensions. By

contrast, the estimate of β8 is positive, large in magnitude, and statistically significant at

the 1% level, which suggests that the physician is more likely to anchor on the previous

patient when the two patients are similar in all of the three dimensions.

Table 9 also documents suggestive evidence of negative autocorrelation in physician

decisions. The estimate of β4 is negative—namely, the physician’s decisions appear to be

negatively autocorrelated when the previous and current patients are similar in disease

and age but not in triage severity. In our setting, triage severity is one of the most

important determinants for patient disposition; the admission rate is 56% in severe cases

and 8% in non-severe cases. The similarities in age and disease might cue the physician

to expect the current patient to have medical conditions similar to the previous one,

and thus use the previous patient as an anchor. Yet the difference in triage severity
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could surprise the physician to contrast the current patient with the previous one, so she

overadjusts her perceived risk for the current patient away from the anchor, which leads

to negative autocorrelation in physician decisions. Some caution should also be exercised

in interpreting this finding, since the estimate is only marginally significant at the 10%

level.

Discussion. In summary, we document reduced-form evidence consistent with the mem-

ory and attention-based anchoring and adjustment mechanism. Physician decisions are

generally positively autocorrelated and the degree of autocorrelation is larger when the

previous and current patient are closer in time (recency effect) or more similar in their

observable characteristics (similarity effect). We also find some suggestive evidence that

physicians may make negatively autocorrelated decisions in the face of a surprise.

Overall, our results show that positive autocorrelation prevails in healthcare settings.

We suggest two reasons. First, physicians, as medical experts, have accumulated extensive

experience from years of training and working with a wide variety of patients.36 Physicians

would be able to retrieve cases similar to patient t from their long-term memory, such

that rmt in Equation (2) is close to rt. When their norms are largely determined by those

retrieved from long-term memory and, to a lesser extent, by their recently treated patients

in the shift, α is small in Equation (2). As a result, physicians’ norms would be close to

the current patient’s risk. That is, the gap between rnt and rt is small in Equation (3),

the salience term is less than one, and positive autocorrelation prevails.37

Second, we observe physicians’ binary decisions in our datasets but not risk ratings,

so it is hard to detect negative autocorrelation from binary choice data. The reason is

as follows. The necessary condition for negative autocorrelation is that the gap between

the current patient’s risk rt and the norm rnt is sufficiently large. Equation (2) shows

that the norm rnt is a weighted average between the risk levels of recently treated patients

36For example, in the U.S., predetermined qualifications for physician licensure includes medical school
graduation, residency training, and passing a comprehensive national medical licensing examination,
which in total may take a decade or longer (Bhattacharya, Hyde, and Tu, 2018).

37Negative autocorrelation may prevail in some settings. For example, using large-scale data on study
grant admissions and job hiring interviews, Radbruch and Schiprowski (2022) show that the assessment
of a candidate decreases in the quality of other candidates assigned to the same evaluator, and provide
empirical support for negatively autocorrelated decisions caused by the interplay between the associative
recall of prior candidates and the attention to salient quality differences.
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within the same shift ({rt−k}) and those retrieved from the long-term memory database

(rmt ). When physicians are able to retrieve cases similar to patient t from their long-term

memory, rmt is similar to rt. To observe negatively autocorrelated decisions, we thus need

rt to dramatically differ from {rt−k}. This condition is satisfied in only two scenarios

when considering disposition decisions in the ED setting. First, previous patients have

low risk, but the current patient has high risk and thus should be admitted with almost

certainty; second, previous patients have high risk, but the current patient has low risk

and thus should be discharged with almost certainty. The large difference between the

two consecutive patients would push the physician’s perceived risk for the current patient

away from the norm—i.e., the physician would perceive the risk of the current patient to

be even higher in the first scenario and lower in the second scenario. In both scenarios,

however, the physician’s binary disposition decision for the current patient would hardly be

affected, since the current patient should be admitted or discharged with almost certainty.

6.3 Structural Estimates

Next, we structurally estimate the model presented in Section 6.1. The structural esti-

mation aims to help better understand the memory and attention mechanism underlying

the observed positive and negative autocorrelation in physician decisions in Table 9.

Parameterization. We first parameterize the risk norm function in Equation (2) in

three steps. In the first step, for the physician’s recent experiences, we consider only the

risk of the most recent patient (rt−1) among all patients within the same shift ({rt−k}).

This simplification is in part due to the observed recency effect, whereby the decision for

the most recent patient has a significantly larger effect on the current decision compared

with decisions for patients lagged 2 or more periods (Appendix Table A.6). In the second

step, we use rt as a proxy of rmt . As discussed in the section above, physicians have

accumulated extensive experience during their years of training and working. Thus, they

are able to retrieve patients who are similar to the current patient from their long-term
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memory databases. In the third step, we specify the similarity function as

S(ct, ct−1) = λ
It,t−1

SEV λ
Jt,t−1

DZ λ
Kt,t−1

AGE , (6)

where the dummy indicators It,t−1, Jt,t−1, and Kt,t−1 indicate whether patient t and t− 1

are similar in severity, disease, and age, respectively. In the similarity function, λSEV is

the parameter of similarity in severity between the current and previous patients, which

measures the ratio of the weight of the previous patient’s risk rt−1 when the two patients

are similar in severity over the weight when they are not; λDZ and λAGE are the parameters

of similarity in disease and age, respectively. These three parameters will be estimated.

Combining the three steps, the risk norm function is

rnt =
λ
It,t−1

SEV λ
Jt,t−1

DZ λ
Kt,t−1

AGE αrt−1 + rt

λ
It,t−1

SEV λ
Jt,t−1

DZ λ
Kt,t−1

AGE α + 1
. (7)

Second, we specify the salience term as

σ(rt, r
n
t ) = σ · |rt − rnt |

r̄ − r
, (8)

where σ(> 0) captures how the physician perceives the difference between the norm and

the current patient’s risk as salient. The two numbers r̄ and r represent the maximal and

minimal risk over all patients in the sample, respectively. This simple functional form

maintains the key features discussed in Section 6.1. First, σ(rt, r
n
t ) increases with the

difference between the norm rnt and the current patient’s risk rt. Second, the reaction of

the physician’s perceived risk to a change in the norm reduces to

∂rpt
∂rnt

= 1− 2σ · |rt − rnt |
r̄ − r

, (9)

which is positive when rt is close to rnt and negative when they are distinct given a

reasonably large σ.

Plugging Equations (7) and (8) into Equation (3), the physician’s perceived risk for

40



patient t is given by

rpt =
λ
It,t−1

SEV λ
Jt,t−1

DZ λ
Kt,t−1

AGE αrt−1 + rt

λ
It,t−1

SEV λ
Jt,t−1

DZ λ
Kt,t−1

AGE α + 1
+ σ

(
λ
It,t−1

SEV λ
Jt,t−1

DZ λ
Kt,t−1

AGE α

λ
It,t−1

SEV λ
Jt,t−1

DZ λ
Kt,t−1

AGE α + 1

)2
|rt − rt−1|(rt − rt−1)

r̄ − r
.

(10)

Estimation. We first estimate a logistic model of patient admission on patient demo-

graphics, triage severity, diagnosis, and time fixed effects. Using the estimated coefficients,

we compute rt, rt−1, r̄, and r.

We then use maximum likelihood estimation to estimate the parameters, λSEV, λDZ,

λAGE, α, and σ. We specify that the patient’s utility from admitting patient t is Ut,1 =

rpt + ϵt, where the deterministic part of the utility from admission increases with the

physician’s perceived risk for the patient, defined in Equation (10); her utility from dis-

charging the patient is Ut,0 = ϵ̂t, where the deterministic part of the utility from discharge

is normalized as 0. The two error terms ϵt and ϵ̂t are independent of patients’ observable

characteristics.38 The physician admits the patient if and only if rpt + ϵt ≥ ϵ̂t. We assume

that the two error terms follow type I extreme value distribution. The probability of ad-

mitting patient t is er
p
t

1+er
p
t
. We obtain the likelihood function conditional on the observed

characteristics of the patients as

L(α, σ, λSEV, λDZ, λAGE|{ct}t∈Γ∪Ω) =
∏
t∈Ω

((
er

p
t

1 + er
p
t

)At (
1

1 + er
p
t

)1−At
)
.

The set Γ contains all patients who are the first in their corresponding shifts, Ω contains

those who are not the first in their corresponding shifts, and At indicates whether patient t

is admitted (At = 1) or not (At = 0). In the likelihood function, conditional on all patient

characteristics, the physician’s sequential decisions are independent since her perceived

risk for each patient depends on patient characteristics. The observed autocorrelation

in physician decisions is generated by the correlation between the perceived risk of the

current patient and the risk of the previous patient, as described by Equation (10).

We have five parameters—λSEV, λDZ, λAGE, α and σ—to be estimated. The three

38We assume that ϵt and ϵ̂t are independent conditional on rpt . Physician admission decisions for
patient t and t− 1 are correlated through rpt but not through the error terms.
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similarity parameters λSEV, λDZ, and λAGE can be separately identified because of the

conditional random assignment of patients. We mainly rely on the functional form to

separately identify α and σ. Equation (10) shows that the influence of α on rpt relies on

both rt, rt−1, and the quadratic function of their difference; by contrast, the influence of

σ on rpt relies only on the quadratic function of the difference.

Results. Table 10 presents the parameter estimates. Estimates of the similarity pa-

rameters λSEV, λDZ, and λAGE are all larger than one. This supports the mechanism of

similarity-based retrieval: The weight of the previous patient’s risk increases when the

current and previous patient are similar in their characteristics. In particular, λSEV is

larger than both λDZ and λAGE, which indicates that similarity in severity renders a heav-

ier weight on the previous patient’s risk in forming the norm, compared with similarities

in age and disease. This result is consistent with the reduced-form evidence reported in

Appendix Table A.7.

Estimates of the weight on the previous patient’s risk α is 0.01 when the previous and

current patient are similar in none of the three characteristics. This result is consistent

with the estimate of β1 reported in Table 9. Combining the estimates of α with λSEV, λDZ,

and λAGE, the weight on the previous patient’s risk is 0.09 when the two patients are similar

in all of the three characteristics. Since the weight on the risk of the current patient,

which is used to proxy for the average risk of patients retrieved from long-term memory,

is normalized to 1, the weight on the previous patient’s risk is low. This result suggests

that the physician is less affected by the previous patient’s risk in forming the norm and

that the gap between the current patient’s risk and the norm is small, which explains

the prevalence of positive autocorrelation in our context. Finally, the estimate of salience

parameter σ is 64.75. Since the estimate of α is 0.01, the estimate of σ is sufficiently large

to account for both positive and negative autocorrelation (Equation (10)).

Discussions. The estimated model accommodates both positive and negative autocor-

relation. We take the derivative of Equation (10) with respect to rt−1 and plug in the
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parameter estimates of α and σ:39

∂rpt
∂rt−1

=
∂rpt
∂rnt

∂rnt
∂rt−1

=
λ
It,t−1

SEV λ
Jt,t−1

DZ λ
Kt,t−1

AGE α

λ
It,t−1

SEV λ
Jt,t−1

DZ λ
Kt,t−1

AGE α + 1

(
1− 2λ

It,t−1

SEV λ
Jt,t−1

DZ λ
Kt,t−1

AGE ασ

λ
It,t−1

SEV λ
Jt,t−1

DZ λ
Kt,t−1

AGE α + 1

|rt − rt−1|
r̄ − r

)

≈ 0.01λ
It,t−1

SEV λ
Jt,t−1

DZ λ
Kt,t−1

AGE

(
1− 1.27λ

It,t−1

SEV λ
Jt,t−1

DZ λ
Kt,t−1

AGE

|rt − rt−1|
r̄ − r

)
.

(11)

The above equation shows that the sign of the autocorrelation equals the sign of the term in

parentheses. Here, we observe a trade-off. On the one hand, when the current and previous

patients are similar, such that It,t−1, Jt,t−1, and Kt,t−1 all equal one, λ
It,t−1

SEV λ
Jt,t−1

DZ λ
Kt,t−1

AGE

attains its maximal value. At the same time, the risk difference between the current and

previous patients (|rt−rt−1|) attains its minimal across the 8 groups we analyzed in Section

6.2. On the other hand, when the current and previous patients are different, such that

It,t−1, Jt,t−1, andKt,t−1 all equal zero, λ
It,t−1

SEV λ
Jt,t−1

DZ λ
Kt,t−1

AGE attains its minimal value, and the

risk difference between the current and previous patient (|rt−rt−1|) attains its maximal. In

both cases, λ
It,t−1

SEV λ
Jt,t−1

DZ λ
Kt,t−1

AGE |rt − rt−1| does not achieve its maximal value and the term

in parentheses is not likely to be negative; consequently, negative autocorrelation does not

occur. To observe negative autocorrelation, we need to balance between λ
It,t−1

SEV λ
Jt,t−1

DZ λ
Kt,t−1

AGE

and |rt − rt−1|. For example, when the two patients are similar in age and disease (Jt,t−1 =

1 and Kt,t−1 = 1) but different in severity (It,t−1 = 0), λ
It,t−1

SEV λ
Jt,t−1

DZ λ
Kt,t−1

AGE is larger than one

and |rt − rt−1| is also large, since severity is a major determinant of patient risk. In this

case, λ
It,t−1

SEV λ
Jt,t−1

DZ λ
Kt,t−1

AGE |rt − rt−1| may achieve the maximal and negative autocorrelation

may occur. This is consistent with the negative estimate of β4 in Table 9. In this regard,

the memory and attention mechanism (Bordalo, Gennaioli, and Shleifer, 2020) explains

both the positive and negative estimates of autocorrelation in physician decisions in Table

9.

39In the partial derivative, we assume that rt−1 changes, holding It,t−1, Jt,t−1, and Kt,t−1 constant.
This assumption holds in our heterogeneity analysis across the 8 groups in Table 9.
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6.4 Alternative Explanations

We discuss quota and learning as two alternative mechanisms that could in principal

generate positive autocorrelation in physician decisions.40

Quota. Physicians may face a constraint in the total number of affirmative responses

(i.e., a quota). For example, the number of admission decisions in the ED is subject to

the availability of inpatient beds. As discussed in Section 4.2, the positive autocorrelation

in decisions persists after controlling for the level of bed occupancy and crowdedness in

the ED, which implies that quota is unlikely to be the underlying mechanism behind the

observed autocorrelated decisions of physicians.

Learning. Decision makers may be unsure about how to set the threshold to reach a

decision, so they learn over time. For example, an ED physician may update her belief

over patients’ conditions and adjust her threshold for admission through repeated practice.

The learning interpretation is less consistent with the observed strong recency effect: The

positive autocorrelation is primarily driven by the immediately preceding decisions, and

the effect dissipates rapidly over lagged decisions.

7 Conclusion

This paper documents positive autocorrelation in physician decisions, using large-scale

data from two independent healthcare settings: inpatient-admission in the ED and C-

section decisions for childbirth. The degree of autocorrelation is higher when consecutive

patients share more similar characteristics, when the current patient is of larger clinical

uncertainty, and when the physician is less experienced or more fatigued. We also find

that decisions can occasionally be negatively autocorrelated in the face of a surprise.

Our results are most consistent with the mechanism of memory and attention (Bordalo,

Gennaioli, and Shleifer, 2020), whereby the physician forms a norm based on similar and

recent experiences and adjusts according to the difference between the norm and the

40Because of data availability, we mainly rely on results based on the ED setting to examine alternative
explanations for positive autocorrelation discussed in the literature.
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current choice situation.

The analysis in this paper suggests that physicians often rely on shortcuts, such as

decisions about previous patients, to make fast decisions about current patients, especially

when the consecutive patients are similar. While these shortcuts can help physicians make

quick decisions given the time constraint, they also make them more vulnerable to biases

that can have negative consequences for patients (Croskerry, 2002). In support of this

view, we show that relying on the same decisions as for the previous patient shortens the

consultation time for the current patient but increases unexpected discharge for high-risk

patients.

Although it has been suggested that people use heuristics to make difficult decisions

(Simon, 1955; Tversky and Kahneman, 1974; Gigerenzer and Todd, 1999), there has been

a lack of welfare models to analyze the cost and benefit of using heuristics. On the benefit

side, heuristics can be a valuable tool for simplifying complex problems, providing an

approximation of optimal decisions, and saving time and cognitive resources. This can be

especially important in a medical setting where timely decisions are necessary. Consider

the mechanism of memory and attention (Bordalo, Gennaioli, and Shleifer, 2020) in this

setting. Similarity in patient characteristics provides useful clues for assessing the risk of

the current patient, and it is also less costly to retrieve more recent and similar patients.

Instead of assessing each patient separately, physicians adjust their perceived risk for the

current patient based on retrieved experiences from previous patients.

However, heuristics can also have negative implications. While more recent and similar

patients may be easier and faster for the physician to retrieve, their treatments may not

provide sufficient information to assess the risk of the current patient. Even if physicians

can retrieve sufficiently similar patients, they may not be able to properly adjust the

assessed risk. Thus, the use of shortcuts enables physicians to make faster decisions

with less time and cognitive cost, but it may inevitably lead to systematic biases and

errors, as Tversky and Kahneman (1974) noted: “these heuristics are quite useful, but

sometimes they lead to severe and systematic errors.” Although presenting a formal

micro-foundation is beyond the scope of our paper, we believe that our study provides
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some empirical regularities for future theoretical work.

While completely removing shortcuts from clinical judgments would be unrealistic and

perhaps unnecessary (Graber, Gordon, and Franklin, 2002), it is essential to understand

the use of shortcuts in relation to the trade-off between decision time and decision quality.

The welfare implications of using shortcuts depend on how they are used, in what context,

and whether they are used in combination with other decision-making tools. Researchers

have begun to examine this issue. For example, medical education can increase physi-

cians’ understanding of the pros and cons of using shortcuts (Graber, 2009), and clinical

decision support systems, e.g., artificial intelligence, can suggest diagnoses for considera-

tion (Sloane and Silva, 2020). Therefore, we highlight the need to understand heuristics

and biases and to examine various methods for reducing medical errors toward better

physician decisions.

8 Data Availability Statements

The data and code underlying this research is available on Zenodo at https://doi.org/10.

5281/zenodo.8242347.
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(f) Admission probability

FIGURE 1
Distribution of P -values from Nonparametric Runs Tests of Patient Characteristics

Note: This figure presents the distribution of the runs test p-values for each physician-shift in the ED.
Panels (a)–(f) consider the null hypotheses that the patient sequence follows a random order with respect
to (a) patient gender, (b) Race 1, (c) Race 2, (d) Race 3, (e) patient age, and (f) admission probability
predicted by patient demographics, triage severity, and diagnostic categories.
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TABLE 1 Summary Statistics

Variable Observations Mean SD

Panel A: Physician decisionsa

Inpatient admission 253,466 0.217 0.412
Order of lab tests 253,466 0.519 0.500
Order of imaging tests 253,466 0.512 0.500
Use of opioids 253,466 0.080 0.271
Use of antibiotics 253,466 0.052 0.221

Panel B: Patient characteristicsb

Male 253,466 0.647 0.478
Age 253,466 39.343 20.549
Race group

Race 1 253,466 0.545 0.498
Race 2 253,466 0.199 0.399
Race 3 253,466 0.162 0.369
Others 253,466 0.094 0.292

Triage severity level
1 253,466 0.038 0.191
2 253,466 0.247 0.431
3 253,466 0.715 0.451

Note: This table summarizes physician decisions and patient characteristics in
the ED setting.
a Inpatient admission, order of lab tests, order of imaging tests, use of opioids,
and use of antibiotics are dummy variables that measure, respectively, whether
the physician orders inpatient admission, lab tests, imaging tests, opioids, and
antibiotics for the patient.
b Unlisted patient characteristics include patient diagnostic categories.
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TABLE 2 Autocorrelation in Disposition Decisions

(1) (2) (3)
Y Inpatient admission dummy

Sample Full sample Same-shift
patients

First patient in
a shift

Panel A. Fixed-effect estimates
Lag admission 0.0320*** 0.0375*** 0.0012

(0.0026) (0.0030) (0.0070)
R-squared 0.398 0.392 0.460

Panel B. Pooled OLS estimates (no physician fixed effects)
Lag admission 0.0383*** 0.0438*** 0.0083

(0.0030) (0.0034) (0.0070)
R-squared 0.394 0.387 0.449

Patient demographics YES YES YES
Triage severity YES YES YES
Diagnosis YES YES YES
Time fixed effects YES YES YES
Observations 253,466 241,191 12,275
Sample mean outcome 0.217 0.207 0.414

Note: This table examines the effect of the physician’s previous disposition de-
cision on her current disposition decision in the ED. Panel A reports fixed-effect
estimates from Equation (1). Panel B reports pooled OLS estimates without
controlling for physician fixed effects. The dependent variable is a dummy that
equals one if the physician admitted the current patient for inpatient care and
zero otherwise. Lag admission is an indicator for whether the physician made
an inpatient-admission decision for the previous patient. Observations are at the
physician × patient visit level. In the full sample, observations are restricted to
patient visits managed by the same physician within 2 days. Column (1) shows
results using the full sample. Column (2) restricts the sample to patients who
follow another patient within the same shift by excluding the first patient in each
shift. Column (3) includes only the first patient in each shift. We note that
the mean admission rate in column (3) is higher than that in column (2). This
is because severe patients have longer consultations than non-severe patients; a
physician can treat more patients when her shift is in the urgent care section
with non-severe patients, compared with when her shift is in the acute care area
with severe patients. Thus, the share of severe patients of the first patients in a
shift is larger than the share of severe patients of total patients. All regressions
control for characteristics of the current patient visit, including patient demo-
graphic characteristics (gender, race, and age), triage severity levels, diagnostic
categories, and time fixed effects (hour of day, day of week, and month by year).
Standard errors in parentheses are clustered at physician level. *** indicates sig-
nificance at the 1% level.
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TABLE 3 Autocorrelation in Other Physician Decisions

(1) (2) (3) (4)
Y Lab test Imaging test Opioid use Antibiotic use

Lag Y 0.0226*** 0.0301*** 0.0182*** 0.0197***
(0.0020) (0.0034) (0.0030) (0.0036)

Patient demographics YES YES YES YES
Triage severity YES YES YES YES
Diagnosis YES YES YES YES
Time fixed effects YES YES YES YES
Physician fixed effects YES YES YES YES
Observations 241,191 241,191 241,191 241,191
R-squared 0.404 0.272 0.092 0.175
Sample mean outcome 0.512 0.510 0.079 0.048

Note: This table examines autocorrelation in other physician decisions in the ED.
The regression specification is the same as Equation (1), but with different measures
of physician decisions. Columns (1)–(4) examine autocorrelation in the ordering of
lab tests, imaging tests, opioids, and antibiotics, respectively. Observations are re-
stricted to patients who follow another patient within the same shift. All regressions
control for characteristics of the current patient, physician fixed effects, and time
fixed effects. Standard errors in parentheses are clustered at physician level. ***
indicates significance at the 1% level.
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TABLE 4 Heterogeneity Analysis: Clinical Uncertainty

(1) (2) (3) (4)

Y Inpatient admission dummy

Lag admission 0.0397*** 0.0639*** 0.1316*** 0.0370***
(0.0064) (0.0054) (0.0205) (0.0032)

Lag admission × -0.0171*
Low-variation condition (0.0086)
Lag admission × -0.0433***
Low admission risk (0.0058)
Lag admission × -0.0403***
High admission risk (0.0061)
Lag admission × -0.0242***
(log) Length of consultation (0.0047)
Lag admission × -0.0264***
Advanced diagnostic imaging (0.0098)

Patient demographics YES YES YES YES
Triage severity YES YES YES YES
Diagnosis YES YES YES YES
Time fixed effects YES YES YES YES
Physician fixed effects YES YES YES YES
Observations 32,642 241,191 241,191 241,191
R-squared 0.448 0.398 0.393 0.416
Sample mean outcome 0.527 0.207 0.207 0.207

Note: This table examines the association between autocorrelation in admission de-
cisions and clinical uncertainty associated with the current patient. In column (1),
we study a sample of patients in which the patient is diagnosed with one of the 15
most common conditions for inpatient admission in the US (Sabbatini, Nallamothu,
and Kocher, 2014). Low-variation condition is a dummy variable indicating that the
patient’s condition is among the seven conditions with variations less than median
level among the 15 conditions. Column (1) includes the Low-variation condition in-
dicator and its interaction with the lagged admission. In column (2), we predict ad-
mission probability for each patient using a logistic model, with admission decision as
the dependent variable and patient characteristics, physician fixed effects, and time
fixed effects as explanatory variables. Low admission risk (High admission risk) is a
dummy variable indicating that the patient’s admission probability is less than 0.25
(more than 0.75). Column (2) includes the Low admission risk and High admission
risk indicators and their respective interaction with the lagged admission. Column
(3) includes length of consultation in logarithmic form and its interaction term with
the lagged admission. Column (4) includes the indicator for the use of advanced di-
agnostic imaging and its interaction term with the lagged admission. Observations
are restricted to patients who follow another patient within the same shift. All re-
gressions control for characteristics of the current patient, physician fixed effects, and
time fixed effects. Standard errors in parentheses are clustered at physician level.
***, **, and * indicate significance at the 1%, 5%, and 10% level, respectively.
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TABLE 5 Heterogeneity Analysis: Physician Experience and Fatigue

(1) (2) (3)
Y Inpatient admission dummy

Lag admission 0.0449*** 0.0318*** 0.0579***
(0.0041) (0.0039) (0.0104)

Lag admission -0.0140*
× Experienced physician (0.0079)
Lag admission 0.0014**
× Hours worked (0.0006)
Lag admission -0.0061**
× (log) Shift time gap (0.0029)

Patient demographics YES YES YES
Triage severity YES YES YES
Diagnosis YES YES YES
Time fixed effects YES YES YES
Physician fixed effects YES YES YES
Observations 241,191 241,191 239,970
R-squared 0.392 0.392 0.392
Sample mean outcome 0.207 0.207 0.207

Note: This table examines whether experience and fatigue affect
the degree of autocorrelation in physicians’ decisions. Column (1)
adds an indicator for experienced physician and its interaction
with the lagged admission decision to Equation (1). Experienced
physician indicates whether the physician’s experience is at least
7 years. Column (2) includes the number of hours the physician
has worked before treating the current patient in the shift and its
interaction with the lagged admission decision. Column (3) in-
cludes the length of rest period before starting the current shift
in logarithmic form and its interaction with the lagged admis-
sion decision. Observations are restricted to patients who follow
another patient within the same shift. Dependent variables and
other control variables are the same as those in Panel A of Table
2. Standard errors in parentheses are clustered at the physician
level. ***, **, and * indicate significance at the 1%, 5%, and 10%
level, respectively.

57



TABLE 6 Effect of Path Dependency on Length of Consultation

(1) (2) (3)
Y (log) Length of consultation

Repeat -0.1322*** -0.1297*** -0.1498***
(0.0095) (0.0082) (0.0102)

Patient demographics YES YES YES
Triage severity YES YES YES
Diagnosis YES YES YES
Time fixed effects YES YES YES
Physician fixed effects NO YES YES
Admission NO NO YES
Observations 241,191 241,191 241,191
R-squared 0.270 0.326 0.326
Sample mean outcome 3.579 3.579 3.579

Note: This table examines the effect of path dependency on the
length of consultation. Repeat is a dummy that equals 1 when
the physician made the same disposition decision for the current
and previous patient and 0 otherwise. The dependent variable is
the current patient’s length of consultation in logarithmic form.
Observations are restricted to patients who follow another patient
within the same shift. Column (1) controls for characteristics of
the current patient and time fixed effects. Column (2) further
introduces controls for physician fixed effects and column (3) ad-
ditionally controls for the current patient’s disposition. Standard
errors in parentheses are clustered at physician level. *** indi-
cates significance at the 1% level.
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TABLE 7 Autocorrelation and Unexpected Dispositions

(1) (2) (3) (4) (5) (6)
Y 15-day 15-day 15-day 15-day Unexpected Unexpected

admission ambulance admission ambulance admission discharge

Unexpected admission -0.0005 -0.0002
(0.0012) (0.0008)

Unexpected discharge 0.0147*** 0.0050***
(0.0018) (0.0015)

Lag admission 0.0133*** -0.0152***
(0.0021) (0.0023)

Patient demographics YES YES YES YES YES YES
Triage severity YES YES YES YES YES YES
Diagnosis YES YES YES YES YES YES
Time fixed effects YES YES YES YES YES YES
Physician fixed effects YES YES YES YES YES YES
Observations 241,191 241,191 241,191 241,191 241,191 241,191
R-squared 0.019 0.024 0.019 0.024 0.034 0.194
Sample mean outcome 0.023 0.012 0.023 0.012 0.071 0.073

Note: This table examines whether autocorrelation in sequential physician decisions affects unexpected
dispositions. Unexpected admission indicates whether the physician admits the current patient who is ex-
pected to be discharged. Unexpected discharge indicates whether the physician discharges the current pa-
tient who is expected to be admitted. 15-day admission indicates whether the patient is admitted to hos-
pital through the ED within 15 days of the current visit. 15-day ambulance indicates whether the patient
uses an ambulance to the ED within 15 days of the current visit. Observations are restricted to patients
who follow another patient within the same shift. All regressions control for characteristics of the cur-
rent patient, physician fixed effects, and time fixed effects. Standard errors in parentheses are clustered at
physician level. *** indicates significance at the 1% level.
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TABLE 8 Autocorrelation in Delivery Decisions

(1) (2) (3) (4)
Y C-section dummy

Sample Full sample Previous
delivery was
on same day

Weekend
deliveries

Excluding
likely-

scheduled
C-sections

Panel A. Fixed-effect estimates
Lag C-section 0.0134*** 0.0276*** 0.0145*** 0.0137***

(0.0006) (0.0011) (0.0013) (0.0007)
R-squared 0.334 0.404 0.217 0.066

Panel B. Pooled OLS estimates (no physician fixed effects)
Lag C-section 0.0435*** 0.0505*** 0.0436*** 0.0439***

(0.0014) (0.0016) (0.0017) (0.0014)
R-squared 0.336 0.405 0.219 0.068

Patient demographics YES YES YES YES
Patient conditions YES YES YES YES
Time fixed effects YES YES YES YES
Observations 2,458,773 828,034 524,781 1,985,701
Sample mean outcome 0.338 0.314 0.256 0.211

Note: This table examines the effect of the physician’s previous delivery decision on her current
delivery decision for childbirth. Panel A reports fixed-effect estimates from Equation (1). Panel
B reports pooled OLS estimates without controlling for physician fixed effects. The dependent
variable is a dummy that equals one if the physician performed a C-section on the current pa-
tient and zero otherwise. Lag C-section is an indicator for whether the physician performed a
C-section on the previous patient. Observations are at physician × delivery level. Column (1)
shows results using the full sample. Column (2) restricts the sample to deliveries in which the
physician’s previous delivery was on the same day as the current delivery. Column (3) restricts
the sample to weekends, in which almost all deliveries are unscheduled emergency deliveries. Col-
umn (4) excludes patients with either a previous C-section or breech birth, which are two strong
predictors of scheduled C-sections. All regressions control for characteristics of the current de-
livery, including patient demographic characteristics (race and age), 11 medical conditions listed
in Appendix Table B.3, and time fixed effects (hour of day, day of week, and month by year).
Standard errors in parentheses are clustered at physician level. *** indicates significance at the
1% level.
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TABLE 9 Patient Similarity and Decision Autocorrelation

(1) (2)

Y Inpatient admission dummy

β1: Lag admission × Group 1 0.0119 0.0055
[Nonsimilar severity & Nonsimilar disease & Nonsimilar age] (0.0085) (0.0089)

β2: Lag admission × Group 2 0.0489** 0.0418*
[Nonsimilar severity & Nonsimilar disease & Similar age] (0.0211) (0.0216)

β3: Lag admission × Group 3 0.0448 0.0369
[Nonsimilar severity & Similar disease & Nonsimilar age] (0.0281) (0.0293)

β4: Lag admission × Group 4 -0.0757* -0.0791*
[Nonsimilar severity & Similar disease & Similar age] (0.0405) (0.0409)

β5: Lag admission × Group 5 0.0420*** 0.0358***
[Similar severity & Nonsimilar disease & Nonsimilar age] (0.0039) (0.0036)

β6: Lag admission × Group 6 0.0545*** 0.0482***
[Similar severity & Nonsimilar disease & Similar age] (0.0058) (0.0055)

β7: Lag admission × Group 7 0.0538*** 0.0477***
[Similar severity & Similar disease & Nonsimilar age] (0.0073) (0.0068)

β8: Lag admission × Group 8 0.1036*** 0.0980***
[Similar severity & Similar disease & Similar age] (0.0127) (0.0126)

Group FE YES YES
Patient demographics YES YES
Triage severity YES YES
Diagnosis YES YES
Time fixed effects YES YES
Physician fixed effects YES YES
Observations 241,191 241,191
R-squared 0.388 0.392
Sample mean outcome 0.207 0.207

Note: This table reports estimation results from Equation (5). Consecutive patients are divided
into 8 groups based on their similarity in three dimensions—similar severity or not × similar dis-
ease or not × similar age or not. The explanation in square brackets under “Lag admission ×
Group # ” indicates the similarity status in the corresponding group. For example, Group 1 in-
dicates that the current and previous patient are not similar in any of the three characteristics;
the coefficient on “Lag admission × Group 1” measures the degree of autocorrelation in admis-
sion decisions for patients in group 1. Observations are restricted to patients who follow another
patient within the same shift. Column (1) controls for characteristics of the current patient, time
fixed effects, and group fixed effects. Column (2) additionally controls for physician fixed effects.
Standard errors in parentheses are clustered at physician level. ***, **, and * indicate signifi-
cance at the 1%, 5%, and 10% level, respectively.
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TABLE 10 Parameters from Structural Estimation

Parameter Value SE

λSEV 3.4790 0.1183
λDZ 1.4977 0.1572
λAGE 1.6767 0.1065
α 0.0098 0.0003
σ 64.7541 0.6766

Note: This table presents estimates of the parameters
in Equation (10) using maximum likelihood estimation.
Standard errors are bootstrapped.
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